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Abstract Constrained existential types are a powerful language feature
that subsumes Java-like interface and wildcard types. But existentials
do not mingle well with subtyping: subtyping is already undecidable
for very restrictive settings. This paper defines two subtyping relations
by extracting the features specific to existentials from current language
proposals (JavaGI, WildFJ, Scala). Both subtyping relations are undecid-
able. The paper also discusses the consequences of removing existentials
from JavaGI and possible amendments to regain their features.

1 Introduction
Constrained existential types (also called “bounded existential types” [5, 12])
arise from the need for structured and partial data abstraction and information
hiding. They have found uses for modeling object oriented languages in gen-
eral [2], as well as for modeling specific features such as Java wildcards [3,4,18,19]
and Java-like interface types in the JavaGI language [21]. In fact, JavaGI supports
general existential types and provides interface types as a special case supported
by syntactic sugar. Building directly on existential types has several advantages
compared to interface types: they allow the general composition of interface
types, they encompass Java wildcards, and they enable meaningful types in the
presence of multi-headed interfaces.1

Work on the type checker for an implementation of JavaGI uncovered the
consequences of supporting general existential types. They do not only introduce
a wealth of complexity into the type system (something we can live with) but
they may also cause nontermination in the type checker (something we cannot
live with): JavaGI’s subtyping relation with existential types is undecidable.

After establishing some background on JavaGI (§ 2), we define two calculi with
constrained existential types and subtyping. The first calculus (§ 3) is a subset of
JavaGI’s formalization [21]. The second calculus (§ 4) supports existential types
with lower and upper bounds, very much like Scala [13] and formal systems for
modeling Java wildcards [3,4,18]. We prove that the subtyping relations of both
calculi are undecidable.

Furthermore, we discuss alternative design options for JavaGI that avoid the
use of general existential types but keep the remaining features (§ 5). Finally, we
review related work (§ 6) and conclude (§ 7). Detailed proofs can be found in the
appendices.
1 JavaGI provides multi-headed interfaces that abstract over a family of types.



2 Background

JavaGI [21] is a conservative extension of Java 1.5 that generalizes Java’s inter-
face concept to incorporate the essential features of Haskell type classes [8,9,20].
This generalization allows for retroactive and constrained interface implemen-
tations, binary methods, static methods in interfaces, default implementations
for interface methods, and multi-headed interfaces (interfaces over families of
types). Furthermore, JavaGI generalizes Java-like interface types to existential
types. This section only discusses the features relevant to this paper, namely
retroactive interface implementations and existential types, and ignores the rest.

2.1 Retroactive Interface Implementations
A class definition in Java must specify all interfaces that the class implements.
In contrast, JavaGI enables programmers to add implementations for interfaces
to existing classes at any time. For example, Java rejects the use of a for-
loop to iterate over the characters of a string because the class String does not
implement the interface Iterable:2

for (Character c : someString) { ... } // illegal in Java

As the definition of class String is fixed, there is no hope of getting this code
working. In contrast, JavaGI allows the retroactive implementation of Iterable:3

implementation Iterable<Character> [String] {

public Iterator<Character> iterator() {

return new Iterator<Character>() {

private int index = 0;

public boolean hasNext() { return index < length(); }

public Character next() { return charAt(index++); }

};

}

}

This implementation definition specifies that the implementing type String, en-
closed in square brackets [ ], implements the interface Iterable<Character>. The
definition of the iterator method can use the methods length and charAt be-
cause they are part of String’s public interface.

2.2 Constrained Existential Types
Java uses the name of an interface as an interface type that denotes the set
of all types implementing the interface. Instead of interface types, JavaGI fea-
tures constrained existential types (existentials for short) and provides syntactic
sugar for recovering interface types. For example, the interface type List<String>

abbreviates the existential type ∃ X where X implements List<String> . X. The
implementation constraint “X implements List<String>” restricts instantiations

2 Java’s enhanced for-loop allows to iterate over arrays and all types implementing the
Iterable<X> interface, which contains a single method Iterator<X> iterator().

3 We ignore the remove method of the Iterator interface.
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of the type variable X to types that implement the interface List<String>. Thus,
the existential type denotes the set of all types implementing List<String>, ex-
actly like the synonymous interface type.

Existentials are more general than interface types. For instance, the existen-
tial ∃ X where X implements List<String>, X implements Set<String> . X de-
notes the set of all types that implement both List<String> and Set<String>.
Java supports such intersections of interface types only for specifying bounds of
type variables. Existentials also encompass Java wildcards [3, 4, 18, 19]. For in-
stance, the existential type ∃ X where X extends Number . List<X> corresponds
to the wildcard type List<? extends Number>.4

JavaGI allows implementation definitions for existentials. For example, a pro-
grammer may write an implementation definition to specify that all types im-
plementing List<X> also implement Iterable<X>. Such a definition is feasible be-
cause iterators can be implemented using only operations of the List interface.
The example also demonstrates that JavaGI supports generic implementation
definitions, which are parameterized by type variables.

implementation<X> Iterable<X> [∃ L where L implements List<X> . L] {

Iterator<X> iterator() { return new Iterator<X>() {

/∗ as for String , replacing length with size and charAt with get . ∗/ };

}

}

A Java programmer would have to implement Iterable from scratch for every
class that implements List. Abstract classes do not help with this problem be-
cause Java does not support multiple inheritance.

3 Subtyping Existential Types with Implementation
Constraints

This section introduces EXimpl, a subtyping calculus with existentials and im-
plementation constraints. EXimpl is a subset of Core–JavaGI from the original
formulation of JavaGI’s type system [21]. It does not model all aspects of Jav-
aGI, but contains only those features that make subtyping undecidable.

3.1 Definition of EXimpl

Fig. 1 defines the syntax, as well as the entailment and subtyping relations of
EXimpl. A type T is either a type variable X or an existential ∃X whereP .X.
For simplicity, there are no class types, existentials have a single quantified type
variable, and the body of an existential must be the quantified type variable.5

Overbar notation ξ denotes a sequence ξ1, . . . , ξn of syntactic entities with •
standing for the empty sequence. Sometime, the sequence ξ stands for the set
{ξ}. Existentials are considered equal up to renaming of bound type variables,
reordering of constraints, and elimination of duplicate constraints.

4 Because List is an interface, ∃ X where X extends Number . List<X> stands for
∃ X,L where X extends Number, L implements List<X> . L

5 The body of an existential is the part after the “.”.
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T, U, V, W ::= X | ∃X whereP . X

P, Q, R ::= X implements I<T>

def ::= interface I<X> | implementation<X> I<T> [T]

e1-impl
implementation<X> I<T> [U] ∈ Θ

Θ; ∆ 
 [V/X]
`
U implements I<T>

´
e1-local

P ∈ ∆

Θ; ∆ 
 P

s1-refl
Θ; ∆ ` T ≤ T

s1-trans
Θ; ∆ ` T ≤ U Θ; ∆ ` U ≤ V

Θ; ∆ ` T ≤ V

s1-open
Θ; ∆, P ` X ≤ T X /∈ ftv(Θ, ∆, T )

Θ; ∆ ` ∃X whereP . X ≤ T

s1-abstract
(∀i) Θ; ∆ 
 [T/X]Pi

Θ; ∆ ` T ≤ ∃X whereP . X

Fig. 1. Type syntax, entailment, and subtyping for EXimpl.

An implementation constraint P has the form X implements I <T> and con-
strains the type variable X to types that implement the interface I <T>. In com-
parison with upper bounds for type variables, implementation constraints allow
more precise typings, especially for binary methods [1]. An interface without
type parameters is written I instead of I < • >.

A definition def in EXimpl is either an interface or an implementation defi-
nition. Interface and implementation definitions do not have method signatures
or bodies, because they do not matter for the entailment and subtyping relation
of EXimpl. Moreover, EXimpl does not support interface inheritance. A program
environment Θ is a finite set of definitions def , and a type environment ∆ a
finite set of constraints P , where ∆, P abbreviates ∆ ∪ {P}.

The entailment relation Θ;∆ 
 T implements I <T> expresses that type T
implements interface I <T>. A type implements an interface either because it
corresponds to an instance of a suitable implementation definition (rule e1-impl)
or because the type environment contains the constraint (rule e1-local). The
notation [T/X] stands for the capture-avoiding substitution replacing each Xi

with Ti. Full JavaGI uses the entailment relation (among other things) to verify
that the instantiation of a generic class or method fulfills the implementation
constraints associated with that class or method.

The subtyping relation Θ;∆ ` T ≤ U states that T is a subtype of U . It
is reflexive and transitive as usual. Rule s1-open opens an existential on the
left-hand side of a subtyping judgment by moving its constraints into the type
environment. The premise X /∈ ftv(Θ,∆, T ) ensures that the existentially quan-
tified type variable is sufficiently fresh and does not escape from its scope. Rule
s1-abstract deals with existentials on the right-hand side of a subtyping judg-
ment. It states that T is a subtype of some existential if all constraints of the
existential hold after substituting T for the existentially quantified type variable.

While developing a type soundness proof for Core–JavaGI, we verified that
the subtyping relation of EXimpl supports the usual principle of subsumption:
we can always promote the type of an expression to some supertype without
causing runtime errors.
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3.2 Undecidability of Subtyping in EXimpl

We prove undecidability of subtyping in EXimpl by reduction from Post’s Corre-
spondence Problem (PCP). It is well known that PCP is undecidable [7, 17].

Definition 1 (PCP). Let {(u1, v1) . . . , (un, vn)} be a set of pairs of non-empty
words over some finite alphabet Σ with at least two elements. A solution of PCP
is a sequence of indices i1 . . . ir such that ui1 . . . uir

= vi1 . . . vir
. The decision

problem asks whether such a solution exists.

Theorem 1. Subtyping in EXimpl is undecidable.

Proof. Let P = {(u1, v1), . . . , (un, vn)} be a particular instance of PCP over the
alphabet Σ. We can encode P as an equivalent subtyping problem in EXimpl as
follows. First, words over Σ must be represented as types in EXimpl.

interface E // empty word ε
interface L<X> // letter, for every L ∈ Σ

Words u ∈ Σ∗ are formed with these interfaces through nested existentials. For
example, the word AB is represented by

∃X whereX implements A<∃Y whereY implements B<
∃Z whereZ implements E . Z> . Y > . X

The abbreviation ∃I <T> stands for the type ∃X whereX implements I <T> . X.
Using this notation, the word AB is represented by ∃A<∃B<∃E>>.

Formally, we define the representation of a word u as JuK = u # ∃E, where
u # T is the concatenation of a word u with a type T :

ε # T , T Lu # T , ∃L<u # T>

Two interfaces are required to model the search for a solution of PCP:

interface S<X,Y> // search state
interface G // search goal

The type ∃S<JuK, JvK> represents a particular search state where we have al-
ready accumulated indices i1, . . . , ik such that u = ui1 . . . uik

and v = vi1 . . . vik
.

To model valid transitions between search states, we define implementations of
S for all i ∈ {1, . . . , n} as follows:

implementation<X,Y> S<ui#X, vi#Y> [∃ S<X,Y>] (1)

The type ∃G represents the goal of a search, as expressed by the following
implementation:

implementation<X> G [∃ S<X,X>] (2)

To get the search running we ask whether there exists some i ∈ {1, . . . , n}
such that ΘP ; ∅ ` ∃S<JuiK, JviK> ≤ ∃G is derivable. The program ΘP consists
of the interfaces and implementations just defined. In Appendix A, we prove
that the given PCP instance P has a solution if and only if there exists some
i ∈ {1, . . . , n} such that ΘP ; ∅ ` ∃S<JuiK, JviK> ≤ ∃G is derivable. ut
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N, M ::= C<X> | Object
T, U, V, W ::= X | N | ∃X whereP . N

P, Q, R ::= X extendsT | X superT

e2-extends
∆ ` T ≤ U

∆ 
 T extendsU

e2-super
∆ ` U ≤ T

∆ 
 T superU

s2-refl
∆ ` T ≤ T

s2-trans
∆ ` T ≤ U ∆ ` U ≤ V

∆ ` T ≤ V

s2-object
∆ ` T ≤ Object

s2-extends
X extendsT ∈ ∆

∆ ` X ≤ T

s2-super
X superT ∈ ∆

∆ ` T ≤ X

s2-open
∆, P ` N ≤ T X ∩ ftv(∆, T ) = ∅

∆ ` ∃X whereP . N ≤ T

s2-abstract

T = [U/X]N (∀i) ∆ 
 [U/X]Pi

∆ ` T ≤ ∃X whereP . N

Fig. 2. Syntax, Entailment, and Subtyping for EXuplo

4 Subtyping Existential Types with Upper and Lower
Bounds

This section considers the calculus EXuplo, which is similar in spirit to EXimpl,
but supports upper and lower bounds for type variables and no implementation
constraints. Other researchers [3,4,18] use formal systems very similar to EXuplo

for modeling Java wildcards [19]. It is not the intention of EXuplo to provide
another formalization of wildcards, but rather to expose the essential ingredients
that make subtyping undecidable in a calculus as simple as possible.

4.1 Definition of EXuplo

Fig. 2 defines the syntax and the entailment and subtyping relations of EXuplo. A
class type N is either Object or an instantiated generic class C<X>, where the
type arguments must be type variables. A type T is a type variable, a class type,
or an existential. Unlike in EXimpl, existentials in EXuplo may quantify over several
type variables and the body of an existential must be a class type. A constraint
P places either an upper bound (X extendsT ) or a lower bound (X superT )
on a type variable X. Type environments ∆ are defined as for EXimpl.

Class definitions and inheritance are omitted from EXuplo. The only assump-
tion is that every class name C comes with a fixed arity that is respected when
applying C to type arguments. There are some further restrictions:

(1) If T = ∃X whereP .N , then X 6= • and X ⊆ ftv(N).
(2) If T = ∃X whereP .N and P ∈ P , then P = Y extendsT or P = Y superT

with Y ∈ X. That is, only bound variables may be constrained.
(3) A type variable must not have both upper and lower bounds.6

Constraint entailment (∆ 
 T extendsU and ∆ 
 U superT ) uses subtyp-
ing (∆ ` T ≤ U) to check that the constraint given holds. The subtyping rules
for EXuplo are similar to those for EXimpl, except that Object is now a supertype
of every type and that rules s2-extends and s2-super use assumptions from ∆.
6 Modeling Java wildcards requires upper and lower bounds for the same type variable in

certain situations.
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τ+ ::= Top | ∀α0≤τ−0 . . . αn≤τ−n .¬ τ− (n ∈ N)
τ− ::= α | ∀α0 . . . αn .¬ τ+ (n ∈ N)
Γ− ::= ∅ | Γ−, α≤τ−

d-top
Γ ` τ ≤ Top

d-var
τ 6= Top

Γ ` Γ (α) ≤ τ

Γ ` α ≤ τ

d-all-neg
Γ, α0≤φ0 . . . αn≤φn ` τ ≤ σ

Γ ` ∀α0 . . . αn .¬σ ≤ ∀α0≤φ0 . . . αn≤φn .¬ τ

Fig. 3. Syntax and Subtyping for F D
≤

4.2 Undecidability of Subtyping in EXuplo

The undecidability proof of subtyping in EXuplo is by reduction from FD
≤ [14], a

restricted version of F≤ [5]. Pierce defines FD
≤ for his undecidability proof of F≤

subtyping [14].
Fig. 3 defines the syntax and the subtyping relation of FD

≤ . A Type τ is either
a n-positive type, τ+, or a n-negative type, τ−, where n is a fixed natural number
standing for the number of type variables (minus one) bound at the top-level of
the type. A n-negative type environment Γ− associates type variables α with
upper bounds τ−. The polarity (+ or −) characterizes at which positions of a
subtyping judgment a type or type environment may appear. For readability, we
often omit the polarity and leave n implicit.

A n-ary subtyping judgment in FD
≤ has the form Γ− ` σ− ≤ τ+, where

Γ− is a n-negative type environment, σ− is a n-negative type, and τ+ is a n-
positive type. Only n-negative types appear to the left and only n-positive types
appear to the right of the ≤ symbol. The subtyping rule d-all-neg compares
two quantified types σ = ∀α0 . . . αn .¬σ′ and τ = ∀α0≤τ0 . . . αn≤αn .¬ τ ′ by
swapping the left- and right-hand sides of the subtyping judgment and checking
τ ′ ≤ σ′ under the extended environment Γ, α0≤τ0 . . . αn≤τn. The rule is correct
with respect to F≤ because we may interpret every FD

≤ type as an F≤ type:

∀α0 . . . αn .¬σ′ = ∀α0≤Top . . .∀αn≤Top.∀β≤σ′ . β (β fresh)
∀α0≤τ0 . . . αn≤αn .¬ τ ′ = ∀α0≤τ0 . . .∀αn≤τn.∀β≤τ ′ . β (β fresh)

Using these abbreviations, every FD
≤ subtyping judgment can be read as an F≤

subtyping judgment. The subtype relations in FD
≤ and F≤ coincide for judgments

in their common domain [14].
It is sufficient to consider only closed judgments. A type τ is closed under Γ

if ftv(τ) ⊆ dom(Γ ) (where dom(α1≤τ1, . . . , αn≤τn) = {α1, . . . , αn}) and, if τ =
∀α0≤τ0 . . . αn≤τn .¬σ, then no αi appears free in any τj . A type environment
Γ is closed if Γ = ∅ or Γ = Γ ′, α≤τ with Γ ′ closed and τ closed under Γ ′. A
judgment Γ ` τ ≤ σ is closed if Γ is closed and τ, σ are closed under Γ .

We now come to the central theorem of this section.

Theorem 2. Subtyping in EXuplo is undecidable.

Proof. The proof is by reduction from FD
≤ . Fig. 4 defines a translation from

FD
≤ types, type environments, and subtyping judgments to their correspond-

ing EXuplo forms. The translation of an n-ary subtyping judgment assumes the
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JTopK+ = Object

J∀α0≤τ−0 . . . αn≤τ−n .¬ τ−K+ = ¬∃Y, Xαi whereXα0 extends Jτ0K− . . .

Xαn extends JτnK−, Y extends JτK− .C n+2
<Y, Xαi>

JαK− = Xα

J∀α0 . . . αn .¬ τ+K− = ¬∃Y, Xαi whereY extends JτK+ .C n+2
<Y, Xαi>

J∅K− = ∅

JΓ, α≤τ−K− = JΓ K−, Xα
extends JτK−

JΓ− ` τ− ≤ σ+K = JΓ K− ` JτK− ≤ JσK+

¬T ≡ ∃X whereX superT .D1
<X>

Fig. 4. Reduction from F D
≤ to EXuplo

existence of two EXuplo classes: Cn+2 accepts n + 2 type arguments, and D1

takes one type argument. The superscripts in J·K+ and J·K− indicate whether the
translation acts on positive or negative entities.

An n-positive type ∀α0≤τ−0 . . . αn≤τ−n .¬ τ− is translated into an negated
existential. The existentially quantified type variables Xα0 , . . . , Xαn correspond
to the universally quantified type variables α0, . . . , αn. The bound JτK− of the
fresh type variable Y represents the body ¬ τ− of the original type. We cannot
use JτK− directly as the body because existentials in EXuplo have only class
types as their bodies. The translation for n-negative types is similar to the one
for n-positive types. It is easy to see that the EXuplo types in the image of the
translation meet the restrictions defined in Section 4.1. Type environments and
subtyping judgments are translated in the obvious way.

A negated type, written ¬T , is an abbreviation for an existential with a single
super constraint: ¬T ≡ ∃X whereX superT .D1<X>, where X is fresh. The
super constraint simulates the behavior of the FD

≤ subtyping rule d-all-neg,
which swaps the left- and right-hand sides of subtyping judgments.

We now need to verify that Γ ` τ ≤ σ is derivable in FD
≤ if and only if

JΓ ` τ ≤ σK is derivable in EXuplo. The “⇒” direction is an easy induction on
the derivation of Γ ` τ ≤ σ. The “⇐” direction requires more work because
the transitivity rule s2-trans (Fig. 2) involves an intermediate type which is not
necessarily in the image of the translation. Hence, a direct proof by induction
on the derivation of JΓ ` τ ≤ σK fails. To solve this problem, we give an equiva-
lent definition of the EXuplo subtyping relation that does not include an explicit
transitivity rule. See Appendix B for details and the full proofs. ut

5 Lessons Learned

What are the consequences of this investigation for the design of JavaGI? While
existentials are powerful and unify several diverse concepts, they complicate the
metatheory of JavaGI considerably. Also, subtyping with existentials is undecid-
able even under severe restrictions.
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The initial development of JavaGI’s metatheory uses existentials and imposes
several restrictions to ensure decidability of subtyping. However, these restric-
tions are difficult to explain to users of JavaGI because they seem ad-hoc. Our
present view is that existentials may not be worth all the trouble. After all,
JavaGI’s main feature is its very general and powerful interface concept (which
this paper does not explore). Hence, the upcoming revision of JavaGI’s design
has all features of the original design but it does not require existentials in their
full generality. It gives up some of the power in favor of simplicity. Several other
features make up for the lack of existentials and experience will show whether
this design is satisfactory.

In fact, the upcoming revision of JavaGI copes with all the uses of existentials
in JavaGI [21] as mentioned in the introduction.
General composition of interface types. The revised design supports Java-

like interface types and intersections thereof.
Wildcards. The revised design does not encode wildcards through existentials

but supports them directly.
Meaningful types for multi-headed interfaces. The revised design supports

special multi-headed interface types.

Examination of the undecidability proof in § 3 reveals that all types involved
are (encodings of) interface types, thus subtyping remains undecidable even if
regular interface types replace existentials. The real culprit for undecidability
is the ability to provide implementation definitions for existentials or interface
types. Moreover, such implementation definitions also prevent the assignment of
minimal types to expressions, see Appendix C for an example.7

Hence, the revised design disallows implementation definitions for interface
types. This restriction is rather severe because it prevents useful implementation
definitions such as the one given in § 2.2, which implements Iterable<T> for all
types implementing List<T>. Abstract implementation definitions are a possible
cure. They look similar to regular implementation definitions but do not con-
tribute to constraint entailment. Instead, they serve as blueprints for regular
implementation definitions. Here is a revision of the example from § 2.2:
abstract implementation<X> Iterable<X> [List<X>] { /∗ body as before ∗/ }

Regular implementation definitions may now inherit code from the abstract im-
plementation. For example:
implementation<X> Iterable<X> [LinkedList<X>] extends [List<X>]

implementation<X> Iterable<X> [ArrayList<X>] extends [List<X>]

A disadvantage of abstract implementation definitions is that they do not
induce a subtyping relation between the implementing type (List<X>) and the
interface being implemented (Iterable<X>). While there is no problem for the
concrete example (List<X> is a subinterface of Iterable<X> anyway), there are
situations in which such a subtyping relation is desirable.
7 Undecidability of subtyping in § 4 relies crucially on existentials with upper and lower

bounds. If we removed lower bounds, then subtyping would become decidable. We do not
consider this a viable option for JavaGI because it would require to add extra support for
wildcards, leading to an overly complicated language design with existentials and wildcards.
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6 Related Work

Kennedy and Pierce [10] investigate undecidability of subtyping under multiple
instantiation inheritance and declaration-site variance. They prove that the gen-
eral case is undecidable and present three decidable fragments. Our proof in § 3
is similar to theirs, although undecidability has different causes: Kennedy and
Pierce’s system is undecidable because of contravariant generic types, expan-
sive class tables, and multiple instantiation inheritance, whereas undecidability
of our system is due to the interaction of constraint entailment and subtyping
caused by implementation definitions for existentials.

Pierce [14] proves undecidability of subtyping in F≤ by a chain of reductions
from the halting problem for two-counter Turing machines. An intermediate link
in this chain is the subtyping relation of FD

≤ , which is also undecidable. Our proof
in § 4 works by reduction from FD

≤ and is inspired by a reduction given by Ghelli
and Pierce [6], who study bounded existential types in the context of F≤ and
show undecidability of subtyping. Crucial to the undecidability proof of FD

≤ is
rule d-all-neg: it extends the typing context and essentially swaps the sides of a
subtyping judgment. In EXuplo, rule s2-open and rule s2-abstract together with
lower bounds on type variables play a similar role.

Torgersen et al. [18] present WildFJ as a model for Java wildcards using
existential types. The authors do not prove WildFJ sound. Cameron et al. [4]
define a similar calculus ∃J and prove soundness. However, ∃J is not a full
model for Java wildcards because it does not support lower bounds for type
variables. The same authors present with TameFJ [3] a sound calculus supporting
all essential features of Java wildcards. WildFJ’s and TameFJ’s subtyping rules
are similar to the ones of EXuplo defined in § 4, so the conjecture is that subtyping
in WildFJ and TameFJ is also undecidable. The rule XS-Env of TameFJ is
roughly equivalent to the rules s2-open and s2-abstract of EXuplo.

Decidability of subtyping for Java wildcards is still an open question [11].
One step in the right direction might be the work of Plümicke, who solves the
problem of finding a substitution ϕ such that ϕT ≤ ϕU for Java types T,U with
wildcards [15, 16]. Note that undecidability of EXuplo does not imply undecid-
ability for Java subtyping with wildcards. The proof of this claim would require
a translation from subtyping derivations in EXuplo to subtyping derivations in
Java with wildcards, something we did not address in this article.

The programming language Scala [13] supports existential types in its latest
release. The subtyping rules for existentials (§ 3.2.10 and § 3.5.2 of the specifica-
tion [13]) are very similar to the ones for EXuplo. This raises the question whether
Scala’s subtyping relation with existentials is decidable.

7 Conclusion

The paper investigates decidability of subtyping with existential types in the con-
text of JavaGI, Java wildcards, and Scala. In all cases, subtyping is undecidable.
For JavaGI, there are some design options that avoid fully general existentials
without giving up much expressivity.
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A Proof of Theorem 1

We first establish some auxiliary lemmas. The following lemma proves basic
properties of our encoding scheme for words over Σ:

Lemma 1. Suppose u, v ∈ Σ∗ and T is a type.

(i) JuK = JvK iff u = v
(ii) u # (v # T ) = uv # T
(iii) u # JvK = JuvK

Proof. Straightforward. ut

The next lemma ensures that the types occurring in a derivation of ΘP ; ∅ `
∃S<JuiK, JviK> ≤ ∃G are of a certain form. (ΘP is the program consisting of the
interfaces and implementations defined in § 1.) We use the notation [n] to denote
the set {1, . . . , n}. Furthermore, I and J range over (possible empty) sequences of
indices drawn from [n], and IJ is the concatenation of I and J. For I = i1 . . . ir,
we write uI to denote the word ui1 . . . uir .

Lemma 2. Suppose ΘP ;∆ ` T ≤ W . Let Ui
i∈[k]

and Vi
i∈[k]

be types such that
ftv(U, V ) = ∅ and neither S nor G occur in U or V . Assume

T = ∃X whereX implements S<Ui, Vi>
i∈[k]

. X or

T = ∃X whereX implements G, X implements S<Ui, Vi>
i∈[k]

. X or
T = Z for some Z with Z /∈ ftv(W )

Moreover, assume that for all Y implements I <W ′> ∈ ∆ either I<W ′> = G or
I <W ′> = S<Ui, Vi> for some i ∈ [k].

(i) Then W = ∃X whereP .X and for all P ∈ P one of the following holds:
(a) P = X implements S<Ui, Vi> for some i ∈ [k].
(b) P = X implements S<uI # Ui, vI # Vi> for some i ∈ [k] and some

non-empty sequence I.
(c) P = X implements G.

(ii) If we additionally assume that

W = ∃X whereX implements G, X implements S<U∗
i , V ∗

i >
i∈[m]

. X

for some types U∗ and V ∗, then one of the following holds:
(a) T = ∃X whereX implements G, X implements S<Ui, Vi>

i∈[k]
. X

(b) there exists some i ∈ [k] with Ui = Vi or uI # Ui = vI # Vi for some
non-empty sequence I

(c) Y implements G ∈ ∆ for some Y

Proof. Both claims are proved by induction on the derivation of ΘP ;∆ ` T ≤ W .
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(i) Case distinction on the last rule used.
– Case rule s1-refl: Then T = W . The case T = Z for some Z is not

possible because we would then also have that Z ∈ ftv(W ). For the
other cases, the claim follows trivially.

– Case rule s1-trans: Then

ΘP ;∆ ` T ≤ V ΘP ;∆ ` V ≤ W

ΘP ;∆ ` T ≤ W

Applying the I.H. to ΘP ;∆ ` T ≤ V gives us V = ∃Y whereQj
j∈[m]

. Y
such that for all Qj one of the following holds:
(a) Qj = Y implements S<Uϕ(j), Vϕ(j)> for some ϕ(j) ∈ [k].
(b) Qj = Y implements S<uIj # Uϕ(i), v#Ij Vϕ(i)> for some ϕ(j) ∈ [k]

and some non-empty sequence Ij .
(c) Qj = Y implements G.
Define for all j ∈ {j′ ∈ [m] | (a) holds for j′}

U ′
j = Uϕ(j)

V ′
j = Vϕ(j)

and for all j ∈ {j′ ∈ [m] | (b) holds for j′}

U ′
j = uIj

# Uϕ(j)

V ′
j = vIj # Vϕ(j)

Then define

U ′′
i

i∈M
= U,U ′

j

j such that U ′
j defined

V ′′
i

i∈M
= V , V ′

j

j such that V ′
j defined

Clearly ftv(U ′′, V ′′) = ∅ and neither S nor G occur in U ′′, V ′′. Moreover,
V and ∆ have the right form to apply to I.H. with U ′′, V ′′. We then
get W = ∃X whereP .X and for all P ∈ P one of the following holds:
(a) P = X implements S<U ′′

i , V ′′
i > for some i ∈M.

(b) P = X implements S<uJ#U ′′
i , vJ # V ′′

i > for some i ∈M and some
non-empty sequence J.

(c) P = X implements G.
In all three cases, we can easily verify that P is of the right form. In
case (b), we need to use Lemma 1(ii).

– Case rule s1-open: Then

ΘP ;∆, Q ` Y ≤ W Y /∈ ftv(W )
ΘP ;∆ ` ∃Y whereQ . Y︸ ︷︷ ︸

=T

≤ W

and the claim follows by applying the I.H. to ΘP ;∆, Q ` Y ≤ T .
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– Case rule s1-abstract: Then

(∀l) ΘP ;∆ 
 [T/X]Pl

ΘP ;∆ ` T ≤ ∃X whereP .X︸ ︷︷ ︸
=W

Assume P ∈ P . Then P has the form X implements . . .
Case distinction on the rule used to derive ΘP ,∆ 
 P .
• Case rule e1-local: Then [T/X]P ∈ ∆. Hence, either [T/X]P =

T implements G or [T/X]P = T implements S<Ui, Vi> for i ∈ [k].
As ftv(U, V ) = ∅ by assumption, we have either P = X implements G
or P = X implements S<Ui, Vi> as required.

• Case rule e1-impl: There are two possibilities:
∗ implementation<X, Y > S<uj # X, vj # Y > [∃S<X, Y >] ∈ ΘP

and [T/X]P = ∃S<U ′, V ′> implements S<uj#U ′, v#jV
′>. Then

T = ∃S<U ′, V ′>, so U ′ = Ui and V ′ = Vi for some i ∈ [k]. With
ftv(U, V ) = ∅ also P = X implements S<uj # Ui, vj # Vi> as
required.

∗ implementation<X> G [∃S<X, X>] ∈ ΘP and
[T/X]P = ∃S<U ′, V ′> implements G. But then also
P = X implements G.

End case distinction on the rule used to derive ΘP ,∆ 
 P .
End case distinction on the last rule used.

(ii) Case distinction on the last rule used.
– Case rule s1-refl: Trivial.
– Case rule s1-trans: Then

ΘP ;∆ ` T ≤ V ΘP ;∆ ` V ≤ W

ΘP ;∆ ` T ≤ W

We now apply part (i) of this lemma to ΘP ;∆ ` T ≤ V and get that
V = ∃Y whereQj

j∈[m]
. Y such that for all Qj either (a), (b), or (c)

as in case s1-trans of the proof for part (i) holds. Define U ′′
i

i∈M
and

V ′′
i

i∈M
as in case s1-trans of the proof for part (i). For U ′′, V ′′, we

now can apply the I.H. of this part of the proof to ΘP ;∆ ` V ≤ W
and get that one of the following holds:
(a) V = ∃Y whereY implements G, Y implements S<U ′′

i , V ′′
i >

i∈M
. Y .

Then the claim follows by applying the I.H. to ΘP ;∆ ` T ≤ V .
(b) there exists some i ∈M with U ′′

i = V ′′
i or uJ # U ′′

i = vJ # V ′′
i for

some non-empty sequence J.
• If U ′′

i = Uj for some j ∈ [k] then V ′′
i = Vj and the claim is

immediate.
• Otherwise, U ′′

i = U ′
j and V ′′

i = V ′
j for some j ∈ [m].

∗ If now U ′
j = Uϕ(j) then V ′

j = Vϕ(j) and the claim is immedi-
ate.
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∗ Otherwise U ′
j = uIj # Uϕ(j) and V ′

j = vIj # Vϕ(j) for some
non-empty sequence Ij . If U ′′

i = V ′′
i then the claim is imme-

diate; otherwise, we need to use Lemma 1(ii).
(c) Y implements G ∈ ∆ for some Y . The claim then holds trivially.

– Case rule s1-open: Then

ΘP ;∆, Q ` Y ≤ W Y /∈ ftv(W )
ΘP ;∆ ` ∃Y whereQ . Y︸ ︷︷ ︸

=T

≤ W

and the claim follows by applying the I.H. to ΘP ;∆, Q ` Y ≤ T .
– Case rule s1-abstract: Then

(∀l) ΘP ;∆ 
 [T/X]Pl

ΘP ;∆ ` T ≤ ∃X whereP .X︸ ︷︷ ︸
=W

We have X implements G ∈ P so

ΘP ;∆ 
 T implements G

Case distinction on the rule used to derive ΘP ,∆ 
 T implements G.
• Case rule e1-local: Then T implements G ∈ ∆. Hence, T = Z and

the claim holds.
• Case rule e1-impl: Then implementation definition (1) must have

been used in the premise of the rule. Hence, T = ∃S<U ′, U ′>, so
U1 = V1 as required.

End case distinction on the rule used to derive ΘP ,∆ 
 T implements G.
End case distinction on the last rule used. ut

Finally, we prove the following lemma which directly implies Theorem 1.

Lemma 3. The PCP instance P = {(u1, v1), . . . , (un, vn)} has a solution if and
only if there exists some i ∈ {1, . . . , n} such that ΘP ; ∅ ` ∃S<JuiK, JviK> ≤ ∃G is
derivable.

Proof.

“⇒”: We first show for any non-empty sequence of indices i1 . . . ik that

ΘP ; ∅ ` ∃S<Juik
K, Jvik

K> ≤ ∃S<Jui1 . . . uik
K, Jvi1 . . . vik

K> (3)

The proof is by induction on k. The base case follows from reflexivity of subtyp-
ing. For the inductive step, the induction hypothesis yields

ΘP ; ∅ ` ∃S<Juik+1K, Jvik+1K> ≤ T (4)
where T = ∃S<Jui2 . . . uik+1K, Jvi2 . . . vik+1K> .
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e2-extends’
∆ `′ T ≤ U

∆ 
′ T extendsU

e2-super’
∆ `′ U ≤ T

∆ 
′ T superU

s2-refl’
T = X or T = N

∆ `′ T ≤ T

s2-object’
∆ `′ T ≤ Object

s2-extends’
X extendsT ′ ∈ ∆ ∆ `′ T ′ ≤ T

∆ `′ X ≤ T

s2-super’
X superT ′ ∈ ∆ ∆ `′ T ≤ T ′

∆ `′ T ≤ X

s2-open’
∆, P `′ N ≤ T X ∩ ftv(∆, T ) = ∅

∆ `′ ∃X whereP . N ≤ T

s2-abstract’

N = [Y/X]M (∀i) ∆ 
′ [Y/X]Pi

∆ `′ N ≤ ∃X whereP . M

Fig. 5. Subtyping for EXuplowithout transitivity rule

Choosing a suitable implementation definition from (1), we get

ΘP ; ∅ 
 T implements S<ui1 # Jui2 . . . uik+1K, vi1 # Jvi2 . . . vik+1K>

Hence, by Lemma 1(iii) and rule s1-abstract we also have

ΘP ; ∅ ` T ≤ ∃S<Jui1 . . . uik+1K, Jvi1 . . . vik+1K>

Claim (3) now follows with (4) and transitivity of subtyping.
Now suppose that I = i1 . . . ir is a solution to P. Then we have from (3)

ΘP ; ∅ ` ∃S<Juir
K, Jvir

K> ≤ ∃S<JuIK, JvIK>

Because uI = vI we get JuIK = JvIK by Lemma 1(i), so implementation definition
(1) yields

ΘP ; ∅ 
 ∃S<JuIK, JvIK> implements G

Applying rules s1-abstract and s1-trans gives us ΘP ; ∅ ` ∃S<JuirK, JvirK> ≤ ∃G,
as required.

“⇐”: Given that ΘP ; ∅ ` ∃S<JuiK, JviK> ≤ ∃G is derivable for some i ∈ {1, . . . , n},
we get from Lemma 2(ii) that either JuiK = JviK or that there exists a non-empty
sequence I such that uI # JuiK = vI # JviK. For the first case, we have ui = vi by
Lemma 1(i); for the second case, we get JuIuiK = JvIviK by Lemma 1(iii), and
uIui = vIvi by Lemma 1(i). Hence, P has a solution. ut

B Proof of Theorem 2

Fig. 5 shows the definition of the alternative subtyping relation ∆ `′ T ≤ T for
EXuplo that does not have a built-in transitivity rule. To establish equivalence
with the original subtyping relation (Fig. 2), we first prove that the alternative
subtyping relation is reflexive and transitive.
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Lemma 4 (Reflexivity). For all types T , ∆ `′ T ≤ T .

Proof. The only interesting case is T = ∃X whereP .N . Then we have

s2-open’

s2-abstract’
N = N (∀i) ∆, P 
′ Pi

∆, P `′ N ≤ ∃X whereP .N X ∩ ftv(∆, T ) = ∅
∆ `′ ∃X whereP .N ≤ ∃X whereP .N

Note that it is easy to verify that ∆ 
′ P for any P ∈ ∆. ut

Lemma 5 (Transitivity). If ∆ `′ T ≤ U and ∆ `′ U ≤ V , then ∆ `′ T ≤ V .

The prove of the transitivity lemma makes essential use of the fact that type
variables do not have both lower and upper bounds and that only type variables
may occur as type arguments of generic classes.

Proof. We define the size of a type or constraint as follows:

size(X) = 1

size(C<T>) = 1 + size(T )
size(Object) = 1

size(∃X whereP .N) = 1 + size(P ) + size(N)
size(X extendsT ) = size(T )

size(X superT ) = size(T )

We use the notation size(ξ) as an abbreviation for
∑

i size(ξi).
Moreover, we define the domain of a type environment ∆ as dom(∆) = {X |

X extendsT ∈ ∆ or X superT ∈ ∆}, and the range of a type environment ∆
as rng(∆) = {T | X extendsT ∈ ∆ or X superT ∈ ∆}.

We now strengthen the claim as follows:

Let n ∈ N.

(i) Assume size(U) = n. If ∆ `′ T ≤ U and ∆ `′ U ≤ V , then
∆ `′ T ≤ V .

(ii) Assume size(P ) = n. If ∆′, P `′ W1 ≤ W2 and [Y/X]∆′ 
′ [Y/X]P
for all P ∈ P and X ∩ dom(∆′) = ∅, then [Y/X]∆′ `′ [Y/X]W1 ≤
[Y/X]W2.

We then prove that claims (i) and (ii) hold for all n ∈ N by complete induc-
tion. Suppose n ∈ N and assume that

(i) and (ii) hold for all n′ ∈ N with n′ < n. (5)

We now have to prove that (i) and (ii) hold for n.
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(i) We prove claim (i) by induction on the combined size of the derivations
of ∆ `′ T ≤ U and ∆ `′ U ≤ V . We perform a case analysis on the
last rules used in these derivations. The following tables lists all possible
combinations; the rows contain the last rule used in ∆ `′ T ≤ U , the
columns the last rule used in ∆ `′ U ≤ V .

s2-refl’ s2-object’ s2-extends’ s2-super’ s2-open’ s2-abstract’

s2-refl’ 3 3 3 3 3 3

s2-object’ 3 3 E 3 E (a)
s2-extends’ 3 3 3 3 3 3

s2-super’ 3 3 (b) 3 E E

s2-open’ 3 3 3 3 3 3

s2-abstract’ 3 3 E 3 (c) E

Cases marked with 3 are trivial or follow directly from the inner induc-
tion hypothesis; cases marked with E can never occur because they put
conflicting constraints on the form of U . We now deal with the remaining
cases.
(a) Then U = Object, V = ∃X whereP .N and the premise of s2-abstract’

requires Object = [Y/X]N , so N = Object. But this contradicts the
restriction in restriction (1) on page 6.

(b) Then U = X and ∆ contains an lower and upper bound for X. This
is a contradiction to restriction (3) on page 6.

(c) Then T = M and U = ∃X whereP .N and

M = [Y/X]N
(∀i) ∆ 
′ [Y/X]Pi

∆ `′ M ≤ ∃X whereP .N

∆, P `′ N ≤ V
ftv(∆, V ) ∩X = ∅

∆ `′ ∃X whereP .N ≤ V

We have

size(P ) < size(U) = n

With (5) we then get

[Y/X]∆ `′ [Y/X]N ≤ [Y/X]V

Because T = [Y/X]N and X ∩ ftv(∆, V ) = ∅, we have

∆ `′ T ≤ V

as required.
(ii) We proceed by induction on the derivation D of ∆′, P `′ W1 ≤ W2.

We have already proved (i) for n, so with (5)

(i) holds for all n′ ∈ N with n′ ≤ n (6)

Case distinction on the last rule used in D.
– Case rule s2-refl’: Follows with Lemma 4.
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– Case rule s2-object’: Trivial.
– Case rule s2-extends’: We then have W1 = X and

X extendsW ′
2 ∈ ∆′, P ∆′, P `′ W ′

2 ≤ W2

∆′, P `′ X ≤ W2

Applying the inner I.H. yields

[Y/X]∆′ `′ [Y/X]W ′
2 ≤ [Y/X]W2 (7)

• If X extendsW ′
2 ∈ P then

[Y/X]∆′ `′ [Y/X]X ≤ [Y/X]W ′
2 (8)

by the assumption. We also have

size([Y/X]W ′
2) = size(W ′

2) ≤ size(P ) = n

Using (6) on (8) and (7) yields

[Y/X]∆′ `′ [Y/X]X ≤ [Y/X]W2

as required.
• If X extendsW ′

2 ∈ ∆′ then [Y/X]X = X because X∩dom(∆) =
∅. With (7) and rule s2-extends’, we get the required result.

– Case rule s2-super’: Follows analogously.
– Case rule s2-open’: Then W1 = ∃Z whereQ . N and

∆′, P ,Q `′ N ≤ W2 Z ∩ ftv(∆′, P ,W2) = ∅
∆′, P `′ ∃Z whereQ . N ≤ W2

Because the Z are sufficiently fresh, we may assume

[Y/X](∃Z whereQ . N) = ∃Z where ([Y/X]Q) . ([Y/X]N)

Z ∩ ftv([Y/X]∆, [Y/X]W2) = ∅

Using the inner I.H. yields

[Y/X](∆′, Q) `′ [Y/X]N ≤ [Y/X]W2

Thus with s2-open’

[Y/X]∆′ `′ [Y/X](∃Z whereQ . N) ≤ [Y/X]W2

– Case rule s2-abstract’: Then W2 = ∃Z whereQ . N and

W1 = [Y ′/Z]N (∀i) ∆′, P 
′ [Y ′/Z]Qi

∆′, P `′ W1 ≤ ∃Z whereQ . N
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Using the inner I.H., we can easily verify that

(∀i) [Y/X]∆′ 
′ [Y/X][Y ′/Z]Qi

Because the Z are sufficiently fresh, we may assume

[Y/X](∃Z whereQ . N) = ∃Z where ([Y/X]Q) . ([Y/X]N)

Z ∩ Y = ∅

Moreover, for ϕ = [[Y/X]Y ′/Z], we have

[Y/X][Y ′/Z]N = ϕ[Y/X]N

[Y/X][Y ′/Z]Q = ϕ[Y/X]Q

Hence,

[Y/X]W1 = ϕ[Y/X]N

(∀i) [Y/X]∆′ 
′ ϕ[Y/X]Qi

The claim now follows with rule s2-abstract’.
End case distinction on the last rule used in D. ut

Now we can prove that ∆ ` T ≤ U and ∆ `′ T ≤ U coincide.

Lemma 6 (Soundness and completeness). ∆ ` T ≤ U if and only if ∆ `′
T ≤ U .

Proof. Both directions of the lemma are proved by a straightforward induction
on the derivation given. For the “⇒” direction, we note two things:

– When the derivation of ∆ ` T ≤ U ends with rule s2-trans, we apply the
I.H. to the two subderivations and combine the two resulting derivations
using Lemma 5.

– When the derivation of ∆ ` T ≤ U ends with rule s2-abstract, we have
N = [T/X]M as a premise. But the corresponding rule s2-abstract’ requires
N = [Y/X]M . We can easily show T = Y for some Y because N has the
form C<Z> (see the syntax in Fig. 2). ut

Our next goal is to show that JΓ K− `′ JτK− ≤ Jτ ′K+ implies Γ ` τ ≤ τ ′.
Before proving this fact, we need to establish some more lemmas. In the following,
we use the notation D :: J to denote that D is a derivation for judgment J and
define height(D) as the height of D.

Lemma 7 (Strengthening). Suppose X /∈ ftv(∆, T, U, V ). If D :: ∆, X superT `′
U ≤ V or D :: ∆, X extendsT `′ U ≤ V , then D :: ∆ `′ U ≤ V with
height(D) = height(D′).

Proof. Straightforward induction on D. ut
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Lemma 8.
(i) If D :: ∆, X superT `′ U ≤ X with X /∈ ftv(∆, T, U), then D′ :: ∆ `′ U ≤

T with height(D′) ≤ height(D).
(ii) If D :: ∆, X extendsT `′ X ≤ U with X /∈ ftv(∆, T, U), then D′ :: ∆ `′

T ≤ U with height(D′) ≤ height(D).

Proof.
(i) Induction on D.

Case distinction on the last rule of D.
– Case rule s2-refl’: Impossible.
– Case rule s2-object’: Impossible.
– Case rule s2-extends’: Follows by I.H. and rule s2-extends’.
– Case rule s2-super’: Then ∆, X superT `′ U ≤ T from the premise

and the claim follows with Lemma 7.
– Case rule s2-open’: Then U = ∃Y whereQ . N and

s2-open’

s2-super’
D1 :: ∆, X superT,Q `′ N ≤ T

∆, X superT,Q `′ N ≤ X Y ∩ ftv(∆, X, T ) = ∅
D :: ∆, X superT `′ ∃Y whereQ . N ≤ X

We have X /∈ ftv(Q,N) because X /∈ ftv(U). With Lemma 7

D′1 :: ∆, Q `′ N ≤ T

height(D1) = height(D′1)

The claim now follows with rule s2-open’.
– Case rule s2-abstract’: Impossible.

End case distinction on the last rule of D.
(ii) Case distinction on the last rule of D.

– Case rule s2-refl’: Impossible.
– Case rule s2-object’: Trivial.
– Case rule s2-extends’: Then ∆, X extendsT `′ T ≤ U from the

premise and the claim follows with Lemma 7.
– Case rule s2-super’: Follows by I.H. and rule s2-super’.
– Case rule s2-open’: Impossible.
– Case rule s2-abstract’: Impossible.

End case distinction on the last rule of D. ut

Lemma 9. Let τ− and σ+ be FD
≤ types. Then JτK− 6= JσK+.

Proof. Obvious. ut

Lemma 10. If JΓ K− `′ JτK− ≤ Jτ ′K+ then Γ ` τ ≤ τ ′.

Proof. Let JΓ K− = ∆, JτK− = T , and Jτ ′K+ = U . Proceed by induction on the
given derivation.
Case distinction on the last rule of this derivation.
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– Case rule s2-refl’: Then T = U so JτK− = Jτ ′K+ which is impossible by
Lemma 9.

– Case rule s2-object’: Then τ ′ = Top and the claim follows by d-top.
– Case rule s2-extends’: Then T = Xα and τ = α and

X extendsT ′ ∈ ∆ ∆ `′ T ′ ≤ U

∆ `′ Xα ≤ U

Because ∆ = JΓ K−, we have T ′ = JσK− and Γ (α) = σ−. Applying the I.H.
yields

Γ ` σ ≤ τ ′

so the claim follows by rule d-var.
– Case rule s2-super’: Impossible because n-positive types are not variables.
– Case rule s2-open’: Hence T = ∃X whereP .N and

∆, P `′ N ≤ T X ∩ ftv(∆, U) = ∅
∆ `′ ∃X whereP .N ≤ U

From T = JτK− we have

τ = ∀α0 . . . αn .¬σ

T = ¬

=T ′︷ ︸︸ ︷
∃Xα0 . . . Xαn Y whereY extends JσK+

.C n+2<Y, Xα0 . . . Xαn>

= ∃X whereX superT ′ .D1<X>

From U = Jτ ′K+ we get that either U = Object (then τ ′ = Top and we are
done) or that

τ ′ = ∀α0≤τ−0 . . . αn≤τ−n .¬σ′

U = ¬

=U ′︷ ︸︸ ︷
∃Xα0 . . . Xαn Y whereXα0 extends Jτ0K− . . .

Xαn extends JτnK−
Y extends Jσ′K−

.C n+2<Y, Xα0 . . . Xαn>

= ∃X whereX superU ′ .D1<X>

From ∆ `′ T ≤ U we get by inverting the rules:

s2-open’

s2-abstract’

e2-super’
D :: ∆, X superT ′ `′ U ′ ≤ X

∆, X superT ′ 
′ X superU ′

∆, X superT ′ `′ D1<X> ≤ ∃X whereX superU ′ .D1<X>
X /∈ ftv(∆, U)

∆ `′ ∃X whereX superT ′ .D1<X> ≤ ∃X whereX superU ′ .D1<X>
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We have X /∈ ftv(∆, T ′, U ′) so with Lemma 8

D′ :: ∆ `′ U ′ ≤ T ′

height(D′) ≤ height(D)

D′ must end with rule s2-open’. Define

∆′ = ∆, Xα0 extends Jτ0K−, . . . , Xαn extends JτnK−

∆′′ = ∆′, Y extends Jσ′K−

Inverting the rules yields

s2-open’

s2-abstract’
. . .

e2-extends
D′′ :: ∆′′ `′ Y ≤ JσK+

∆′′ 
′ Y extends JσK+ . . .

∆′′ `′ C n+2<Y, Xα0 . . . Xαn> ≤ T ′

D′ :: ∆ `′ U ′ ≤ T ′

We have Y /∈ ftv(∆′, Jσ′K−, JσK+). Hence with Lemma 8

D′′′ :: ∆′ `′ Jσ′K− ≤ JσK+

height(D′′′) ≤ height(D′′)

Because D′′′ is smaller than the initial derivation, we can apply the I.H. and
get

Γ, α0≤τ0 . . . αn≤τn ` σ′ ≤ σ

With rule d-all-neg

Γ ` ∀α0 . . . αn .¬σ ≤ ∀α0≤τ0 . . . αn≤τn .¬σ′

as required.
– Case rule s2-abstract’: Impossible because no class type N is in the image

of the J·K− translation.

End case distinction on the last rule of this derivation. ut

Our final goal is to prove that subtyping in EXuplo, restricted to the image of
the translation defined in Fig. 4, coincides with subtyping in FD

≤ . We first prove
a standard weakening lemma.

Lemma 11 (Weakening). If ∆ ` T ≤ U and ∆ ⊆ ∆′ then ∆′ ` T ≤ U .

Proof. Straightforward induction on the derivation given. ut

The next lemma show that the negation operator for types (defined in Fig. 4)
allows us to swap the left- and right-hand sides of a subtyping judgment.

Lemma 12. If ∆ ` U ≤ T then ∆ ` ¬T ≤ ¬U .
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Proof. We have

¬T = ∃X whereX superT .D1<X>

¬U = ∃X whereX superU .D1<X>

Assume ∆ ` U ≤ T . Then ∆, X superT ` U ≤ T with Lemma 11. Hence

s2-open

s2-abstract

e2-super

s2-super
∆, X superT ` U ≤ T

∆, X superT ` U ≤ X

∆, X superT 
 X superU

∆, X superT ` D1<X> ≤ ∃X whereX superU .D1<X>
X /∈ ftv(∆,¬U)

∆ ` ∃X whereX superT .D1<X> ≤ ∃X whereX superU .D1<X>

ut

The relation ∆ ` P - Q, defined next, expresses that the constraints P are
more specific than the constraints Q.

Definition 2 (∆ ` P - P , ∆ ` P - P ).

(∀i ∈ [n],∃j ∈ [m]) ∆, ∆i ` Pj - Qi with ∆i ⊆ P

∆ ` P
m

- Q
n

∆ ` T ≤ T ′

∆ ` X extendsT - X extendsT ′
∆ ` T ′ ≤ T

∆ ` X superT - X superT ′

We now connect - with subtyping on existentials.

Lemma 13. If ∆ ` P - Q then ∆ ` ∃X whereP .N ≤ ∃X whereQ . N .

Proof. It is easy to see that ∆ ` P - Q implies ∆, P 
 Q for all Q ∈ Q. Then
we have

s2-open

s2-abstract
(∀i) ∆, P 
 Qi

∆, P ` N ≤ ∃X whereQ . N
X ∩ ftv(∆,∃X whereQ . N) = ∅

∆ ` ∃X whereP .N ≤ ∃X whereQ . N

ut

To finish the proof of Theorem 2, we show that subtyping in EXuplo, restricted
to the image of the translation defined in Fig. 4, coincides with subtyping in FD

≤ .

Lemma 14. Γ ` τ ≤ τ ′ if and only if JΓ ` τ ≤ τ ′K.

Proof.
– Assume Γ ` τ ≤ τ ′. We proceed by induction on this derivation

Case distinction on the last rule used.
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• Case rule d-top: Then Jτ ′K+ = Object and the claim is obvious.
• Case rule d-var: Then τ = α and

Γ ` Γ (α) ≤ τ ′ τ ′ 6= Top

Γ ` α ≤ τ ′

Then

Xα extends JΓ (α)K− ∈ JΓ K−

and by the I.H.

JΓ K− ` JΓ (α)K− ≤ Jτ ′K+

The claim now follows with rules s2-extends and s2-trans.
• Case rule d-all-neg: Then

Γ, α0 ≤ τ0 . . . αn ≤ τn ` σ′ ≤ σ

Γ ` ∀α0 . . . αn .¬σ︸ ︷︷ ︸
=τ

≤ ∀α0 ≤ τ0 . . . αn ≤ τn .¬σ′︸ ︷︷ ︸
=τ ′

and

JτK− = ¬

=T︷ ︸︸ ︷
∃Xα0 . . . Xαn Y whereY extends JσK+

.C n+2<Y, Xα0 . . . Xαn>

Jτ ′K+ = ¬

=U︷ ︸︸ ︷
∃Xα0 . . . Xαn Y whereXα0 extends Jτ0K− . . .

Xαn extends JτnK−
Y extends Jσ′K−

.C n+2<Y, Xα0 . . . Xαn>

Define

∆ = JΓ K−

∆′ = ∆, Xα0 extends Jτ0K− . . . Xαn extends JτnK−

Note that JΓ, α0 ≤ τ0 . . . αn ≤ τnK− = ∆′.
We must show ∆ ` ¬T ≤ ¬U . By applying the I.H. we get

∆′ ` Jσ′K− ≤ JσK+

Thus

∆′ ` Y extends Jσ′K− - Y extends JσK+

Hence

∆ ` Xα0 extends Jτ0K− . . . Xαn extends JτnK−, Y extends Jσ′K−
- Y extends JσK+
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By Lemma 13

∆ ` U ≤ T

By Lemma 12

∆ ` ¬T ≤ ¬U

End case distinction on the last rule used.
– Assume JΓ ` τ ≤ τ ′K. Let

∆ = JΓ K−

T = JτK−

U = Jτ ′K+

Hence, ∆ ` T ≤ U . By Lemma 6 we then have ∆ `′ T ≤ U . Thus, by
Lemma 10, Γ ` τ ≤ τ ′. ut

C Example for Loss of Minimal Types with
Implementation Definitions for Interface Types

In this section, we demonstrate that implementation definitions for interface
types lead to a loss of minimal types. We do not formalize the typing rules
for expressions but argue on an informal level. The example relies on explicit
implementing types [21], a feature of JavaGI not discussed in this article.

Assume the following definitions:

interface I [X] { X m(); }

interface J1

interface J2

class C

class D

class E

implementation J1 [C]

implementation J2 [C]

implementation J1 [D]

implementation J2 [E]

implementation I [J1] { /∗ illegal ∗/
J1 m() {

return new D();

}

}

implementation I [J2] { /∗ illegal ∗/
J2 m() {

return new E();

}

}

Class C is a subtype of J1 and J2 because it implements both interfaces.
Moreover, the constraints J1 implements I and J2 implements I holds. Now
look at the expression
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e = new C().m()

The constraint C implements I does not hold. Otherwise, e could be given
the type C, but evaluating e either produces a D- or an E-object, both of which
are incompatible with C. Hence, e cannot have type C.

By use of subsumption, we can give new C() the types J1 and J2. Hence,
e could be given the types J1 or J2. These two types are incomparable. Their
greatest lower bound is C, but e cannot have type C, so minimal types do not
exist.
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