
Subtyping Existential Types

Stefan Wehr and Peter Thiemann

Institut für Informatik, Universität Freiburg
{wehr,thiemann}@informatik.uni-freiburg.de

Abstract Constrained existential types are a powerful language feature
that subsumes Java-like interface and wildcard types. But existentials
do not mingle well with subtyping: subtyping is already undecidable
for very restrictive settings. This paper defines two subtyping relations
by extracting the features specific to existentials from current language
proposals (JavaGI, WildFJ, Scala). Both subtyping relations are undecid-
able. The paper also discusses the consequences of removing existentials
from JavaGI and possible amendments to regain their features.

1 Introduction
Constrained existential types (also called “bounded existential types” [5, 12])
arise from the need for structured and partial data abstraction and information
hiding. They have found uses for modeling object oriented languages in gen-
eral [2], as well as for modeling specific features such as Java wildcards [3,4,18,19]
and Java-like interface types in the JavaGI language [21]. In fact, JavaGI supports
general existential types and provides interface types as a special case supported
by syntactic sugar. Building directly on existential types has several advantages
compared to interface types: they allow the general composition of interface
types, they encompass Java wildcards, and they enable meaningful types in the
presence of multi-headed interfaces.1

Work on the type checker for an implementation of JavaGI uncovered the
consequences of supporting general existential types. They do not only introduce
a wealth of complexity into the type system (something we can live with) but
they may also cause nontermination in the type checker (something we cannot
live with): JavaGI’s subtyping relation with existential types is undecidable.

After establishing some background on JavaGI (§ 2), we define two calculi with
constrained existential types and subtyping. The first calculus (§ 3) is a subset of
JavaGI’s formalization [21]. The second calculus (§ 4) supports existential types
with lower and upper bounds, very much like Scala [13] and formal systems for
modeling Java wildcards [3,4,18]. We prove that the subtyping relations of both
calculi are undecidable.

Furthermore, we discuss alternative design options for JavaGI that avoid the
use of general existential types but keep the remaining features (§ 5). Finally, we
review related work (§ 6) and conclude (§ 7). Detailed proofs can be found in an
accompanying technical report [22].

1 JavaGI provides multi-headed interfaces that abstract over a family of types.

2 Background

JavaGI [21] is a conservative extension of Java 1.5 that generalizes Java’s inter-
face concept to incorporate the essential features of Haskell type classes [8,9,20].
This generalization allows for retroactive and constrained interface implemen-
tations, binary methods, static methods in interfaces, default implementations
for interface methods, and multi-headed interfaces (interfaces over families of
types). Furthermore, JavaGI generalizes Java-like interface types to existential
types. This section only discusses the features relevant to this paper, namely
retroactive interface implementations and existential types, and ignores the rest.

2.1 Retroactive Interface Implementations
A class definition in Java must specify all interfaces that the class implements.
In contrast, JavaGI enables programmers to add implementations for interfaces
to existing classes at any time. For example, Java rejects the use of a for-
loop to iterate over the characters of a string because the class String does not
implement the interface Iterable:2

for (Character c : someString) { ... } // illegal in Java

As the definition of class String is fixed, there is no hope of getting this code
working. In contrast, JavaGI allows the retroactive implementation of Iterable:3

implementation Iterable<Character> [String] {

public Iterator<Character> iterator() {

return new Iterator<Character>() {

private int index = 0;

public boolean hasNext() { return index < length(); }

public Character next() { return charAt(index++); }

};

}

}

This implementation definition specifies that the implementing type String, en-
closed in square brackets [], implements the interface Iterable<Character>. The
definition of the iterator method can use the methods length and charAt be-
cause they are part of String’s public interface.

2.2 Constrained Existential Types
Java uses the name of an interface as an interface type that denotes the set
of all types implementing the interface. Instead of interface types, JavaGI fea-
tures constrained existential types (existentials for short) and provides syntactic
sugar for recovering interface types. For example, the interface type List<String>

abbreviates the existential type ∃ X where X implements List<String> . X. The
implementation constraint “X implements List<String>” restricts instantiations

2 Java’s enhanced for-loop allows to iterate over arrays and all types implementing the
Iterable<X> interface, which contains a single method Iterator<X> iterator().

3 We ignore the remove method of the Iterator interface.

of the type variable X to types that implement the interface List<String>. Thus,
the existential type denotes the set of all types implementing List<String>, ex-
actly like the synonymous interface type.

Existentials are more general than interface types. For instance, the existen-
tial ∃ X where X implements List<String>, X implements Set<String> . X de-
notes the set of all types that implement both List<String> and Set<String>.
Java supports such intersections of interface types only for specifying bounds of
type variables. Existentials also encompass Java wildcards [3, 4, 18, 19]. For in-
stance, the existential type ∃ X where X extends Number . List<X> corresponds
to the wildcard type List<? extends Number>.4

JavaGI allows implementation definitions for existentials. For example, a pro-
grammer may write an implementation definition to specify that all types im-
plementing List<X> also implement Iterable<X>. Such a definition is feasible be-
cause iterators can be implemented using only operations of the List interface.
The example also demonstrates that JavaGI supports generic implementation
definitions, which are parameterized by type variables.

implementation<X> Iterable<X> [∃ L where L implements List<X> . L] {

Iterator<X> iterator() { return new Iterator<X>() {

/∗ as for String , replacing length with size and charAt with get . ∗/ };

}

}

A Java programmer would have to implement Iterable from scratch for every
class that implements List. Abstract classes do not help with this problem be-
cause Java does not support multiple inheritance.

3 Subtyping Existential Types with Implementation
Constraints

This section introduces EXimpl, a subtyping calculus with existentials and im-
plementation constraints. EXimpl is a subset of Core–JavaGI from the original
formulation of JavaGI’s type system [21]. It does not model all aspects of Jav-
aGI, but contains only those features that make subtyping undecidable.

3.1 Definition of EXimpl

Fig. 1 defines the syntax, as well as the entailment and subtyping relations of
EXimpl. A type T is either a type variable X or an existential ∃X whereP .X.
For simplicity, there are no class types, existentials have a single quantified type
variable, and the body of an existential must be the quantified type variable.5

Overbar notation ξ denotes a sequence ξ1, . . . , ξn of syntactic entities with •
standing for the empty sequence. Sometime, the sequence ξ stands for the set
{ξ}. Existentials are considered equal up to renaming of bound type variables,
reordering of constraints, and elimination of duplicate constraints.

4 Because List is an interface, ∃ X where X extends Number . List<X> stands for
∃ X,L where X extends Number, L implements List<X> . L

5 The body of an existential is the part after the “.”.

T, U, V, W ::= X | ∃X whereP . X

P, Q, R ::= X implements I<T>

def ::= interface I<X> | implementation<X> I<T> [T]

e1-impl
implementation<X> I<T> [U] ∈ Θ

Θ; ∆ [V/X]
`
U implements I<T>

´
e1-local

P ∈ ∆

Θ; ∆ P

s1-refl
Θ; ∆ ` T ≤ T

s1-trans
Θ; ∆ ` T ≤ U Θ; ∆ ` U ≤ V

Θ; ∆ ` T ≤ V

s1-open
Θ; ∆, P ` X ≤ T X /∈ ftv(Θ, ∆, T)

Θ; ∆ ` ∃X whereP . X ≤ T

s1-abstract
(∀i) Θ; ∆ [T/X]Pi

Θ; ∆ ` T ≤ ∃X whereP . X

Fig. 1. Type syntax, entailment, and subtyping for EXimpl.

An implementation constraint P has the form X implements I <T> and con-
strains the type variable X to types that implement the interface I <T>. In com-
parison with upper bounds for type variables, implementation constraints allow
more precise typings, especially for binary methods [1]. An interface without
type parameters is written I instead of I < • >.

A definition def in EXimpl is either an interface or an implementation defi-
nition. Interface and implementation definitions do not have method signatures
or bodies, because they do not matter for the entailment and subtyping relation
of EXimpl. Moreover, EXimpl does not support interface inheritance. A program
environment Θ is a finite set of definitions def , and a type environment ∆ a
finite set of constraints P , where ∆, P abbreviates ∆ ∪ {P}.

The entailment relation Θ;∆ T implements I <T> expresses that type T
implements interface I <T>. A type implements an interface either because it
corresponds to an instance of a suitable implementation definition (rule e1-impl)
or because the type environment contains the constraint (rule e1-local). The
notation [T/X] stands for the capture-avoiding substitution replacing each Xi

with Ti. Full JavaGI uses the entailment relation (among other things) to verify
that the instantiation of a generic class or method fulfills the implementation
constraints associated with that class or method.

The subtyping relation Θ;∆ ` T ≤ U states that T is a subtype of U . It
is reflexive and transitive as usual. Rule s1-open opens an existential on the
left-hand side of a subtyping judgment by moving its constraints into the type
environment. The premise X /∈ ftv(Θ,∆, T) ensures that the existentially quan-
tified type variable is sufficiently fresh and does not escape from its scope. Rule
s1-abstract deals with existentials on the right-hand side of a subtyping judg-
ment. It states that T is a subtype of some existential if all constraints of the
existential hold after substituting T for the existentially quantified type variable.

While developing a type soundness proof for Core–JavaGI, we verified that
the subtyping relation of EXimpl supports the usual principle of subsumption:
we can always promote the type of an expression to some supertype without
causing runtime errors.

3.2 Undecidability of Subtyping in EXimpl

We prove undecidability of subtyping in EXimpl by reduction from Post’s Corre-
spondence Problem (PCP). It is well known that PCP is undecidable [7, 17].

Definition 1 (PCP). Let {(u1, v1) . . . , (un, vn)} be a set of pairs of non-empty
words over some finite alphabet Σ with at least two elements. A solution of PCP
is a sequence of indices i1 . . . ir such that ui1 . . . uir

= vi1 . . . vir
. The decision

problem asks whether such a solution exists.

Theorem 1. Subtyping in EXimpl is undecidable.

Proof. Let P = {(u1, v1), . . . , (un, vn)} be a particular instance of PCP over the
alphabet Σ. We can encode P as an equivalent subtyping problem in EXimpl as
follows. First, words over Σ must be represented as types in EXimpl.

interface E // empty word ε
interface L<X> // letter, for every L ∈ Σ

Words u ∈ Σ∗ are formed with these interfaces through nested existentials. For
example, the word AB is represented by

∃X whereX implements A<∃Y whereY implements B<
∃Z whereZ implements E . Z> . Y > . X

The abbreviation ∃I <T> stands for the type ∃X whereX implements I <T> . X.
Using this notation, the word AB is represented by ∃A<∃B<∃E>>.

Formally, we define the representation of a word u as JuK = u # ∃E, where
u # T is the concatenation of a word u with a type T :

ε # T , T Lu # T , ∃L<u # T>

Two interfaces are required to model the search for a solution of PCP:

interface S<X,Y> // search state
interface G // search goal

The type ∃S<JuK, JvK> represents a particular search state where we have al-
ready accumulated indices i1, . . . , ik such that u = ui1 . . . uik

and v = vi1 . . . vik
.

To model valid transitions between search states, we define implementations of
S for all i ∈ {1, . . . , n} as follows:

implementation<X,Y> S<ui#X, vi#Y> [∃ S<X,Y>] (1)

The type ∃G represents the goal of a search, as expressed by the following
implementation:

implementation<X> G [∃ S<X,X>] (2)

To get the search running we ask whether there exists some i ∈ {1, . . . , n}
such that ΘP ; ∅ ` ∃S<JuiK, JviK> ≤ ∃G is derivable. The program ΘP consists of
the interfaces and implementations just defined. In our technical report [22], we
prove that the given PCP instance P has a solution if and only if there exists
some i ∈ {1, . . . , n} such that ΘP ; ∅ ` ∃S<JuiK, JviK> ≤ ∃G is derivable. ut

N, M ::= C<X> | Object
T, U, V, W ::= X | N | ∃X whereP . N

P, Q, R ::= X extendsT | X superT

e2-extends
∆ ` T ≤ U

∆ T extendsU

e2-super
∆ ` U ≤ T

∆ T superU

s2-refl
∆ ` T ≤ T

s2-trans
∆ ` T ≤ U ∆ ` U ≤ V

∆ ` T ≤ V

s2-object
∆ ` T ≤ Object

s2-extends
X extendsT ∈ ∆

∆ ` X ≤ T

s2-super
X superT ∈ ∆

∆ ` T ≤ X

s2-open
∆, P ` N ≤ T X ∩ ftv(∆, T) = ∅

∆ ` ∃X whereP . N ≤ T

s2-abstract

T = [U/X]N (∀i) ∆ [U/X]Pi

∆ ` T ≤ ∃X whereP . N

Fig. 2. Syntax, Entailment, and Subtyping for EXuplo

4 Subtyping Existential Types with Upper and Lower
Bounds

This section considers the calculus EXuplo, which is similar in spirit to EXimpl,
but supports upper and lower bounds for type variables and no implementation
constraints. Other researchers [3,4,18] use formal systems very similar to EXuplo

for modeling Java wildcards [19]. It is not the intention of EXuplo to provide
another formalization of wildcards, but rather to expose the essential ingredients
that make subtyping undecidable in a calculus as simple as possible.

4.1 Definition of EXuplo

Fig. 2 defines the syntax and the entailment and subtyping relations of EXuplo. A
class type N is either Object or an instantiated generic class C<X>, where the
type arguments must be type variables. A type T is a type variable, a class type,
or an existential. Unlike in EXimpl, existentials in EXuplo may quantify over several
type variables and the body of an existential must be a class type. A constraint
P places either an upper bound (X extendsT) or a lower bound (X superT)
on a type variable X. Type environments ∆ are defined as for EXimpl.

Class definitions and inheritance are omitted from EXuplo. The only assump-
tion is that every class name C comes with a fixed arity that is respected when
applying C to type arguments. There are some further restrictions:

(1) If T = ∃X whereP .N , then X 6= • and X ⊆ ftv(N).
(2) If T = ∃X whereP .N and P ∈ P , then P = Y extendsT or P = Y superT

with Y ∈ X. That is, only bound variables may be constrained.
(3) A type variable must not have both upper and lower bounds.6

Constraint entailment (∆ T extendsU and ∆ U superT) uses subtyp-
ing (∆ ` T ≤ U) to check that the constraint given holds. The subtyping rules
for EXuplo are similar to those for EXimpl, except that Object is now a supertype
of every type and that rules s2-extends and s2-super use assumptions from ∆.
6 Modeling Java wildcards requires upper and lower bounds for the same type variable in

certain situations.

τ+ ::= Top | ∀α0≤τ−0 . . . αn≤τ−n .¬ τ− (n ∈ N)
τ− ::= α | ∀α0 . . . αn .¬ τ+ (n ∈ N)
Γ− ::= ∅ | Γ−, α≤τ−

d-top
Γ ` τ ≤ Top

d-var
τ 6= Top

Γ ` Γ (α) ≤ τ

Γ ` α ≤ τ

d-all-neg
Γ, α0≤φ0 . . . αn≤φn ` τ ≤ σ

Γ ` ∀α0 . . . αn .¬σ ≤ ∀α0≤φ0 . . . αn≤φn .¬ τ

Fig. 3. Syntax and Subtyping for F D
≤

4.2 Undecidability of Subtyping in EXuplo

The undecidability proof of subtyping in EXuplo is by reduction from FD
≤ [14], a

restricted version of F≤ [5]. Pierce defines FD
≤ for his undecidability proof of F≤

subtyping [14].
Fig. 3 defines the syntax and the subtyping relation of FD

≤ . A Type τ is either
a n-positive type, τ+, or a n-negative type, τ−, where n is a fixed natural number
standing for the number of type variables (minus one) bound at the top-level of
the type. A n-negative type environment Γ− associates type variables α with
upper bounds τ−. The polarity (+ or −) characterizes at which positions of a
subtyping judgment a type or type environment may appear. For readability, we
often omit the polarity and leave n implicit.

A n-ary subtyping judgment in FD
≤ has the form Γ− ` σ− ≤ τ+, where

Γ− is a n-negative type environment, σ− is a n-negative type, and τ+ is a n-
positive type. Only n-negative types appear to the left and only n-positive types
appear to the right of the ≤ symbol. The subtyping rule d-all-neg compares
two quantified types σ = ∀α0 . . . αn .¬σ′ and τ = ∀α0≤τ0 . . . αn≤αn .¬ τ ′ by
swapping the left- and right-hand sides of the subtyping judgment and checking
τ ′ ≤ σ′ under the extended environment Γ, α0≤τ0 . . . αn≤τn. The rule is correct
with respect to F≤ because we may interpret every FD

≤ type as an F≤ type:

∀α0 . . . αn .¬σ′ = ∀α0≤Top . . .∀αn≤Top.∀β≤σ′ . β (β fresh)
∀α0≤τ0 . . . αn≤αn .¬ τ ′ = ∀α0≤τ0 . . .∀αn≤τn.∀β≤τ ′ . β (β fresh)

Using these abbreviations, every FD
≤ subtyping judgment can be read as an F≤

subtyping judgment. The subtype relations in FD
≤ and F≤ coincide for judgments

in their common domain [14].
It is sufficient to consider only closed judgments. A type τ is closed under Γ

if ftv(τ) ⊆ dom(Γ) (where dom(α1≤τ1, . . . , αn≤τn) = {α1, . . . , αn}) and, if τ =
∀α0≤τ0 . . . αn≤τn .¬σ, then no αi appears free in any τj . A type environment
Γ is closed if Γ = ∅ or Γ = Γ ′, α≤τ with Γ ′ closed and τ closed under Γ ′. A
judgment Γ ` τ ≤ σ is closed if Γ is closed and τ, σ are closed under Γ .

We now come to the central theorem of this section.

Theorem 2. Subtyping in EXuplo is undecidable.

Proof. The proof is by reduction from FD
≤ . Fig. 4 defines a translation from

FD
≤ types, type environments, and subtyping judgments to their correspond-

ing EXuplo forms. The translation of an n-ary subtyping judgment assumes the

JTopK+ = Object

J∀α0≤τ−0 . . . αn≤τ−n .¬ τ−K+ = ¬∃Y, Xαi whereXα0 extends Jτ0K− . . .

Xαn extends JτnK−, Y extends JτK− .C n+2
<Y, Xαi>

JαK− = Xα

J∀α0 . . . αn .¬ τ+K− = ¬∃Y, Xαi whereY extends JτK+ .C n+2
<Y, Xαi>

J∅K− = ∅

JΓ, α≤τ−K− = JΓ K−, Xα
extends JτK−

JΓ− ` τ− ≤ σ+K = JΓ K− ` JτK− ≤ JσK+

¬T ≡ ∃X whereX superT .D1
<X>

Fig. 4. Reduction from F D
≤ to EXuplo

existence of two EXuplo classes: Cn+2 accepts n + 2 type arguments, and D1

takes one type argument. The superscripts in J·K+ and J·K− indicate whether the
translation acts on positive or negative entities.

An n-positive type ∀α0≤τ−0 . . . αn≤τ−n .¬ τ− is translated into an negated
existential. The existentially quantified type variables Xα0 , . . . , Xαn correspond
to the universally quantified type variables α0, . . . , αn. The bound JτK− of the
fresh type variable Y represents the body ¬ τ− of the original type. We cannot
use JτK− directly as the body because existentials in EXuplo have only class
types as their bodies. The translation for n-negative types is similar to the one
for n-positive types. It is easy to see that the EXuplo types in the image of the
translation meet the restrictions defined in Section 4.1. Type environments and
subtyping judgments are translated in the obvious way.

A negated type, written ¬T , is an abbreviation for an existential with a single
super constraint: ¬T ≡ ∃X whereX superT .D1<X>, where X is fresh. The
super constraint simulates the behavior of the FD

≤ subtyping rule d-all-neg,
which swaps the left- and right-hand sides of subtyping judgments.

We now need to verify that Γ ` τ ≤ σ is derivable in FD
≤ if and only if

JΓ ` τ ≤ σK is derivable in EXuplo. The “⇒” direction is an easy induction on
the derivation of Γ ` τ ≤ σ. The “⇐” direction requires more work because
the transitivity rule s2-trans (Fig. 2) involves an intermediate type which is not
necessarily in the image of the translation. Hence, a direct proof by induction
on the derivation of JΓ ` τ ≤ σK fails. To solve this problem, we give an equiva-
lent definition of the EXuplo subtyping relation that does not include an explicit
transitivity rule. See the technical report [22] for details and the full proofs. ut

5 Lessons Learned

What are the consequences of this investigation for the design of JavaGI? While
existentials are powerful and unify several diverse concepts, they complicate the
metatheory of JavaGI considerably. Also, subtyping with existentials is undecid-
able even under severe restrictions.

The initial development of JavaGI’s metatheory uses existentials and imposes
several restrictions to ensure decidability of subtyping. However, these restric-
tions are difficult to explain to users of JavaGI because they seem ad-hoc. Our
present view is that existentials may not be worth all the trouble. After all,
JavaGI’s main feature is its very general and powerful interface concept (which
this paper does not explore). Hence, the upcoming revision of JavaGI’s design
has all features of the original design but it does not require existentials in their
full generality. It gives up some of the power in favor of simplicity. Several other
features make up for the lack of existentials and experience will show whether
this design is satisfactory.

In fact, the upcoming revision of JavaGI copes with all the uses of existentials
in JavaGI [21] as mentioned in the introduction.
General composition of interface types. The revised design supports Java-

like interface types and intersections thereof.
Wildcards. The revised design does not encode wildcards through existentials

but supports them directly.
Meaningful types for multi-headed interfaces. The revised design supports

special multi-headed interface types.

Examination of the undecidability proof in § 3 reveals that all types involved
are (encodings of) interface types, thus subtyping remains undecidable even if
regular interface types replace existentials. The real culprit for undecidability
is the ability to provide implementation definitions for existentials or interface
types. Moreover, such implementation definitions also prevent the assignment of
minimal types to expressions, see the technical report [22] for an example.7

Hence, the revised design disallows implementation definitions for interface
types. This restriction is rather severe because it prevents useful implementation
definitions such as the one given in § 2.2, which implements Iterable<T> for all
types implementing List<T>. Abstract implementation definitions are a possible
cure. They look similar to regular implementation definitions but do not con-
tribute to constraint entailment. Instead, they serve as blueprints for regular
implementation definitions. Here is a revision of the example from § 2.2:
abstract implementation<X> Iterable<X> [List<X>] { /∗ body as before ∗/ }

Regular implementation definitions may now inherit code from the abstract im-
plementation. For example:
implementation<X> Iterable<X> [LinkedList<X>] extends [List<X>]

implementation<X> Iterable<X> [ArrayList<X>] extends [List<X>]

A disadvantage of abstract implementation definitions is that they do not
induce a subtyping relation between the implementing type (List<X>) and the
interface being implemented (Iterable<X>). While there is no problem for the
concrete example (List<X> is a subinterface of Iterable<X> anyway), there are
situations in which such a subtyping relation is desirable.
7 Undecidability of subtyping in § 4 relies crucially on existentials with upper and lower

bounds. If we removed lower bounds, then subtyping would become decidable. We do not
consider this a viable option for JavaGI because it would require to add extra support for
wildcards, leading to an overly complicated language design with existentials and wildcards.

6 Related Work

Kennedy and Pierce [10] investigate undecidability of subtyping under multiple
instantiation inheritance and declaration-site variance. They prove that the gen-
eral case is undecidable and present three decidable fragments. Our proof in § 3
is similar to theirs, although undecidability has different causes: Kennedy and
Pierce’s system is undecidable because of contravariant generic types, expan-
sive class tables, and multiple instantiation inheritance, whereas undecidability
of our system is due to the interaction of constraint entailment and subtyping
caused by implementation definitions for existentials.

Pierce [14] proves undecidability of subtyping in F≤ by a chain of reductions
from the halting problem for two-counter Turing machines. An intermediate link
in this chain is the subtyping relation of FD

≤ , which is also undecidable. Our proof
in § 4 works by reduction from FD

≤ and is inspired by a reduction given by Ghelli
and Pierce [6], who study bounded existential types in the context of F≤ and
show undecidability of subtyping. Crucial to the undecidability proof of FD

≤ is
rule d-all-neg: it extends the typing context and essentially swaps the sides of a
subtyping judgment. In EXuplo, rule s2-open and rule s2-abstract together with
lower bounds on type variables play a similar role.

Torgersen et al. [18] present WildFJ as a model for Java wildcards using
existential types. The authors do not prove WildFJ sound. Cameron et al. [4]
define a similar calculus ∃J and prove soundness. However, ∃J is not a full
model for Java wildcards because it does not support lower bounds for type
variables. The same authors present with TameFJ [3] a sound calculus supporting
all essential features of Java wildcards. WildFJ’s and TameFJ’s subtyping rules
are similar to the ones of EXuplo defined in § 4, so the conjecture is that subtyping
in WildFJ and TameFJ is also undecidable. The rule XS-Env of TameFJ is
roughly equivalent to the rules s2-open and s2-abstract of EXuplo.

Decidability of subtyping for Java wildcards is still an open question [11].
One step in the right direction might be the work of Plümicke, who solves the
problem of finding a substitution ϕ such that ϕT ≤ ϕU for Java types T,U with
wildcards [15, 16]. Note that undecidability of EXuplo does not imply undecid-
ability for Java subtyping with wildcards. The proof of this claim would require
a translation from subtyping derivations in EXuplo to subtyping derivations in
Java with wildcards, something we did not address in this article.

The programming language Scala [13] supports existential types in its latest
release. The subtyping rules for existentials (§ 3.2.10 and § 3.5.2 of the specifica-
tion [13]) are very similar to the ones for EXuplo. This raises the question whether
Scala’s subtyping relation with existentials is decidable.

7 Conclusion

The paper investigates decidability of subtyping with existential types in the con-
text of JavaGI, Java wildcards, and Scala. In all cases, subtyping is undecidable.
For JavaGI, there are some design options that avoid fully general existentials
without giving up much expressivity.

Acknowledgments We thank the anonymous FTfJP reviewers for feedback
on an earlier version of this article. We particularly thank the second reviewer
for her/his numerous and extensive comments.

References

1. K. B. Bruce, L. Cardelli, G. Castagna, J. Eifrig, S. F. Smith, V. Trifonov, G. T.
Leavens, and B. C. Pierce. On binary methods. Theory and Practice of Object
Systems, 1(3):221–242, 1995.

2. K. B. Bruce, L. Cardelli, and B. C. Pierce. Comparing object encodings. Infor-
mation and Computation, 155(1-2):108–133, 1999.

3. N. Cameron, S. Drossopoulou, and E. Ernst. A model for Java with wildcards. In
22th European Conference on Object-Oriented Programming, 2008. To appear.

4. N. Cameron, E. Ernst, and S. Drossopoulou. Towards an existential types
model for Java wildcards. In Workshop on Formal Techniques for Java-like
Programs, informal proceedings, 2007. http://www.doc.ic.ac.uk/∼ncameron/

papers/cameron ftfjp07 full.pdf.
5. L. Cardelli and P. Wegner. On understanding types, data abstraction, and poly-

morphism. ACM Comput. Surv., 17:471–522, Dec. 1985.
6. G. Ghelli and B. Pierce. Bounded existentials and minimal typing. Theoretical

Computer Science, 193(1-2):75–96, 1998.
7. J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,

Languages, and Computation. Addison Wesley, third edition, 2006.
8. M. P. Jones. Qualified Types: Theory and Practice. Cambridge University Press,

Cambridge, UK, 1994.
9. S. Kaes. Parametric overloading in polymorphic programming languages. In

H. Ganzinger, editor, Proceedings 2nd European Symposium on Programming, num-
ber 300 in Lecture Notes in Computer Science, pages 131–144. Springer-Verlag,
1988.

10. A. J. Kennedy and B. C. Pierce. On decidability of nominal subtyping with vari-
ance. In International Workshop on Foundations and Developments of Object-
Oriented Languages, informal proceedings, Jan. 2007. http://foolwood07.cs.

uchicago.edu/program/kennedy-abstract.html.
11. K. Mazurak and S. Zdancewic. Type inference for Java 5: Wildcards, F-bounds,

and undecidability. http://www.cis.upenn.edu/∼stevez/note.html, 2006.
12. J. C. Mitchell and G. D. Plotkin. Abstract types have existential types. ACM

Transactions on Programming Languages and Systems, 10(3):470–502, July 1988.
13. M. Odersky. The Scala language specification version 2.7, Apr. 2008. Draft, http:

//www.scala-lang.org/docu/files/ScalaReference.pdf.
14. B. C. Pierce. Bounded quantification is undecidable. Information and Computa-

tion, 112(1):131–165, 1994.
15. M. Plümicke. Java type unification with wildcards. In Proceedings of 17th Inter-

national Conference on Applications of Declarative Programming and Knowledge
Management and 21st Workshop on (Constraint) Logic Programming, pages 234–
245, Oct. 2007.

16. M. Plümicke. Typeless programming in Java 5.0 with wildcards. In Proceedings
of the 5th international symposium on Principles and practice of programming in
Java. ACM, Sept. 2007.

17. E. L. Post. A variant of a recursivley unsolvable problem. Bulletin of the American
Mathematical Society, 53:264–268, 1946.

18. M. Torgersen, E. Ernst, and C. P. Hansen. Wild FJ. In International Workshop
on Foundations of Object-Oriented Languages, informal proceedings, 2005. http:

//homepages.inf.ed.ac.uk/wadler/fool/program/14.html.
19. M. Torgersen, E. Ernst, C. P. Hansen, P. von der Ahé, G. Bracha, and N. Gafter.

Adding wildcards to the Java programming language. Journal of Object Technol-
ogy, 3(11):97–116, Dec. 2004.

20. P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad-hoc. In Proc.
16th Annual ACM Symposium on Principles of Programming Languages, pages
60–76, Austin, Texas, Jan. 1989. ACM Press.

21. S. Wehr, R. Lämmel, and P. Thiemann. JavaGI: Generalized interfaces for Java. In
E. Ernst, editor, 21st European Conference on Object-Oriented Programming, vol-
ume 4609 of Lecture Notes in Computer Science, pages 347–372, Berlin, Germany,
July 2007. Springer-Verlag.

22. S. Wehr and P. Thiemann. Subtyping existential types. Technical Report
240, Universität Freiburg, June 2008. ftp://ftp.informatik.uni-freiburg.de/

documents/reports/report240/report00240.ps.gz.

