
Interfaces Types for Haskell

Peter Thiemann Stefan Wehr

University of Freiburg, Germany

APLAS; December 11, 2008; Bangalore, India

Interfaces Types for Haskell 1 / 14



Motivation

What’s the outcome of the following Haskell program?

Prelude> map show [1, True, "APLAS"]

ERROR: Couldn’t match expected type ‘Bool’ against
inferred type ‘[Char]’

With interface types, we can have

Prelude> map show ([1, True, "APLAS"] :: [Show])
["1","True","\"APLAS\""]

Show is an interface type: it stands for some instance of the
builtin type class Show

Type annotation forces the list elements to have type Show

Interfaces Types for Haskell 2 / 14



Motivation

What’s the outcome of the following Haskell program?

Prelude> map show [1, True, "APLAS"]

ERROR: Couldn’t match expected type ‘Bool’ against
inferred type ‘[Char]’

With interface types, we can have

Prelude> map show ([1, True, "APLAS"] :: [Show])
["1","True","\"APLAS\""]

Show is an interface type: it stands for some instance of the
builtin type class Show

Type annotation forces the list elements to have type Show

Interfaces Types for Haskell 2 / 14



Motivation

What’s the outcome of the following Haskell program?

Prelude> map show [1, True, "APLAS"]

ERROR: Couldn’t match expected type ‘Bool’ against
inferred type ‘[Char]’

With interface types, we can have

Prelude> map show ([1, True, "APLAS"] :: [Show])
["1","True","\"APLAS\""]

Show is an interface type: it stands for some instance of the
builtin type class Show

Type annotation forces the list elements to have type Show

Interfaces Types for Haskell 2 / 14



A real world case study

Requirements for a database access library:
Support for common database operations
Support for “special features” of a particular database
Public interface independent from a particular database, except
for

opening new connections
use of special features

HDBC (Haskell Database Connectivity)
Library for accessing SQL databases from Haskell
Drivers for different databases:
ODBC, PostgreSQL, Sqlite v3

Interfaces Types for Haskell 3 / 14



A real world case study

Requirements for a database access library:
Support for common database operations
Support for “special features” of a particular database
Public interface independent from a particular database, except
for

opening new connections
use of special features

HDBC (Haskell Database Connectivity)
Library for accessing SQL databases from Haskell
Drivers for different databases:
ODBC, PostgreSQL, Sqlite v3

Interfaces Types for Haskell 3 / 14



API of HDBC

Representing connections through type classes

module Database.HDBC (IConnection(..)) where
class IConnection c where
dbQuery :: c -> String -> IO [[String]]

Extending connections through sub classes

class IConnection c => IConnectionAsync c where
listen :: c -> String -> IO ()
notify :: c -> String -> IO ()

Sample driver (for Sqlite)

module Database.HDBC.Sqlite (ConSqlite(), connectSqlite) where
data ConSqlite = ConSqlite { sqliteQuery :: String -> IO [[String]] }
instance IConnection ConSqlite where
dbQuery = sqliteQuery

openConnection :: FilePath -> IO ConSqlite

Problem: Difficult to hide the concrete connection type

Interfaces Types for Haskell 4 / 14



API of HDBC

Representing connections through type classes

module Database.HDBC (IConnection(..)) where
class IConnection c where
dbQuery :: c -> String -> IO [[String]]

Extending connections through sub classes

class IConnection c => IConnectionAsync c where
listen :: c -> String -> IO ()
notify :: c -> String -> IO ()

Sample driver (for Sqlite)

module Database.HDBC.Sqlite (ConSqlite(), connectSqlite) where
data ConSqlite = ConSqlite { sqliteQuery :: String -> IO [[String]] }
instance IConnection ConSqlite where
dbQuery = sqliteQuery

openConnection :: FilePath -> IO ConSqlite

Problem: Difficult to hide the concrete connection type
Interfaces Types for Haskell 4 / 14



What is a good type for opening a connection?

Use database-specific datatype
openConnection :: FilePath -> IO ConSqlite

Drawback: reveals concrete connection type

Use continuations and rank-2 types
withSqliteConnection :: FilePath

-> (forall c . Connection c => c -> IO a)
-> IO a

Drawback: program must be written in CPS
Use algebraic data types with existential quantification
data ExIConnection = forall c . Connection c

=> ExIConnection c
instance IConnection ExIConnection where

dbQuery (ExIConnection c) = dbQuery c
openConnection :: FilePath -> IO ExIConnection
openConnection fp = do con <- internOpen fp

return (ExIConnection con)

Drawback: boilerplate code, explicit pack/unpack operations

Interfaces Types for Haskell 5 / 14



What is a good type for opening a connection?

Use database-specific datatype
openConnection :: FilePath -> IO ConSqlite

Drawback: reveals concrete connection type
Use continuations and rank-2 types
withSqliteConnection :: FilePath

-> (forall c . Connection c => c -> IO a)
-> IO a

Drawback: program must be written in CPS

Use algebraic data types with existential quantification
data ExIConnection = forall c . Connection c

=> ExIConnection c
instance IConnection ExIConnection where

dbQuery (ExIConnection c) = dbQuery c
openConnection :: FilePath -> IO ExIConnection
openConnection fp = do con <- internOpen fp

return (ExIConnection con)

Drawback: boilerplate code, explicit pack/unpack operations

Interfaces Types for Haskell 5 / 14



What is a good type for opening a connection?

Use database-specific datatype
openConnection :: FilePath -> IO ConSqlite

Drawback: reveals concrete connection type
Use continuations and rank-2 types
withSqliteConnection :: FilePath

-> (forall c . Connection c => c -> IO a)
-> IO a

Drawback: program must be written in CPS
Use algebraic data types with existential quantification
data ExIConnection = forall c . Connection c

=> ExIConnection c
instance IConnection ExIConnection where

dbQuery (ExIConnection c) = dbQuery c
openConnection :: FilePath -> IO ExIConnection
openConnection fp = do con <- internOpen fp

return (ExIConnection con)

Drawback: boilerplate code, explicit pack/unpack operations
Interfaces Types for Haskell 5 / 14



Doing it the OO way

Here is how you would program the example in Java:
public interface IConnection { String[][] dbQuery(String query); }
public class SqliteDB {

public IConnection openConnection(File f) { ... }
}

Translated to Haskell:
-- type class IConnection as before
module Database.HDBC.Sqlite (connectSqlite) where
data ConSqlite = ConSqlite { sqliteQuery :: String -> IO [[String]] }
instance IConnection ConSqlite where dbQuery = sqliteQuery
internConnectSqlite :: FilePath -> IO ConSqlite
connectSqlite :: FilePath -> IO IConnection
connectSqlite = internConnectSqlite

The interface type IConnection abstracts over some
instance of IConnection
No boilerplate code
Connection type remains abstract

Interfaces Types for Haskell 6 / 14



Doing it the OO way

Here is how you would program the example in Java:
public interface IConnection { String[][] dbQuery(String query); }
public class SqliteDB {

public IConnection openConnection(File f) { ... }
}

Translated to Haskell:
-- type class IConnection as before
module Database.HDBC.Sqlite (connectSqlite) where
data ConSqlite = ConSqlite { sqliteQuery :: String -> IO [[String]] }
instance IConnection ConSqlite where dbQuery = sqliteQuery
internConnectSqlite :: FilePath -> IO ConSqlite
connectSqlite :: FilePath -> IO IConnection
connectSqlite = internConnectSqlite

The interface type IConnection abstracts over some
instance of IConnection
No boilerplate code
Connection type remains abstract

Interfaces Types for Haskell 6 / 14



The fine print

For a type class I , the interface type I is equivalent to the
bounded existential type ∃α.I α⇒ α.

Introduction of interface types through type annotations:
(e :: I) results in wrapping e in a constructor KI

Elimination of interface types: automatically because KI is an
instance of I

Subtyping on interface types: induced by subclassing on type
classes, e.g.

IConnectionAsync is a subtype of IConnection.

Some type classes cannot be used as interface types:

class Show a where show :: a -> String OK
class IConnection c where dbQuery :: c -> [[String]] OK
class Eq a where (==) :: a -> a -> Bool Error
class Read a where read :: String -> a Error

Interfaces Types for Haskell 7 / 14



λI, a calculus for interface types

Based on
Jones’ system for qualified types [Jon94]
Odersky and Läufer’s system [OL96] for type annotations
Peyton Jones and colleagues’ system for higher-rank
polymorphism [PVWS07]

Sound and complete type inference

Unclear whether principal types do exist

Translation to System F

Prototype implementation available

Interfaces Types for Haskell 8 / 14



Syntax and subtyping

Syntax

predicates P,Q ::=true | P, I m
monotypes m ::= a | T m | m −→ m | I
types s, t ::= a | T t | s −→ t | ∀a.P ⇒ t
expressions e, f ::= x | λx .e | λ(x :: s).e | f e

|let x = e in f | (e :: s)

Subtyping

I subclass of J
I ≤ J

m instance of J
m ≤ J

s ≤ t
T s ≤ T t

t1 ≤ s1 s2 ≤ t2
s1 −→ s2 ≤ t1 −→ t2

s ≤ t
∀a.Q ⇒ s ≤ ∀a.Q ⇒ t

t ≤ t
t1 ≤ t2 t2 ≤ t3

t1 ≤ t3

Interfaces Types for Haskell 9 / 14



Entailment and subsumption

Entailment P `̀ I m
Extends Haskell’s entailment relation with the following rule:

I subclass of J
P `̀ J I

Subsumption relation P `dsk s � t P `dsk* s � t
Extends Peyton Jones and colleagues’ subsumption relation
with support for qualified types and the following two rules:

T covariant P `dsk* s � r
P `dsk* T s � T r

P `̀ I m
P `dsk* m � I

Lemma (Subtyping implies subsumption)

If s ≤ t then P `dsk s � t .

Interfaces Types for Haskell 10 / 14



Entailment and subsumption

Entailment P `̀ I m
Extends Haskell’s entailment relation with the following rule:

I subclass of J
P `̀ J I

Subsumption relation P `dsk s � t P `dsk* s � t
Extends Peyton Jones and colleagues’ subsumption relation
with support for qualified types and the following two rules:

T covariant P `dsk* s � r
P `dsk* T s � T r

P `̀ I m
P `dsk* m � I

Lemma (Subtyping implies subsumption)

If s ≤ t then P `dsk s � t .

Interfaces Types for Haskell 10 / 14



Expression typing

Declarative typing judgment P | Γ ` e : s
Support for qualified types (Jones [Jon94])
Support for higher-rank types introduced through type
annotations (Odersky and Läufer [OL96])

Bidirectional inference judgment P | Γ `poly
δ e : s

Checking mode: δ = ⇓
Inference mode: δ = ⇑
Slight variation of Peyton Jones and colleagues’ system
[PVWS07]

Lemma (Completeness)

Suppose P | Γ ` e : s. Then P | Γ `poly
δ e : s′ and P `dsk s′ � s

Lemma (Soundness)

Suppose P | Γ `poly
δ e : s. Then there exists some e′ such that

P | Γ ` e′ : s where e′ differs from e only in additional type
annotations on the bound variables of lambda abstractions.

Interfaces Types for Haskell 11 / 14



Expression typing

Declarative typing judgment P | Γ ` e : s
Support for qualified types (Jones [Jon94])
Support for higher-rank types introduced through type
annotations (Odersky and Läufer [OL96])

Bidirectional inference judgment P | Γ `poly
δ e : s

Checking mode: δ = ⇓
Inference mode: δ = ⇑
Slight variation of Peyton Jones and colleagues’ system
[PVWS07]

Lemma (Completeness)

Suppose P | Γ ` e : s. Then P | Γ `poly
δ e : s′ and P `dsk s′ � s

Lemma (Soundness)

Suppose P | Γ `poly
δ e : s. Then there exists some e′ such that

P | Γ ` e′ : s where e′ differs from e only in additional type
annotations on the bound variables of lambda abstractions.

Interfaces Types for Haskell 11 / 14



Expression typing

Declarative typing judgment P | Γ ` e : s
Support for qualified types (Jones [Jon94])
Support for higher-rank types introduced through type
annotations (Odersky and Läufer [OL96])

Bidirectional inference judgment P | Γ `poly
δ e : s

Checking mode: δ = ⇓
Inference mode: δ = ⇑
Slight variation of Peyton Jones and colleagues’ system
[PVWS07]

Lemma (Completeness)

Suppose P | Γ ` e : s. Then P | Γ `poly
δ e : s′ and P `dsk s′ � s

Lemma (Soundness)

Suppose P | Γ `poly
δ e : s. Then there exists some e′ such that

P | Γ ` e′ : s where e′ differs from e only in additional type
annotations on the bound variables of lambda abstractions.

Interfaces Types for Haskell 11 / 14



Translation to System F

Type-directed translation from λI to System F

Evidence for predicates passed as dictionaries:
EI{τ} is the type of evidence values for class I at instance τ

Subsumption to an interface type I introduces a wrapper
constructor KI : ∀α.EI{α} → α→ WI

Lemma (Type preservation)

The translation from λI to System F preserves types.

Interfaces Types for Haskell 12 / 14



Summary

Idea behind interface types:

Use the name of a type class as a type!

Allows for heterogeneous lists and type abstraction

Reduces boilerplate code

Formalization close to the type checking algorithm
implemented in GHC

Prototype implementation available

Interfaces Types for Haskell 13 / 14



References

[Jon94] Mark P. Jones.
Qualified Types: Theory and Practice.
Cambridge University Press, Cambridge, UK, 1994.

[OL96] Martin Odersky and Konstantin Läufer.
Putting type annotations to work.
In Proc. 1996 ACM Symp. POPL, pages 54–67, St.
Petersburg, FL, USA, January 1996. ACM Press.

[PVWS07] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie
Weirich, and Mark Shields.
Practical type inference for arbitrary-rank types.
J. Funct. Program., 17(1):1–82, 2007.

Interfaces Types for Haskell 14 / 14



Representing connections as records

Implementation chosen by HDBC up to version 1.0.1.2
The Connection datatype
module Database.HDBC (Connection(..)) where
data Connection = Connection { dbQuery :: String -> IO [[String]] }

Concrete implementation of a database driver
module Database.HDBC.Sqlite (connectSqlite) where
connectSqlite :: FilePath -> IO Connection

Client usage
openConnection :: IO Connection
openConnection = connectSqlite "/var/sqlite/app.db"
allCustomers :: Connection -> IO [[String]]
allCustomers con = dbQuery con "SELECT * FROM customers"
main = do con <- openConnection

customers <- allCustomers con
putStrLn (show customers)

Problem: Extending the Connection type with new
operations requires a new, incompatible datatype

Interfaces Types for Haskell 15 / 14


	Interfaces Types for Haskell
	Appendix

