
ML Modules and Haskell Type Classes:
A Constructive Comparison

Stefan Wehr

Diplomarbeit

Albert-Ludwigs-Universität Freiburg
Fakultät für Angewandte Wissenschaften

Institut für Informatik

November 2005

Erstgutachter: Prof. Dr. Peter Thiemann
Zweitgutachter und Betreuer: Dr. Manuel M. T. Chakravarty

(University of New South Wales)

Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig verfasst habe
und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Al-
le Stellen, die wörtlich oder sinngemäss aus veröffentlichten Schriften entnommen
wurden, sind als solche gekennzeichnet. Die vorliegende Arbeit ist, weder kom-
plett noch auszugsweise, zu keiner anderen Prüfung angefertigt worden.

Syndey, im November 2005 Stefan Wehr

Abstract

Researchers repeatedly observed that the module system of ML and the type class
mechanism of Haskell are related. So far, this relationship has not been formally
investigated. The work at hand fills this gap by presenting a constructive com-
parison between ML modules and Haskell type classes; that is, it introduces two
formal translations from modules to type classes and vice versa, which enable a
thorough comparison of the two concepts.

The source language of the first translation is a subset of Standard ML. The tar-
get language is Haskell with common extensions and one new feature, which was
developed as part of this work. The second translation maps a subset of Haskell 98
to ML with well-established extensions. I prove that the translations preserve type
correctness and provide implementations for both.

Building on the insights obtained from the translations, I present a thorough
comparison between ML modules and Haskell type classes. Moreover, I evaluate
to what extent the techniques used in the translations can be exploited for modular
programming in Haskell and for programming with ad-hoc polymorphism in ML.

Zusammenfassung

Es wurde bereits mehrfach festgestellt, dass das ML Modulsystem und der Typ-
klassenmechanismus von Haskell Ähnlichkeiten aufweisen. Bis zum heutigen Zeit-
punkt wurde dieser Zusammenhang allerdings nicht formal untersucht. Die vor-
liegende Arbeit füllt diese Lücke durch einen konstruktiven Vergleich zwischen
Modulen in ML und Typklassen in Haskell; die Arbeit entwickelt also zwei for-
male Übersetzungen zwischen Modulen und Typklassen, die einen detaillierten
Vergleich zwischen den beiden Konzepten ermöglichen.

Die Quellsprache der ersten Übersetzung ist eine Untermenge von Standard
ML, während als Zielsprache Haskell mit weitverbreiteten Erweiterungen sowie
einer neuen, in dieser Arbeit entwickelten Erweiterung verwendet wird. Die zwei-
te Übersetzung bildet eine Teilmenge von Haskell 98 auf ML mit etablierten Erwei-
terungen ab. Ich beweise, dass die Übersetzungen typkorrektheitserhaltend sind
und stelle für beide Übersetzungen Implementierungen zur Verfügung.

Auf den durch die Übersetzungen gewonnenen Einsichten aufbauend, präsen-
tiere ich einen detaillierten Vergleich zwischen Modulen in ML und Typklassen in
Haskell. Desweiteren evaluiere ich, inwiefern die in den Übersetzungen verwen-
deten Techniken zur modularen Programmierung in Haskell und zum Program-
mieren mit ad-hoc Polymorphie in ML verwendet werden können.

Acknowledgments

Manuel Chakravarty accepted me as a student member of his research group and
gave me the opportunity to write my diploma thesis in Sydney. I would like to
thank Manuel for his excellent support, for his guidance, and for many useful
discussions.

Peter Thiemann drew my attention to functional programming languages and
supported me firmly throughout my studies. I would like to thank him for his
help in organizing my diploma thesis abroad, for useful feedback on a rough draft
version of this thesis, and for assessing the thesis.

Roman Leshchinskiy provided me with a workplace in his office, was always
available for questions, and suggested various improvements to the presentation
of the thesis. Gabriele Keller and Don Stewart let me use their minHS system
as a basis for my implementations and provided valuable feedback on a draft of
the thesis. I am also indebted to Sean Seefried and Simon Winwood for useful
feedback on a draft of the thesis and to André Pang for providing me with an
initial workplace.

Special thanks go to the whole Programming Languages & Systems research
group at the University of New South Wales for their hospitality. I really enjoyed
working in this vibrant ;-) research group.

My wife Claudia not only printed and submitted the thesis in Freiburg, but also
gave me a lot of mental support and motivation. Thank you! Last but not least, I
would like to thank my parents Christine and Adam Heimann for their ongoing
support.

Contents

Contents i

List of Figures iii

1 Introduction 1
1.1 Goals . 1
1.2 Related work . 2
1.3 Outline . 2

2 ML modules 5
2.1 Introduction to ML modules . 5

2.1.1 Structures . 6
2.1.2 Signatures . 6
2.1.3 Functors . 7
2.1.4 Summary . 8

2.2 General conventions and definitions 8
2.3 Tiny-ML . 9

2.3.1 Syntax . 10
2.3.2 Semantic objects . 13
2.3.3 Some definitions . 15
2.3.4 Typing judgments . 16

2.4 Tiny-ML+ . 20
2.4.1 First-class structures . 20
2.4.2 Recursive functors . 22
2.4.3 Lexically scoped type variables 24
2.4.4 Arbitrary functor arguments 25
2.4.5 Signature expressions with type realizations 25

2.5 Related work . 25

3 Haskell type classes 27
3.1 Introduction to Haskell type classes 27
3.2 Tiny-HS . 29

3.2.1 Syntax . 29
3.2.2 Typing judgments . 32

3.3 Tiny-HS+ . 36

i

ii CONTENTS

3.3.1 Multi-parameter type classes 37
3.3.2 Associated type synonyms 38
3.3.3 Abstract associated type synonyms 38
3.3.4 Syntax . 40
3.3.5 Typing judgments . 42

3.4 Related work . 47

4 From modules to classes 49
4.1 Example translation . 49
4.2 Formal translation . 52

4.2.1 Preparations . 52
4.2.2 The translation . 55

4.3 Formal properties . 66
4.3.1 Well-definedness . 66
4.3.2 Type correctness . 69

4.4 Restrictions on the source language Tiny-ML 76
4.5 Implementation . 77
4.6 Related work . 78

5 From classes to modules 81
5.1 Example translation . 81
5.2 Formal translation . 84

5.2.1 Preparations . 85
5.2.2 The translation . 86

5.3 Formal properties . 91
5.3.1 Soundness and completeness 91
5.3.2 Type correctness . 94

5.4 Restrictions on the source language Tiny-HS 102
5.5 Implementation . 104
5.6 Related work . 104

6 Discussion 107
6.1 ML modules and Haskell type classes: a comparison 107

6.1.1 Classes as modules . 107
6.1.2 Modules as classes . 110

6.2 Future work . 111
6.3 Summary and conclusions . 111

A Code 113

B Long proofs 115

Bibliography 157

List of Figures

2.1 Syntax of Tiny-ML’s core language 11
2.2 Syntax of Tiny-ML’s module language 12
2.3 Semantic objects for Tiny-ML . 14
2.4 Typing judgments for Tiny-ML’s core language 17
2.5 Typing judgments for signatures and structures in Tiny-ML 18
2.6 Typing judgment for Tiny-ML programs 19
2.7 Syntax of Tiny-ML+ . 21
2.8 Semantic objects for Tiny-ML+ . 21
2.9 Typing judgments for Tiny-ML+’s core language 22
2.10 Typing judgments for Tiny-ML+’s module language 23

3.1 Syntax of Tiny-HS . 30
3.2 Judgments for entailment and expression typing in Tiny-HS 33
3.3 Typing judgments for Tiny-HS instances, classes, and programs . . 35
3.4 Syntax of Tiny-HS+ . 41
3.5 Judgment for well-formedness of types in Tiny-HS+ 43
3.6 Judgments for entailment and expression typing in Tiny-HS+ . . . 44
3.7 Typing judgments for Tiny-HS+ instance definitions 45
3.8 Typing judgments for Tiny-HS+ class definitions and programs . . 47

4.1 Translating modules to type classes by hand 50
4.2 Analogies between ML modules and Haskell type classes 51
4.3 Identifier manipulation functions . 53
4.4 Environments . 53
4.5 Syntax of Annotated Tiny-ML . 54
4.6 Translation of semantic types and value expressions 56
4.7 Translation of structure bodies and unsealed structure expressions 57
4.8 Translation of structure definitions with unsealed right-hand sides 60
4.9 Translation of structure definitions 61
4.10 Translation of functor definitions with unsealed right-hand sides . 63
4.11 Translation of functor definitions . 65

5.1 Translating type classes to modules by hand: Tiny-HS code 82
5.2 Translating type classes to modules by hand: Tiny-ML+ code 83
5.3 Identifier manipulation functions . 85

iii

iv LIST OF FIGURES

5.4 Translation of types . 86
5.5 Entailment with translation . 87
5.6 Translation of expressions . 88
5.7 Translation of instance definitions 89
5.8 Translation of class definitions and programs 90

Chapter 1.

Introduction

On first glance, module systems and type classes appear to be unrelated program-
ming-language concepts: Module systems allow large programs to be decom-
posed into smaller, relatively independent units, whereas type classes [Kae88,
WB89] provide a means for introducing ad-hoc polymorphism; that is, they give
programmers the ability to define multiple functions or operators with the same
name but different types. However, it has been repeatedly observed [Sch00, KS01,
CKPM05, CKP05, Ros05] that there is some overlap in functionality between the
module system of the programming language ML [MTHM97], one of the most
powerful module systems in widespread use, and the type class mechanism of the
language Haskell [Pey03], which constitutes a sophisticated approach to ad-hoc
polymorphism.

It is natural to ask whether these observations rest on a solid foundation, or
whether the overlap is only superficial. The standard approach to answer such
a question is to devise two formal translations from modules to type classes and
vice versa. The translations then pinpoint exactly the features that are easy, hard,
or impossible to translate; thereby showing very clearly the differences and com-
monalities between the two concepts.

Such a constructive comparison between ML modules and Haskell type classes
is particularly interesting because the strength of one language is a weak point of
the other: ML has only very limited support for ad-hoc polymorphism, so trans-
lating Haskell type classes to ML modules could give new insights on how to
program with this kind of polymorphism in ML. Conversely, the Haskell module
system is weak, so an encoding of ML’s powerful module system with type classes
could open up new possibilities for modular programming in Haskell.

1.1. Goals

The concrete goals of this research are as follows:

• Devise two formal translations from ML modules to Haskell type classes and
vice versa.

• Use the insights obtained from these translations to compare ML modules
with Haskell type classes thoroughly.

1

2 Chapter 1. Introduction

• Investigate if and how the techniques used to encode ML modules in terms
of Haskell type classes and vice versa can be exploited for modular program-
ming in Haskell and for programming with ad-hoc polymorphism in ML,
respectively.

• Suggest additions to both languages that address possible shortcomings iden-
tified by the translations.

1.2. Related work

I now describe the most relevant pieces of related work and show why none of
these reach the goals outlined in the preceding listing. More related work is de-
ferred to the following chapters.

Kahl and Scheffczyk propose in [KS01] a Haskell extension that enhances the
late-binding capabilities of the type class system. They motivate the design of the
extension by a comparison between modules in OCaml (an ML dialect [Ler00b])
and type classes. However, they do not develop any kind of formal translation, so
the comparison stays rather superficial.

Shan [Sha04] presents a formal translation from a sophisticated ML module cal-
culus [DCH03] into System Fω [Gir72]. Although System Fω can be encoded in
Haskell extended with higher-rank types [PS04b], Shan’s translation adds nothing
of significance to the comparison between modules and type classes because the
encoding of System Fω is orthogonal to the type class system. Moreover, Shan
does not give a translation for the opposite direction from type classes to modules.

In a posting to the Haskell mailing list [Kis04], Kiselyov attempts to “interpret
some of Ken’s [Shan] results in idiomatic Haskell with the full use of type classes”.
He does so by showing only a relatively small example, so it is unclear if his tech-
nique could be generalized to a formal translation from ML modules to Haskell
type classes.

Schneider [Sch00] approaches the problem from a different angle: He presents
type classes as an extension to ML, resulting in a language that supports both ML
modules and Haskell-style type classes. However, Schneider does not translate
one concept into the other.

1.3. Outline

The remainder of the thesis is organized in the following way:

Chapter 2. This chapter gives an introduction to the ML module system and for-
malizes two module calculi, namely Tiny-ML and Tiny-ML+. Tiny-ML is a
simplified version of Standard ML; the most notable feature missing in com-
parison with Standard ML is the ability to define nested structures. Tiny-
ML+ extends Tiny-ML with features from Standard ML, with recursive func-

1.3. Outline 3

tors [Rus01], and with first-class structures [Rus00a]. Chapter 2 also contains
some conventions and definitions used throughout the thesis.

Chapter 3. In this chapter, I introduce Haskell type classes and define the two lan-
guages Tiny-HS and Tiny-HS+. Tiny-HS features type classes in the style of
Haskell 98; however, constructor classes, methods with constraints, and de-
fault methods are not supported. Tiny-HS+ extends Tiny-HS with features
from Haskell 98, with multi-parameter type classes [PJM97], and with associ-
ated type synonyms [CKP05]. The chapter also suggests abstract associated
type synonyms as an extension to associated type synonyms.

Chapter 4. This chapter presents an encoding of ML modules with Haskell type
classes by formalizing a translation from Tiny-ML to Tiny-HS+. I prove that
every type correct Tiny-ML program is translated into a type correct Tiny-
HS+ program, and discuss an implementation of the translation.1

Chapter 5. In this chapter, I show how Haskell type classes can be translated to
ML modules by defining a mapping from Tiny-HS to Tiny-ML+. Again, I
prove that every type correct Tiny-HS program yields a type correct Tiny-
ML+ program, and demonstrate how the translation can be implemented.1

Chapter 6. The last chapter compares ML modules with Haskell type classes, out-
lines possible directions for future work, summarizes, and concludes.

1All material is available from http://www.stefanwehr.de/diplom.

http://www.stefanwehr.de/diplom

4 Chapter 1. Introduction

Chapter 2.

ML modules

Modularization is essential for software development—it allows programs to be
decomposed into small units (which are often called modules) that can be under-
stood, developed, built, and maintained in isolation. Two key questions arise in
the process of modularization.

• Which criteria should be used for decomposing a program into modules;
that is, where is the borderline between different modules?

• How can the decomposition be realized in a concrete programming lan-
guage?

The answer to the first question is beyond the scope of this work. It is discussed
in great detail in the software-engineering literature; a good starting point is Par-
nas’ article [Par72]. The module system of the programming language Standard
ML [MTHM97] constitutes an answer to the second question; in fact, the ML mod-
ule system is one of the most powerful in widespread use.

This chapter gives an introduction to the ML module system (Section 2.1) and
formalizes two module calculi, namely Tiny-ML (Section 2.3) and Tiny-ML+ (Sec-
tion 2.4). Tiny-ML serves as the source language for the translation from ML mod-
ules to Haskell type classes, whereas Tiny-ML+ is used as the target language
for the translation in the opposite direction. (A rationale for using two different
languages is given in Section 2.4.) Moreover, the chapter at hand contains some
conventions and definitions used throughout the rest of the thesis (Section 2.2) and
discusses work related to Tiny-ML and Tiny-ML+ (Section 2.5).

2.1. Introduction to ML modules

To support proper modularization, a programming language should provide some,
if not all, of the following features [Jon96]:

• A mechanism to support some form of namespace management.

• A mechanism for defining abstractions.

• A mechanism to enable the decomposition of large programs into small,
reusable units in a way that is resistant to small changes in the program.

5

6 Chapter 2. ML modules

• A mechanism to support separate or at least incremental compilation. Sep-
arate compilation denotes the ability to compile some program unit without
examining the rest of the program, whereas incremental compilation denotes
the ability to compile some unit by examining only the interfaces and not the
implementations of the units it depends on.1

We now discuss a series of examples that demonstrates how these features are
realized in the module system of Standard ML. Many features of ML are not cov-
ered in this introduction. There are numerous tutorials, articles, and books that
provide a more complete coverage of the topic [Pau96, Ler00a, HP04, Gil04].

2.1.1. Structures

Suppose we want to provide an implementation for sets of integers. Our first
solution might look like this:2

structure IntSet1 =
struct

type elem = int
type set = list elem
val empty = []
val member = λi . λs . exists (λj . primIntEq i j) s
val insert = λi . λs . if member i s then s else (cons i s)

end

The preceding piece of code introduces a new structure named IntSet1, which
implements sets in terms of lists by grouping together the types and values of the
set interface. After the definition of IntSet1, we can use the components of the
structure via the dot notation. For example, to construct the set {0, 42}, we would
write IntSet1.insert 42 (IntSet1.insert 0 IntSet1.empty).

2.1.2. Signatures

The IntSet1 structure defined in the preceding section reveals that sets are imple-
mented in terms of lists to the clients of the structure. This is not always desirable;
often, the type set should be kept abstract outside of the structure.

We can make types abstract by sealing a structure with a signature. Signatures
describe the interfaces of structures. The following example shows how we can
seal the IntSet1 structure with a signature that keeps the type set abstract:

1The terminology is not standard. We use the terminology of Cardelli [Car97] and Harper &
Pierce [HP04].

2The ML code presented here is not syntactically valid Standard ML code because arguments of
type constructors are written after the type constructor and not in front of it. The reason for this
syntactic deviation from Standard ML is to make the code more consistent with other code in this
thesis.

2.1. Introduction to ML modules 7

structure IntSet2 = IntSet1 :> sig
type elem = int
type set
val empty : set
val member : elem → set → bool
val insert : elem → set → set

end

Clearly, you cannot seal a structure with some arbitrary signature. The structure
has to match the signature in some way; that is, all components specified by the
signature must be defined in the structure in a compatible way. We formalize
signature matching in Section 2.3; for now, the intuition suffices.

It is important that the signature in the preceding example equates the elem type
with int. Otherwise, elem would be abstract and we could not use the IntSet2 struc-
ture at all. Type components like elem are called transparent because the definition
of the type component in the underlying structure shines through the signature.
Conversely, type components like set are called opaque. Signatures that contain
only transparent (opaque) type components are also called transparent (opaque),
whereas signatures that contain both transparent and opaque type components
(like the signature in the preceding example) are called translucent.

2.1.3. Functors

Suppose we not only need sets of integers but also sets of (say) strings, and want
to reuse the code of the IntSet1 structure without duplicating it. We can do so by
defining a function from structures to structures that creates a set implementation
for every type that can be compared for equality. Such a function is called a functor.

functor MkSet (E : sig type t val eq : t → t → bool end) =
struct

type elem = E.t
type set = list elem
val empty = []
val member = λx . λs . exists (λy . E.eq x y) s
val insert = λx . λs . if member x s then s else (cons x s)

end :> sig
type elem = E.t
type set
val empty : set
val member : elem → set → bool
val insert : elem → set → set

end

The argument of the MkSet functor provides the types and values necessary to
define the set implementation in the functor body. The signature for the argument
is mandatory. We can now apply the MkSet functor to an appropriate argument

8 Chapter 2. ML modules

in order to get a working set implementation for strings. As with signature seal-
ing, the actual argument of a functor application must match the signature of the
argument in the functor definition.

structure StringEq =
struct

type t = string
val eq = λs . λs′ . primStringEq s s′

end

structure StringSet = MkSet (StringEq)

Functors in Standard ML are generative; that is, abstract types obtained by two
different functor invocations are incompatible, even if the arguments used for the
two invocations are compatible. Suppose we invoke the MkSet functor again:

structure StringSet′ = MkSet (StringEq)

The types StringSet.set and StringSet′.set are now incompatible, so an expression
like StringSet.insert "ML" StringSet′.empty is not type correct.

2.1.4. Summary

In this section, we introduced four features essential for proper modularization
and demonstrated how ML modules provide these features:

• Structures provide a mechanism for namespace management.

• Signatures provide a mechanism for abstraction.

• Functors provide a mechanism for code reuse.

• Incremental compilation is possible in Standard ML (as well as in Tiny-ML,
defined in Section 2.3) because the signature language is powerful enough
to describe the type of a structure exactly; that is, signatures are fully syntac-
tic [Sha99].

Separate compilation is not possible with the module system of Standard ML
because there is no way to fully specify the import list of a structure (i.e., the sig-
natures of other structures and functors that are used inside the structure). The
reason for this deficiency is that functors are not higher-order [MT94] in Stan-
dard ML; hence, we cannot parameterize over functors used inside a structure.
However, several proposals exist that make separate compilation possible for ML
[Ler94, HL94, Sha99].

2.2. General conventions and definitions

Before we define the first formal module calculus in Section 2.3, we need to agree
on some general conventions and definitions. The conventions and definitions

2.3. Tiny-ML 9

presented in this section are used throughout the rest of the text. We first define a
convenient notation for writing sequences of elements.

Definition 2.1 (Overbar). The notation xn is short for x1, . . . , xn. Furthermore,
xy

y∈M is an abbreviation for xy1 , . . . , xyn where M = {y1, . . . yn | n ∈ N}. The syn-
tactic element separating the items of the enumeration might be different from the
comma used in this definition. It is always clear from the context which separator
should be used.

Next, we define some notation dealing with sets.

Definition 2.2 (Sets). The notation [n] denotes the set {1, . . . , n}. The set of all
finite subsets of a set M is written Fin(M) := {N | N ⊆ M, N finite}. M ∪̇ N
denotes the disjoint union of M and N, which implicitly assumes that M ∩ N = ∅.

A finite map is a finite set of tuples that can be treated like a function. We now
give a definition of finite maps and of various operations on finite maps.

Definition 2.3 (Finite maps). A finite map between two sets M and N is a finite
set of tuples F = {(a, b) | a ∈ M, b ∈ N} such that for (a, b) ∈ F there is no
N 3 b′ 6= b, with (a, b′) ∈ F. We often write {a1 7→ b1, . . . , an 7→ bn} instead
of {(a1, b1), . . . (an, bn)}. The set of all finite maps between M and N is written

M fin−→ N. In addition to the regular set operations ⊆, =, ∩, and \, we define the

following operations on finite maps F, G ∈ (M fin−→ N):

F(a) := b if (a, b) ∈ F Element access
Dom(F) := {a ∈ M | (a, b) ∈ F for some b ∈ N} Domain of F
Img(F) := {b ∈ N | (a, b) ∈ F for some a ∈ M} Image of F

F ∪̇ G := F ∪ G if Dom(F) ∩Dom(G) = ∅ Disjoint merge

F−→∪ G := {(a, b) ∈ F | a /∈ Dom(G)} ∪ G Right merge

F, a 7→ b := F−→∪ {(a, b)} Singleton merge

zip({am}, {b
n}) := {ai 7→ bi

i∈[min(m,n)]} Zipping

2.3. Tiny-ML

This section formalizes the ML module calculus Tiny-ML, a simplified version of
Russo’s Mini-SML [Rus98], which is in turn a simplified version of Standard ML’s
module system [MTHM97]. Tiny-ML is not meant to be a new formalization of the
ML module system; its sole purpose lies in its role as the source language for the
translation from ML modules to Haskell type classes.

Tiny-ML is a subset (modulo some minor syntactic differences) of Mini-SML.
It does not support the following Mini-SML features: nested structures, parame-
terizable type components, arbitrary structure expressions as functor arguments

10 Chapter 2. ML modules

and functor bodies, weak sealing, and data types.3 These features have been omit-
ted to keep the translation from Tiny-ML to Haskell type classes manageable (see
Section 4.4 for details).

The formalization of Tiny-ML proceeds in four steps. First, we define the syn-
tax of Tiny-ML in Section 2.3.1. Then, in Section 2.3.2, we define semantic objects,
which play the role of types in the static semantics. Section 2.3.3 contains some
more definitions needed to formalize the type system. Last but not least, Sec-
tion 2.3.4 defines the typing judgments for Tiny-ML. All material in the following
four sections is heavily inspired by the formalization of Mini-SML in Russo’s dis-
sertation [Rus98].

2.3.1. Syntax

Tiny-ML, like Mini-SML, is divided into a core language and a module language. The
next two sections describe the syntax of the core and the module language. We let
O range over all syntactic constructs.

Core language

The core language is an implicitly typed language; its syntax is shown in Fig-
ure 2.1. We assume the existence of three countably infinite and disjoint identifiers
sets. Every type constructors T ∈ TyconId is equipped with a kind κ ∈ N, denot-
ing the arity of T. We write Tκ for a type constructor T of kind κ. This simple
definition of kinds is sufficient because higher-order types (like for example in
System Fω [Gir72]) are neither supported in Tiny-ML nor in Standard ML.

The type language of Tiny-ML distinguishes between simple types and value
types. Simple types may contain type components of structures, written t and X.t.
Here, X and t denote structure and type identifiers, respectively, which are part of
the module language introduced in the next section. A value type is a universally
quantified simple type; we often write u for the value type v = ∀∅.u.

The syntax of value expressions is standard. Expressions can refer to value com-
ponents of structures via the notation x and X.x, where x denotes a value identifier
of the module language.

Module language

The explicitly typed module language supports structures, signatures, and func-
tors as introduced in Section 2.1; its syntax is shown in Figure 2.2. We assume the
existence of four countably infinite and disjoint identifiers sets.

The syntax of signature bodies and expressions, of structure bodies, and of pro-
grams is straightforward. More interesting is the syntax of structure expressions.
We distinguish between four different forms of structure expressions:

3Mini-SML does not support data types directly, but they can be simulated with nested structures.

2.3. Tiny-ML 11

Figure 2.1. Syntax of Tiny-ML’s core language

Identifiers
‘a ∈ SimTypVar simple type variables

c ∈ CoreId core identifiers
T ∈ TyconId = {→, int, . . . } type constructor identifiers

Types
SimTyp 3 u ::= ‘a simple type variable

| Tκ uκ type constructor application
| t unqualified type occurrence
| X.t qualified type occurrence

ValTyp 3 v ::= ∀A.u value type

A, B ∈ Fin(SimTypVar) set of simple type variables

Value expressions
ValExp 3 e ::= c core identifier

| λc.e λ-abstraction
| e e application
| let c = e in e let-binding
| x unqualified value occurrence
| X.x qualified value occurrence

12 Chapter 2. ML modules

Figure 2.2. Syntax of Tiny-ML’s module language

Identifiers
t ∈ TypId type identifiers

x, y ∈ ValId value identifiers
X ∈ StrId structure identifiers
F ∈ FunId functor identifiers

Signature bodies
SigBod 3 B ::= type t; B opaque type specification

| type t = u; B transparent type specification
| val x : v; B value specification
| εB empty body

Signature expressions
SigExp 3 S ::= sig B end encapsulated body

Structure bodies
StrBod 3 b ::= type t = u; b type definition

| val x = e; b value definition
| εb empty body

Structure expressions
PStrExp 3 ps ::= struct b end encapsulated body

StrExp 3 s ::= ps primitive structure expression
| X structure identifier
| F(X) functor application

PStrExp:> 3 ps:> ::= ps unsealed primitive structure expression
| ps :> S sealed primitive structure expression

StrExp:> 3 s:> ::= s unsealed ordinary structure expression
| s :> S sealed ordinary structure expression

Programs
Prog 3 prog ::= structure X = s:>; prog structure definition

| functor F(X : S) = ps:>; prog functor definition
| εprog empty program

2.3. Tiny-ML 13

• Primitive structure expressions ps ∈ PStrExp

• Ordinary structure expressions s ∈ StrExp

• Sealed primitive structure expressions ps:> ∈ PStrExp:>

• Sealed structure expressions s:> ∈ StrExp:>

The hierarchic nesting of structure expressions may seem unnecessary. In fact,
Mini-SML does not distinguish between different forms of structure expressions;
instead, a much simpler grammar with only one hierarchy level is used. We need
the hierarchically nested grammar in Tiny-ML because the translation from ML
modules to Haskell type classes requires a distinction between the different forms
of structure expressions.

2.3.2. Semantic objects

The definition of Standard ML [MTHM97] distinguishes between syntactic types
and their semantic counterparts, which are called semantic objects. Mini-SML and
Tiny-ML follow the same approach. Figure 2.3 gives the definition of semantic
objects. We let O range over all semantic objects. In order to distinguish between
syntactic constructs and semantic objects, we use a roman font for syntactic con-
structs and an italic font for semantic objects.

Semantic objects introduce two new sorts of type variables, which are taken
from countably infinite and disjoint identifier sets. Semantic simple type variables
‘a ∈ SimTypVar are the semantic counterpart of (syntactic) simple type variables
‘a. Semantic type variables α ∈ TypVar have no real syntactic counterpart. They
represent abstract or unknown types introduced by opaque type specifications in
signatures.

The semantic objects for the core language correspond directly to simple and
value types, except that type occurrences t and X.t are now represented by the
right-hand sides of their definitions (if available) or by semantic type variables.
Note that we often write just u for a semantic value type v = ∀∅.u.

Semantic structures S are finite maps consisting of two parts St and Sx, which
record the semantic objects for the type and value components of structure bodies,
respectively. We omit the subscript used to distinguish the two parts when it is
clear from context which part should be used. For example, x ∈ Dom(S) ranges
only over the value identifiers of Dom(Sx).

Existential semantic structures ∃P .S are the types of structure expressions; the
existentially quantified semantic type variables in P represent the abstract types
introduced by a structure expression. Note that we sometimes write S instead of
∃∅.S .

Semantic signatures ΛP .S are the semantic counterpart of signature expres-
sions. The variables in P stem from opaque type specifications in the signature
expression. As with existential semantic structures, we sometimes write S instead
of Λ∅.S .

14 Chapter 2. ML modules

Figure 2.3. Semantic objects for Tiny-ML

Identifiers
‘a ∈ SimTypVar semantic simple type variables

α ∈ TypVar semantic type variables

Semantic objects for the core language
SimTyp 3 u ::= ‘a semantic simple type variable

| Tκ uκ semantic type constructor application
| α semantic type variable

ValTyp 3 v ::= ∀A.u semantic value type

A, B ∈ Fin(SimTypVar) set of semantic simple type variables

Semantic objects for the module language

Str 3 S :=

{
St ∪
Sx

∣∣∣∣∣ St ∈ TypId fin−→ SimTyp,

Sx ∈ ValId fin−→ ValTyp,

}
semantic structure

ExStr 3 X ::= ∃P .S existential semantic structure

Sig 3 L ::= ΛP .S semantic signature

Fun 3 F ::= ∀P .S → X semantic functor

P , Q ∈ Fin(TypVar) set of semantic type variables

Contexts

CoreContext 3 C :=

{
Cc ∪C‘a

∣∣∣∣∣ Cc ∈ CoreId fin−→ ValTyp,

C‘a ∈ SimTypVar fin−→ SimTyp

}

Context 3 C :=

C ∪ Ct ∪
Cx ∪ CX ∪ CF

∣∣∣∣∣∣∣∣∣∣∣∣

C ∈ CoreContext ,

Ct ∈ TypId fin−→ SimTyp,

Cx ∈ ValId fin−→ ValTyp,

CX ∈ StrId fin−→ Str ,

CF ∈ FunId fin−→ Fun

2.3. Tiny-ML 15

Semantic functors ∀P .S → X are the types of functors. They are universally
quantified because functors are polymorphic in the opaque type components of
their argument signatures.

Two different sorts of contexts are used to record information gathered during
the typing process. A core context records information about core-language enti-
ties, whereas a context records information about core and module-language enti-
ties. As with semantic structures, we often omit the subscript used to distinguish
to different parts of a (core) context when it is clear which part we mean.

We finish this section by remarking that we identify semantic objects up to re-
naming of bound variables.

2.3.3. Some definitions

Some more definitions are necessary before we can develop the typing judgments
for Tiny-ML. We first define substitutions of semantic type variables and semantic
simple type variables.

Definition 2.4 (Substitutions). A substitution ϕ from semantic type variables to

semantic simple types is an element of TypVar fin−→ SimTyp. A substitution φ
from semantic simple type variables to semantic simple types is an element of

SimTypVar fin−→ SimTyp. We often write [ui/αi] for a substitution ϕ = {αi 7→ ui}
and [ui/‘a i] for a substitution φ = {‘a i 7→ ui}. The application of a substitution is
defined in the usual, capture-avoiding way.

We often need to relate semantic value types to semantic simple types. An im-
portant relation between them is generalization:

Definition 2.5 (Generalization of semantic simple types). A semantic value type
v = ∀A.u generalizes a semantic simple type u’, written v � u ′ if, and only if,
there is a substitutionφ with Dom(φ) = A such thatφ(u) = u ′.

The enrichment relation between semantic structures, which is defined next,
plays an important role in deciding whether or not a structure matches a signa-
ture. Intuitively, a semantic structure S enriches a semantic structure S ′ if all type
components of S ′ are defined identically in S , and all value components of S ′ have
a more polymorphic counterpart in S . Formally, we define enrichment as follows:

Definition 2.6 (Enrichment). A semantic value type v enriches another semantic
value type v ’, written v < v ′ if, and only if, for every semantic simple type u, v � u
whenever v ′ � u. The enrichment relation for semantic structures is defined as the
least relation closed under the following rule:

Dom(S) ⊇ Dom(S ′)
S(t) = S ′(t) for all t ∈ Dom(S ′) S(x) < S ′(x) for all x ∈ Dom(S ′)

S < S ′

Enrichment is a pre-order closed under substitution [Mil78, Rus98].

16 Chapter 2. ML modules

The following lemma gives a different but equivalent formulation of enrichment
for semantic value types. The alternative formulation coincides with the definition
of generic instances in the article by Damas and Milner [DM82].

Lemma 2.7 (Equivalent formulation of value type enrichment). ∀A.u < ∀A′.u ′ if,
and only if, FV ‘a(∀A.u) ∩A′ = ∅ and there exists a substitution φ with Dom(φ) ⊆ A
such thatφ(u) = u ′.

Proof. Straightforward.

Signature matching was already introduced informally in Section 2.1. We can
now define it formally.

Definition 2.8 (Signature matching). A semantic structure S matches a semantic
signature L = ΛP .S ′ if, and only if, there exists a substitutionϕ with Dom(ϕ) =
P such that S <ϕ(S ′).

The last definition in this section specifies notations for denoting free variables.

Definition 2.9 (Free variables). The set of semantic type variables free in some
semantic object O is written FVα(O) ⊆ TypVar . Similarly, the set of semantic
simple type variables free in O is written FV ‘a(O) ⊆ SimTypVar . We write the
set of structure variables free in some syntactic construct O as FVX(O) ⊆ StrId.
Similarly, FVc(O) ⊆ CoreId denotes the set of core variables free in O. The notion
of free is defined in the usual way.

2.3.4. Typing judgments

The typing judgments for Tiny-ML come mainly in two different flavors. Deno-
tation judgments are written C ` O . O for some syntactic object O and some
semantic object O; they relate simple types, value types, and signatures to seman-
tic objects. Classification judgments have the form C ` O : O; they assign semantic
objects to value expressions and structure expressions.

Core language

The typing judgments for Tiny-ML’s core language are shown in Figure 2.4. Rule
(valtyp) uses the function zip from Definition 2.3 on page 9 to map quantified
simple type variables to fresh semantic simple type variables. The generalization
relation from Definition 2.5 on the previous page is used in rules (expid), (expmod1),
and (expmod2) to instantiate the value type found in the context. The condition
FVα(u) ⊆ FVα(C) in rule (exppoly) ensures that the type assigned to an expression
contains only semantic type variables from the context. It does not affect the ty-
pability of an expression because semantic type variables not free in the context
could be replaced by (say) semantic simple type variables.

2.3. Tiny-ML 17

Figure 2.4. Typing judgments for Tiny-ML’s core language

Denotation of simple types C ` u . u

C(‘a) = u
C ` ‘a . u

(simtypvar)
C ` ui . ui

i∈[κ]

C ` Tκ uκ . Tκ uκ
(simtyptycon)

C(t) = u
C ` t . u

(simtypmod1)

C(X)(t) = u
C ` X.t . u

(simtypmod2)

Denotation of value types C ` v . v

B ∩ FV ‘a(C) = ∅ |B | = |A| C −→∪ zip(A, B) ` u . u
C ` ∀A.u . ∀B .u

(valtyp)

Monomorphic classification of value expressions C ` e : u

C(c) = v v � u
C ` c : u

(expid)
C(x) = v v � u

C ` x : u
(expmod1)

C(X)(x) = v v � u
C ` X.x : u

(expmod2)
C , c 7→ u ` e : u ′

C ` λc.e : u → u ′
(expabs)

C ` e1 : u1 → u2 C ` e2 : u1

C ` e1 e2 : u2
(expapp)

C ` e1 : v C , c 7→ v ` e2 : u
C ` let c = e1 in e2 : u

(explet)

Polymorphic classification of value expressions C ` e : v

C ` e : u FVα(u) ⊆ FVα(C) A = FV ‘a(u) \ FV ‘a(C)
C ` e : ∀A.u

(exppoly)

18 Chapter 2. ML modules

Figure 2.5. Typing judgments for signatures and structures in Tiny-ML

Denotation of signature bodies C ` B . L

C ` u . u C , t 7→ u ` B . ΛP .S P ∩ FVα(u) = ∅ t /∈ Dom(S)
C ` type t = u; B . ΛP .S , t 7→ u

(sigbt=)

C , t 7→ α ` B . ΛP .S α /∈ FVα(C) ∪ P t /∈ Dom(S)
C ` type t; B . Λ({α} ∪ P).S , t 7→ α

(sigbt)

C ` v . v C , x 7→ v ` B . ΛP .S
P ∩ FVα(v) = ∅ x /∈ Dom(S)
C ` val x : v; B . ΛP .S , x 7→ v

(sigbv) C ` εB . Λ∅.∅
(sigbε)

Denotation of signature expressions C ` S . L

C ` B . L
C ` sig B end . L

(sigexp)

Classification of structure bodies C ` b : S

C ` u . u C , t 7→ u ` b : S t /∈ Dom(S)
C ` type t = u; b : S , t 7→ u

(strbt)

C ` e : v C , x 7→ v ` b : S x /∈ Dom(S)
C ` val x = e; b : S , x 7→ v

(strbv) C ` εb : ∅
(strbε)

Classification of structure expressions C ` ps : S , C ` s : X
C ` ps:> : X , C ` s:> : X

C ` b : S
C ` struct b end : S

(strexpstruct)
C(X) = S
C ` X : ∃∅.S

(strexpvar)

C(Xi) = Si
i∈[n] C(F) = ∀Q .S ′n → X ′

Si <ϕ(S ′i)
i∈[n]

Dom(ϕ) = Q ϕ(X ′) = X
C ` F(Xn) : X

(strexpfapp)

C ` s : ∃P .S
C ` S . ΛP ′.S ′ P ∩ FVα(ΛP ′.S ′) = ∅

S <ϕ(S ′) Dom(ϕ) = P ′

C ` s :> S : ∃P ′.S ′
(strexpsealed)

2.3. Tiny-ML 19

Module language

The typing judgments for Tiny-ML’s module language are shown in Figure 2.5
(signature and structures) and in Figure 2.6 (programs). Rule (sigbt) is interest-
ing because this is the place where fresh semantic type variables are added to the
parameters of a semantic signature. Rules (strexpfapp) and (strexpsealed) use the en-
richment relation < from Definition 2.6 to ensure signature matching. The rules
(sigbt=), (sigbv), (strexpsealed), (progstr), and (funargs) have premises of the form
P ∩ FVα(O) = ∅ where O is some semantic object and P contains bound semantic
type variables. These premises ensure that the semantic type variables in P cannot
be intermixed with existing semantic type variables. We can always rename the
variables bound in P so as to fulfill the premises.

The four classification judgments for the four different forms of structure ex-
pressions are specified by only five rules. This is possible because we can interpret
the structure expression in the conclusion of a rule in different ways. For example,
the structure expression struct b end in the conclusion of rule (strexpstruct) can be
interpreted either as a primitive structure expression, a primitive sealed structure
expression, an ordinary structure expression, or as a sealed ordinary structure ex-
pression. In all cases except the first, the semantic structure S in the conclusion of
the rule must be interpreted as the existential semantic structure ∃∅.S .

Figure 2.6. Typing judgment for Tiny-ML programs

Programs C ` prog

C ` s:> : ∃P .S
P ∩ FVα(C) = ∅ X /∈ Dom(C) C , X 7→ S ` prog

C ` structure X = s:>; prog
(progstr)

C
funargs

` Xi : Si
i∈[n]

. ∀P .Sn C , Xi 7→ Si
i∈[n] ` ps:> : X

F /∈ Dom(C) C , F 7→ (∀P .Sn → X) ` prog

C ` functor F(Xi : Si
i∈[n]) = ps:>; prog

(progfun)

C ` εprog
(progε)

Functor arguments C
funargs

` Xi : Si
i∈[n]

. ∀P .Sn

C , X j 7→ S j
j∈[i−1] ` Si . ΛPi .Si

i∈[n]

Pi ∩ FVα(C) = ∅i∈[n]
Pi ∩ P j = ∅i 6= j∈[n]

P = ∪i∈[n]Pi

C
funargs

` Xi : Si
i∈[n]

. ∀P .Sn
(funargs)

20 Chapter 2. ML modules

2.4. Tiny-ML+

Tiny-ML is not suitable as the target language for the translation from Haskell type
classes to ML modules because it misses certain features that are required for the
translation or that make the presentation of the translation more readable. There-
fore, we extend Tiny-ML with the features required and call the resulting language
Tiny-ML+. All extensions in Tiny-ML+ are well-established and implemented in
Moscow ML [RRK+03], some are even part of Standard ML. The extensions are
the following:

• First-class structures (not part of Standard ML, see [Rus00a])

• Recursive functors (not part of Standard ML, see [CHP99, Rus01])

• Lexically scoped type variables (part of Standard ML)

• Arbitrary structure expressions as functor arguments (part of Standard ML)

• Signature expressions with type realizations; that is, signature expressions
of the form S where type t = u (part of Standard ML)

We did not integrate these features into Tiny-ML because they are either not
part of Standard ML (first-class structures and recursive functors), or they would
complicate the translation from Tiny-ML to Haskell type classes without adding
much to the comparison between ML modules and Haskell type classes; after all,
lexically scoped type variables are not part of the module language, and the two
remaining extensions would be only syntactic sugar for Tiny-ML.

We now discuss every extension separately. The syntactic changes between
Tiny-ML and Tiny-ML+ are displayed in Figure 2.7, changes to the semantic ob-
jects are shown in Figure 2.8, and the additional typing rules and typing judg-
ments for Tiny-ML+’s core and module language can be found in Figure 2.9 and
Figure 2.10, respectively. We use the same symbols for Tiny-ML and Tiny-ML+;
this does not cause any problems because the rest of this chapter and the whole
Chapter 5 uses Tiny-ML+exclusively, whereas Chapter 4 uses only Tiny-ML.

2.4.1. First-class structures

The core and the module language of Tiny-ML are stratified in the sense that struc-
tures cannot be manipulated in the same way as ordinary values of the core lan-
guage. First-class structures remove this stratification. The extension presented
here is directly taken from Russo’s work on first-class structures [Rus98, Rus00a,
Rus00b].

The syntax of Tiny-ML+ (Figure 2.7) contains three constructs in order to sup-
port first-class structures. Simple types u ∈ SimTyp contain package types of
the form <S>, which are used as the syntactic type of a first-class structure. Value

2.4. Tiny-ML+ 21

Figure 2.7. Syntax of Tiny-ML+ (extends syntax in Figures 2.1 and 2.2)

Types
SimTyp 3 u ::= . . .

| <S> package type

Value expressions
ValExp 3 e ::= . . .

| pack s as S package introduction
| open e as X : S in e package elimination
| let c : v = e in e explicitly typed let-binding

Signature expressions
SigExp 3 S ::= . . .

| S where type t = u type realization

Structure bodies
StrBod 3 b ::= . . .

| val x : v = e; b explicitly typed value definition

Structure expressions
StrExp 3 s ::= . . .

| F(s) functor application with
arbitrary arguments

Programs
Rfun 3 rfun ::= functor F(Xi : Si

i∈[n]) : S = ps recursive functor definition

Rfuns 3 rfuns ::= rfun; rfuns sequence of recursive functor
definitions

| εrfuns empty sequence

Prog 3 prog ::= . . .
| rec rfuns; prog recursive functor group

Figure 2.8. Semantic objects for Tiny-ML+ (extend semantic objects in Figure 2.3)

Semantic objects for the core language
SimTyp 3 u ::= . . .

| <X> semantic package type

22 Chapter 2. ML modules

Figure 2.9. Typing judgments for Tiny-ML+’s core language
(extend typing judgments in Figure 2.4)

Denotation of simple types C ` u . u

C ` S . ΛP .S
C ` <S> . <∃P .S>

(simtyppkg)+

Monomorphic classification of value expressions C ` e : u

C ` s : ∃P ′.S ′ C ` S . ΛP .S
P ′ ∩ FVα(ΛP .S) = ∅ S ′ <ϕ(S) Dom(ϕ) = P

C ` pack s as S : <∃P .S>
(exppack)+

C ` e : <∃P .S> C ` S . ΛP .S
P ∩ FVα(C) = ∅ C , X 7→ S ` e′ : u P ∩ FVα(u) = ∅

C ` open e as X : S in e′ : u
(expopen)+

B ∩ FV ‘a(C) = ∅ |A| = |B | C ′ = C −→∪ zip(A, B)
C ′ ` u1 . u1 C ′ ` e1 : u1 C , c 7→ ∀B .u1 ` e2 : u2

C ` let c : ∀A.u1 = e1 in e2 : u2
(explet′)+

expressions e ∈ ValExp contain two constructs for package introduction and pack-
age elimination: pack s as S converts a structure expression s into a value expres-
sion of type <S>, and open e as X : S in e′ eliminates a value expression e of type
<S> by binding the structure packaged inside e to the structure variable X in e′.

The new form of simple type <S> causes an extension to the language of se-
mantic objects (Figure 2.8) and an additional rule to the denotation judgment for
simple types (Figure 2.9): Semantic value types u ∈ SimTyp can now have the
form of a semantic package type <X>, which is used by the new rule (simtyppkg)+

as the denotation of <S>. Moreover, the classification judgment for value expres-
sions (Figure 2.9) is extended with the rules (exppack)+ and (expopen)+ for typing
package introduction and package elimination, respectively.

2.4.2. Recursive functors

In Tiny-ML, as well as in Standard ML, all structure and functor definitions must
be strictly hierarchic; that is, no recursive definitions are allowed. We now discuss
an extension based on Russo’s recursive structures [Rus01] that allows us to define
recursive functors. The design of this extension is oriented towards the usage of
Tiny-ML+ as the target language in the translation from type classes to modules.

The syntax of Tiny-ML+ programs prog ∈ Prog (Figure 2.7) contains a new form
of top-level definition rec rfuns; prog, which introduces a group of recursive func-

2.4. Tiny-ML+ 23

Figure 2.10. Typing judgments for Tiny-ML+’s module language
(extend typing judgments in Figures 2.5 and 2.6)

Denotation of signature expressions C ` S . L

C ` S . ΛP .S C ` u . u S(t) = α ∈ P
C ` S where type t = u : Λ(P \ {α}).[u/α]S

(sigexppatch)+

Classification of structures bodies C ` b : S

B ∩ FV ‘a(C) = ∅ |A| = |B | C ′ = C −→∪ zip(A, B)
C ′ ` u . u C ′ ` e : u C , x 7→ ∀B .u ` b : S x /∈ Dom(S)

C ` var x : ∀A.u = e; b
(strbv′)+

Classification of structure expressions C ` s : X

C ` si : ∃Pi.Si
i∈[n] C(F) = ∀Q .S ′n → X ′ = F Si <ϕ(S ′i)

i∈[n]

Dom(ϕ) = Q ϕ(X ′) = ∃P .S Pi ∩ FVα(F) = ∅i∈[n]

C ` F(sn) : ∃P ∪̇
⋃̇

i∈[n]

Pi.S
(strexpfapp)+

Denotation of recursive functors C ` rfuns . C ′

C
funargs

` Xi : Si
i∈[n]

. ∀Q .Sn C , Xi 7→ Si
i∈[n] ` S . ΛP .S

C ` rfuns . C ′ F /∈ Dom(C ′) F = ∀Q .Sn → ∃P .S

C ` functor F(Xi : Si
i∈[n]) : S = ps; rfuns . C ′, F 7→ F

(rfunscollect)
+

C ` εrfuns . C
(rfunscollectε)

+

Check of recursive functors C ` rfuns

C(F) = ∀Q .Sn → X C , Xi 7→ Si
i∈[n] ` s : X C ` rfuns

C ` functor F(Xi : Si
i∈[n]) : S = ps; rfuns

(rfunscheck)
+

C ` εrfuns

(rfunscheckε)
+

Programs C ` prog

C ` rfuns . C ′ C ′ ` rfuns C ′ ` prog
C ` rec rfuns; prog

(progrec)+

24 Chapter 2. ML modules

tors. rfuns is a sequence of recursive functor definitions rfun of the form functor

F(Xi : Si
i∈[n]) : S = s. The difference to an ordinary functor definition is the ad-

ditional signature annotation : S, which specifies the expected signature of the
functor body s. The signature S is used to generate forward declarations for all
recursive functors of a group.

Consequently, the type system of Tiny-ML+’s module language (Figure 2.10)
adds a new rule (progrec)+ to the judgment C ` prog for checking programs, which
first collects the semantic functors of a group of recursively defined functors in
the extended context C ′, and then uses these semantic functors as forward decla-
rations to check the type correctness of every functor body in the group. Two new
judgments are defined for collecting semantic functors (C ` rfuns . C ′) and for
checking functor bodies (C ` rfuns).

You might wonder how recursive functors can be used. After all, the module
language prevents you syntactically from applying a functor inside a functor body.
Hence, the only way to use recursive functors is through first-class structures of the
core language, which we introduced in the preceding section. Here is an example
that shows how recursive functors can encode polymorphic recursive functions;
that is, functions which invoke themselves recursively at different types.

rec functor F (X : sig end) : sig val g : ∀{ ‘a} . ‘a → ‘a end =
struct

val g = λx . open (pack F (struct end) as sig val g : ∀{ ‘a} . ‘a → ‘a end)
as X : sig val g : ∀{ ‘a} . ‘a → ‘a end
in let q = X.g true in let r = X.g 0 in x

end

The recursive functor F defines a function g of the polymorphic type ∀{‘a}.‘a →
‘a. Inside the body of g, the result of applying F to the empty structure is packaged
as a first-class structure. We immediately unpack this first-class structure and bind
the result to the structure variable X. Now we can invoke X.g at different types.

Recursive structures and functors may cause problems by introducing recursion
on the type level. The extension for recursive functors proposed here does not
allow definitions of recursive types because recursive functors can be used only
on the value level, as demonstrated in the preceding example. You may also be
concerned about the well-foundness of recursive functors. Here, well-foundness
means that the definition of a recursive functor is evaluated without accessing
one of the recursively defined functor variables. Although we have not defined
a dynamic semantics for Tiny-ML+, it should be clear that this cannot happen
because the body of a functor is not evaluated until the functor is applied to some
argument(s).

2.4.3. Lexically scoped type variables

Lexically scoped type variables (a feature of Standard ML, see also [PS04a]) are
simple type variables that are introduced at an explicitly typed binding and can

2.5. Related work 25

be used in the subterm of the binding.4 In some sense, the form of lexically scoped
type variables found in ML and presented here resembles the explicit type-passing
mechanism of System F [Gir72, Rey74].

In our case, the explicitly typed bindings are let-expressions and value specifica-
tions in structure expressions. Hence, the syntax of Tiny-ML+ (Figure 2.7) extends
the syntax of expressions e ∈ ValExp with an explicitly typed let-binding of the
form let c : v = e in e′, and the syntax of structure bodies b ∈ StrBod with an
explicitly typed value definition of the form val x : v = e; b. In both cases, v is the
expected type of the expression e; the quantified simple type variables of v can be
used inside e (e.g., in signature expressions for first-class structures).

The typing judgments for Tiny-ML+ (Figures 2.9 and 2.10) contain two new
rules in order to support these two syntactic constructs: Rule (explet′)+ extends
the judgment C ` e : u for classifying value expression, and rule (strbv′)+ extends
the judgment C ` b : S for classifying structure bodies.

2.4.4. Arbitrary functor arguments

In Tiny-ML, functors can be applied only to structure variables. Tiny-ML+ re-
moves this restriction by extending the language of structure expressions s ∈
StrExp with a construct F(s) (Figure 2.7). The typing judgment C ` s : X is
extended accordingly with a new rule (strexpfapp)+ (Figure 2.10). The rule is sim-
ilar to rule (strexpfapp) for functor application in Tiny-ML (Figure 2.5 on page 18),
we need only some extra side conditions that prevent semantic type variables of
being intermixed accidentally.

2.4.5. Signature expressions with type realizations

Type realizations allow opaque type specifications in signature expressions to be
turned into transparent type specifications. For example, the signature expression
sig type t end where type t = int with the type realization t = int denotes the same
semantic signature as the signature expression sig type t = int end.

In order to support signature expressions with type realizations, the syntax of
Tiny-ML+ (Figure 2.7) extends signature expressions S ∈ SigExp with a construct
of the form S where type t = u. Additionally, a new rule (sigexppatch)+ is added to
the denotation judgment C ` S . L (Figure 2.10).

2.5. Related work

Mini-SML [Rus98], which is the basis of Tiny-ML, models all important features
of Standard ML’s module language [MTHM97]. It was developed to formulate
the static semantics of Standard ML in a more type-theoretic, better comprehen-
sible way. The static semantics of Standard ML’s module language maintains a

4Standard ML supports also implicitly scoped type variables. We do not consider this variant here.

26 Chapter 2. ML modules

set of semantic type variables to keep track of all semantic type variables gener-
ated in a typing derivation. This set is threaded through the derivation tree in a
global, state-like manner. Russo replaces this global generativity with a more type-
theoretic concept, namely that of existential quantification, which can be seen as
local generativity. Russo claims that his “state-less semantics provides a better con-
ceptual understanding of the type structure of Standard ML” [Rus99]. Russo’s for-
malization [Rus99] also demonstrates that the type structure of Standard ML does
not need to be based on dependent types, as suggested by MacQueen [Mac86] and
Harper & Mitchell [HM93].

The extension for recursive functors in Tiny-ML+ is based on Russo’s work on
recursive structures [Rus01]. He uses a backpatching dynamic semantics (similar
to that for letrec-expressions in Scheme [KCR98]) to handle computational effects
during structure evaluation time. However, his static semantics does not guaran-
tee well-founded recursion, which leads to runtime errors and unnecessary run-
time costs. The extension for recursive functors presented here does not suffer
from this problem.

Dreyer [Dre04] suggests a solution for ensuring well-founded recursion stati-
cally. He also uses a backpatching dynamic semantics, but keeps track of indi-
vidual recursion variables in the typing derivation. This allows him to ensure
well-founded recursion statically even in the presence of separate compilation.

Chapter 3.

Haskell type classes

The type systems of Standard ML [MTHM97] and Haskell 98 [Pey03] are both
based on the Hindley/Milner system [Hin69, Mil78, DM82], which supports type
inference and parametric polymorphism. However, Haskell extends this type sys-
tem with type classes [Kae88, WB89], a feature not found in ML and the Hind-
ley/Milner system. Type classes are a powerful approach to ad-hoc polymorphism.
Ad-hoc polymorphism, often called overloading, allows the definition of a function
to range over several different types; the function then behaves in a different way
for each type. A typical example is the equality operator ==; it is defined on in-
tegers, floats, strings, and so on, and compares values of these types in different
ways.

This chapter gives an introduction to Haskell type classes (Section 3.1), formal-
izes the two languages Tiny-HS (Section 3.2) and Tiny-HS+(Section 3.3), and dis-
cusses related work (Section 3.4). Tiny-HS is the source language for the trans-
lation from ML modules to Haskell type classes, whereas Tiny-HS+ is the target
language for the translation in the opposite direction. We discuss in Section 3.3
why we use two different languages.

3.1. Introduction to Haskell type classes

This section introduces Haskell 98 type classes by presenting a series of examples.
The examples cover only the features of type classes relevant to this work; there
are many tutorials, articles, and books that cover the topic in more detail [WB89,
Tho99, HPF00, Pey03] and show advanced applications of type classes [Jon95b,
McB02, KLS04].

Haskell permits the introduction of ad-hoc polymorphism by declaring func-
tions as methods of a type class. Instances of the type class then provide concrete
implementations for these methods. Here is how we might define a type class Eq
with the equality operator == as a method:

class Eq a where
(==) :: a → a → Bool

This definition may be read as “some type a is an instance of the type class Eq if
it defines the == operator, which takes two values of type a and returns a boolean
value”. Now == is available as a top-level operator and can be used for all types

27

28 Chapter 3. Haskell type classes

belonging to the type class Eq. For example, we might define a function for testing
membership of a list as follows:

elem :: Eq a ⇒ a → [a] → Bool
elem x (y : ys) = x == y ∨ elem x ys
elem x [] = False

The (optional) type annotation reads “the function elem takes a value of type
a, which must be an instance of the type class Eq, and a list of as, and returns
a boolean value”. The part Eq a of the type signature is called the context of the
signature. The context lists constraints of the form C a for some type class C and
some type variable a, which limit the possible types for a to instances of C. Types
with such a context are called qualified types.

To make a type an instance of a class, we just have to provide a corresponding
instance definition. For example, we can make the types Int and Char instances of
Eq by the following definitions:

instance Eq Int where
i == j = primIntEq i j

instance Eq Char where
c == c′ = primCharEq c c′

Now we can use the == operator on integers and characters; moreover, we can
also use the previously defined function elem on integers and characters:1

(1 == 42, ’c’ == ’s’, elem 1 [0, 1, 2], elem ’a’ "abc")

Now imagine that we want to implement equality for lists; that is, we want
to make the list type an instance of class Eq. Clearly, we can compare a list for
equality only if we can compare the elements of the list for equality. This require-
ment can be expressed by adding a context to an instance definition; thereby, we
constrain the elements of the list to instances of Eq. The following example demon-
strates this approach:

instance Eq a ⇒ Eq [a] where
[] == [] = True
(x : xs) == (y : ys) = x == y ∧ xs == ys

== = False

The part Eq a to the left of the double arrow ⇒ is called the instance context,
whereas the part Eq [a] to the right of the double arrow is called the instance head
(in instance definitions like the one for Eq Int, the context is empty and Eq Int is
the instance head). You should read the preceding instance definition as “a list
[a], containing elements of type a, is an instance of the type class Eq only if a is an
instance of Eq”. We make use of a being an instance of Eq in the second equation of
the implementation of ==; the left-hand side of the conjunction uses == on x and
y, which both have type a. Note that we can also use == on the right-hand side

1The string "abc" is an abbreviation for the list of characters [’a’, ’b’, ’c’] in Haskell.

3.2. Tiny-HS 29

of the conjunction to compare xs and ys, even though these variables have type [a],
the very type we are currently defining an Eq instance for.

Haskell also supports the extension of existing classes with new methods. This
is possible by defining a new class as a subclass of an existing class. Imagine
we want to overload the addition operator +, and all types supporting addition
should also support equality comparison. We can implement these requirements
by writing the following type class:

class Eq a ⇒ Num a where
(+) :: a → a → a

Num is now a subclass of Eq, and Eq is a superclass of Num. A subclass supports
all methods of its superclasses in addition to the methods defined in the subclass.
Similar to instance definitions, the part to the left of the⇒ is called the class context,
whereas the part to the right is called the class head. We can only define Num
instances for types that also belong to the Eq class. For example, we can write

instance Num Int where
i + j = primIntAdd i j

but we could not make some type an instance of Num without making it an in-
stance of Eq as well.

3.2. Tiny-HS

Tiny-HS is a simple formalization of the Haskell 98 [Pey03] type class system, sup-
porting all important features except constructor classes [Jon95a], class methods
with constraints, and default definitions for methods. These restrictions are nec-
essary because Tiny-HS is the source language in the translation to ML modules
(see Section 5.4 for details). The syntax and typing judgments for Tiny-HS are de-
fined in Section 3.2.1 and Section 3.2.2, respectively. The material presented here is
based on Jones’ Overloaded ML [Jon94] and on Faxén’s static semantics for Has-
kell [Fax02]. I especially recommend reading (parts of) Jones’ dissertation if you
are not familiar with type systems for qualified types.

3.2.1. Syntax

The syntax of Tiny-HS is shown in Figure 3.1. We assume that the identifier sets
ClassId, TyconId, VarId, MethodId, and TypVar are countably infinite. We use dif-
ferent identifier sets for methods and ordinary variables because the translation
to ML modules requires this distinction. Every type constructors T ∈ TyconId is
equipped with a kind κ ∈ N, denoting the arity of T. We write Tκ for a type con-
structor T of kind κ. Like for Tiny-ML, this simple definition of kinds is sufficient
because higher-order types are not supported by Tiny-HS. However, unlike Stan-
dard ML, Haskell 98 supports higher-order types.

30 Chapter 3. Haskell type classes

Figure 3.1. Syntax of Tiny-HS

Identifiers
C ∈ ClassId class identifiers

T ∈ TyconId = {→, Int, . . . } type constructor identifiers
z ∈ VarId term variables

m ∈ MethodId method variables
a, b ∈ TypVar type variables

Types
Typ 3 τ ::= a type variable

| Tκ τκ type constructor application

QTyp 3 ρ ::= π ⇒ τ qualified type

TypSc 3 σ ::= ∀A.ρ type scheme

A, B ∈ Fin(TypVar) set of type variables

Constraints
Constr 3 π ::= C τ class constraint

ConstrSc 3 θ ::= ∀A.π ⇒ π constraint scheme

Expressions
Exp 3 w ::= z term variable

| m method variable
| λz.w λ-abstraction
| w1 w2 application
| let z = w1 in w2 let-binding

Instances, classes, and programs

Inst 3 inst ::= instance ∀A.Ci ai
i∈[r] ⇒ C (Tκ τκ) where mval instance definition

Mval 3 mval ::= m = w method implementation

Cls 3 cls ::= class ∀{a}.Ci a
i∈[r] ⇒ C a where msig class definition

Msig 3 msig ::= m :: ∀A.τ method signature

Pgm 3 pgm ::= cls inst w program

3.2. Tiny-HS 31

The syntax of types, constraints, expressions, instances, classes, and programs is
fairly standard. We often write ρ for a type scheme σ = ∀∅.ρ and τ for a qualified
type ρ = τ . In code examples, we often omit universal quantifiers of classes,
instances, and method signatures completely to enhance readability of the code.
Two properties of the syntax are worth mentioning: Types τ ∈ Typ only support
saturated type constructor applications to prevent the construction of higher-order
types, and method signatures msig ∈ Msig do not contain a constraint part π ⇒
because the translation to ML modules cannot handle such constraints. Note that
programs consist not only of class and instance definitions but also have a “main”
expression w.

We need some definitions for reasoning about various syntactic constructs. We
let O range over all syntactic constructs. First, we introduce the notion of free
variables and substitutions.

Definition 3.1 (Free variables). FVa(O) ⊆ TypVar denotes the set of type variables
free in some syntactic construct O. Similarly, FVz(O) ⊆ VarId denotes the set of
term variables free in O. The notion of free is defined as usual.

Definition 3.2 (Substitutions). A substitutionψ from type variables to types is an

element of TypVar
fin−→Typ. We often write [τi/ai

i∈[n]
] for a substitution ψ = {ai 7→

τi | i ∈ [n]}. Substitution application is defined in the usual, capture-avoiding
way.

We need a condition that rules out ill-formed instance definitions like instance
∀{a}.Eq a ⇒ Eq Int . . ., where a type variable occurs in the instance context but is
not mentioned in the instance head.

Definition 3.3 (Well-formed constraint schemes). A constraint scheme θ = ∀A.
π ⇒ π ′ is said to be well-formed, if FVa(π) ⊆ FVa(π ′) = A.

As in Haskell 98, we need to disallow ambiguous type schemes to guarantee that
the translation from type classes to ML modules is well-defined. Suppose we de-
fine the following type classes to convert values to strings and back:

class Show a where
show :: a → String

class Read a where
read :: String → a

What is then the type of the expression λz. show (read z)? It is ∀{a}. (Read a,
Show a) ⇒ String → String with no way to tell which type we should pick for a.
The problem is that a is mentioned only in the context of the type scheme. The
following definition flags such type schemes as ambiguous.

Definition 3.4 (Unambiguous type schemes in Tiny-HS). A type scheme σ =
∀A.π ⇒ τ is considered unambiguous, if FVa(π) ∩ A ⊆ FVa(τ). Otherwise, σ is
called ambiguous.

32 Chapter 3. Haskell type classes

3.2.2. Typing judgments

This section discusses the typing judgments for Tiny-HS. However, some prepara-
tory definitions are necessary before we can discuss the judgments.

Preparations

We start by defining the environments used in the typing judgments.

Definition 3.5 (Environments for Tiny-HS). A variable environment Γ̂ maps term
and method variables to type schemes. A constraint environment Θ̂ consists of
three components: Θ̂s records constraint schemes resulting from subclass defini-
tions, Θ̂i is populated by constraint schemes originating from instance definitions,
and Θ̂l is a set of local constraints added during a typing derivation. More for-
mally, the environments are defined as follows:

Γ̂ ∈ VarId∪MethodId
fin−→ TypSc Variable environment

Θ̂ :=

Θ̂s ∈ Fin(ConstrSc),
Θ̂i ∈ Fin(ConstrSc),
Θ̂l ∈ Fin(Constr)

 Constraint environment

You may have noticed that the different components of Θ̂ are very similar. In
fact, we could merge them into a single component. However, the translation
from type classes to ML modules requires a distinction between the different com-
ponents, so we introduce this distinction.

It is sometimes very convenient to treat Θ̂ as a set and not as a triple of sets.
Therefore, we define the following notational convention:

Definition 3.6 (Set operations for constraint environments). The set operations
⊆, =, ∪, ∩, and \ are defined component-wise for a constraint environment Θ̂.
Similarly, θ ∈ Θ̂ is an abbreviation for “θ ∈ Θ̂s or θ ∈ Θ̂i or θ ∈ Θ̂l”.

We need a way to determine the set of immediate superclasses of a class. The
following definition specifies an operation that does exactly this. We shall see
that the definition is reasonable once we discuss the typing judgment for class
definitions.

Definition 3.7 (Superclasses for Tiny-HS). The set of immediate superclasses of
C in Θ̂ is defined as Sup(Θ̂, C) := {C′ | ∀{a}.C a ⇒ C′ a ∈ Θ̂s}.

Discussion of the typing judgments

The typing judgments for Tiny-HS are shown in Figures 3.2 and 3.3. The entail-
ment judgment of Figure 3.2 is standard [Fax02, Figure 28]. Intuitively, a constraint
environment Θ̂ entails some constraint π , written Θ̂ π , if π is contained in the

3.2. Tiny-HS 33

Figure 3.2. Judgments for entailment and expression typing in Tiny-HS

Entailment Θ̂ π

π ∈ Θ̂l

Θ̂ π
(elementail)

(∀A.Ci ai
i∈[n] ⇒ C τ ′) ∈ Θ̂i

τ = ψ(τ ′) Θ̂ Ci ψ(ai)
i∈[n]

Dom(ψ) = A

Θ̂ C τ
(instentail)

(∀a.Csub a ⇒ Csup a) ∈ Θ̂s Θ̂ Csub τ

Θ̂ Csup τ
(superentail)

Expression typing Θ̂; Γ̂ ` w : τ

Γ̂ (z) = ∀A.πn ⇒ τ ′ ψ = [τa/a
a∈A

] ψ(τ ′) = τ Θ̂ ψ(πi)
i∈[n]

Θ̂; Γ̂ ` z : τ
(var)

Γ̂ (m) = ∀A.C b ⇒ τ ′ ψ = [τa/a
a∈A

] ψ(τ ′) = τ Θ̂ Cψ(b)
Θ̂; Γ̂ ` m : τ

(method)

Θ̂; Γ̂ ` w1 : τ ′ → τ Θ̂; Γ̂ ` w2 : τ ′

Θ̂; Γ̂ ` w1 w2 : τ
(→E)

Θ̂; Γ̂ , z 7→ τ ′ ` w : τ

Θ̂; Γ̂ ` λz.w : τ ′ → τ
(→I)

Θ̂′ := (Θ̂s, Θ̂i, {π})
Θ̂′; Γ̂ ` w1 : τ ′ σ = Ĝen(Θ̂′, Γ̂ , τ ′) unambiguous Θ̂; Γ̂ , z 7→ σ ` w2 : τ

Θ̂; Γ̂ ` let z = w1 in w2 : τ
(let)

Generalization

Ĝen((Θ̂s, Θ̂i, {π}), Γ̂ , τ) :=
∀((FVa(π) ∪ FVa(τ)) \ (FVa(Γ̂) ∪ FVa(Θ̂s) ∪ FVa(Θ̂i))).π ⇒ τ

34 Chapter 3. Haskell type classes

local part of Θ̂, or there is some instance definition whose head matches π and
whose context is entailed by Θ̂, or π holds because of a subclass relation.

The typing judgment Θ̂; Γ̂ ` w : τ (also show in Figure 3.2) assigns a type τ to
an expression w under the environments Θ̂ and Γ̂ . It corresponds to the syntax-
directed system presented by Jones [Jon94, Figure 3.2]; we do not use his declara-
tive system [Jon94, Figure 3.1] because the type-directed translation from Haskell
type classes to ML modules cannot be formulated in terms of this system (see Sec-
tion 5.6 for a detailed discussion). The only additions to Jones’ system are the
rule (method) for method variables (necessary because the syntax of Tiny-HS dif-
fers between method and term variables), and a new premise for the rule (let),
which ensures that σ is unambiguous. Note that the definition of generalization
in Figure 3.2 is slightly different from Jones’ definition: Ĝen(Θ̂, Γ̂ , τ) not only gen-
eralizes over the type variables free in τ and not free in the environments, but also
moves Θ̂’s local constraints into the context of the resulting type scheme.

The rules for instances, classes, and programs in Figure 3.3 are influenced by
Faxén’s static semantics for Haskell [Fax02]. One significant difference between
Faxén’s rules and the ones for Tiny-HS is that the rule (prog) does not define the
constraint and variable environments recursively. Instead, it first collects the envi-
ronments and then uses them to type check the instance definitions and the main
expression.

The judgment ` cls : Θ̂; Γ̂ handles class definitions by collecting method signa-
tures and information about superclasses in the variable and constraint environ-
ment, respectively. We now see why Definition 3.7 on page 32 works as expected:
For every superclass Csup of a given class Csub, an implication of the form ∀{a}.
Csub a ⇒ Csup a is added to the constraint environment.

Instance definitions are handled by two different judgments: The judgment
` inst : Θ̂ collects constraint schemes introduced by instance definitions, and judg-
ment Θ̂; Γ̂ ` inst ensures that all method implementations are type correct and that
instances for all immediate superclasses are derivable.

This entailment check for superclasses in rule (instcheck) is performed differently

than in Faxén’s system because we remove the constraint scheme ∀A.Ci ai
i∈[r] ⇒

C τ that was introduced by the very instance definition inst from Θ̂i before deriv-
ing instances for the immediate superclasses, whereas Faxén uses the whole Θ̂i.
We need to remove the constraint scheme to keep rule (instcheck) sound; otherwise,
the entailment check is trivial, even for programs that miss some superclass defi-
nitions.2 Let us look at the following incorrect program:

class ∀{a} . Csup a where
class ∀{a} . Csup a ⇒ Csub a where
instance ∀∅ . Csub Int where
42

2I believe that the relevant rule in Faxén’s system [Fax02, Figure 26] is incorrect. Interestingly, the
corresponding rule in another paper [HHPW96, Figure 10] contains the same sort of mistake.

3.2. Tiny-HS 35

Figure 3.3. Typing judgments for Tiny-HS instances, classes, and programs

Instance definitions ` inst : Θ̂

θ well-formed

` instance θ where mval
n : (∅, {θ}, ∅)

(instcollect)

Θ̂; Γ̂ ` inst

(Θ̂s, Θ̂i, {Ci ai
i∈[r]}); Γ̂ ; τ

method
` mi = wi (i ∈ [n])

(Θ̂s, Θ̂i \ {∀A.Ci ai
i∈[r] ⇒ C τ}, {Ci ai

i∈[r]}) Csup τ (Csup ∈ Sup(Θ̂, C))

Θ̂; Γ̂ ` instance ∀A.Ci ai
i∈[r] ⇒ C τ where mi = wi

i∈[n]
(instcheck)

Θ̂; Γ̂ ; τ
method
` m = w

Γ̂ (m) = ∀A.C b ⇒ τ ′

A∩ (FVa(τ) ∪ FVa(Θ̂) ∪ FVa(Γ̂)) = ∅ Θ̂; Γ̂ ` w : [τ/b]τ ′

Θ̂; Γ̂ ; τ
method
` m = w

(instcheck-method)

Class definitions ` cls : Θ̂; Γ̂

a /∈ Ai σi = (∀(Ai ∪ {a}).C a ⇒ τi) unambiguous
FVa(σi) = ∅ (for all i ∈ [n])

` class ∀{a}.Ci a
i∈[r] ⇒ C a where mi :: ∀Ai.τi

i∈[n]

: ({∀{a}.C a ⇒ Ci a | i ∈ [r]}, ∅, ∅)
; {mi 7→ σi | i ∈ [n]}

(class)

Programs ` pgm

` clsi : Θ̂i; Γ̂i
i∈[n]

` insti : Θ̂′
i

i∈[m]

Θ̂ =
⋃

i∈[n]

Θ̂i ∪
⋃

i∈[m]

Θ̂′
i Γ̂ =

⋃̇
i∈[n]

Γ̂i

Θ̂; Γ̂ ` insti
i∈[m]

Θ̂; Γ̂ ` w : Int

` cls
n

inst
m

w
(prog)

36 Chapter 3. Haskell type classes

We obtain the following constraint environment after collecting all constraint
schemes: Θ̂ = ({∀{a}.Csub a ⇒ Csup a}, {∀∅.Csub Int}, ∅). It should not be pos-
sible to get a derivation for Θ̂; Γ̂ ` instance ∀∅.Csub Int where because Csup is
a superclass of Csub but there is no instance definition for Csup Int. However, if
we used the full constraint environment Θ̂ for the superclass entailment check,
Θ̂ Csup Int would be derivable by rules (superentail) and (instentail), so Θ̂; Γ̂ `
instance ∀∅.Csub Int where would be derivable. Hence, the incorrect program
would type check! However, (Θ̂s, Θ̂i \ {∀∅.Csub Int}, ∅) Csup Int does not hold,
so Tiny-HS’ type system correctly rejects the offending program.

We now argue informally that our modification of Faxén’s system does not reject
valid programs. Suppose that Csub is a subclass of Csup and that we need to derive
Csup τ while checking an instance definition for Csub τ . In a type system that uses
the whole constraint environment for checking superclasses (like Faxén’s), we can
derive Csub ψ(τ) by rule (instentail) for any substitution ψ within a derivation of
Csup τ . This is not possible in our system. However, we can never come into a
situation where we would need Csub ψ(τ) to entail the context of an instance def-
inition for Csup τ because Csub ψ(τ) contains at least as many type constructors as
Csup τ , but Tiny-HS and Haskell 98 ensure that a constraint in the instance context
always contains fewer type constructors than the constraint in the instance head.

Another major difference between Faxén’s system and the one presented here
is that Faxén’s rules have a lot more premises because his system is intended to
be a complete language specification. However, these additional premises add
only little to the discussion at hand and would make the rules presented here
unnecessarily complicated. Nevertheless, we sometimes need programs to have
properties not enforced by the typing rules. Therefore, we capture such properties
in the following definition.

Definition 3.8 (Well-formed Tiny-HS programs). A Tiny-HS program is said to
be well-formed if it meets the following requirements:

• Every class is defined at most once.

• Classes are used only after their definition.

• Instance heads do not overlap.

3.3. Tiny-HS+

Tiny-HS cannot be used as the target language for the translation from ML mod-
ules to Haskell type classes; for example, one important feature missing is the
counterpart for type components in ML structures. Therefore, we now introduce
the language Tiny-HS+, which extends Tiny-HS with Haskell 98 features, with
well-known additions to Haskell 98, and with one feature developed as part of
this work. The features are not included in Tiny-HS because they are either not

3.3. Tiny-HS+ 37

relevant to the translation from type classes to ML modules or they are not part of
Haskell 98. The following features are new in Tiny-HS+:

• User-defined data types (part of Haskell 98)

• Multi-parameter type classes (addition to Haskell 98, see [PJM97])

• Associated type synonyms (addition to Haskell 98, see [CKP05])

• Abstract associated type synonyms (extension to associated type synonyms,
developed as part of this work)

We first discuss the motivation behind the extensions for multi-parameter type
classes and (abstract) associated type synonyms in Sections 3.3.1 through 3.3.3. For
reasons of space, we do not go much into detail; the interested reader is referred
to the relevant literature [PJM97, CKP05]. Then we define the syntax of Tiny-HS+

in Section 3.3.4 and discuss the typing judgments in Section 3.3.5.

3.3.1. Multi-parameter type classes

The type class definitions in the examples of Section 3.1 all have only a single type
variable in the class head. It is relatively straightforward to allow type classes with
multiple type variables in the class head. Consider the following example:

class Add a b c where
add :: a → b → c

The class Add has three parameters, which are used to specify the operand types
and the result type of the add operation. We can define instances for such multi-
parameter type classes in the same way as we do for single-parameter type classes:

instance Add Int Float Float where
add i f = primFloatAdd (intAsFloat i) f

The preceding instance definition specifies that we can add an integer and a
float to get another float as result. We can also add an integer and a float and get
an integer as result:

instance Add Int Float Int where
add i f = primIntAdd i (floatAsInt f)

But maybe we do not want integers and floats being added in two different
ways. Instead, it would be desirable if the types of the operands uniquely deter-
mined the result type. Multi-parameter type classes alone cannot solve this prob-
lem; one approach to specifying such dependencies are associated type synonyms,
which are introduced in the following section.

38 Chapter 3. Haskell type classes

3.3.2. Associated type synonyms

With associated type synonyms, we can define a new type class Add′ in such a way
that the result type of the addition is uniquely determined by the types of the two
operands:

class Add′ a b where
type Result a b
add′ :: a → b → Result a b

The result type is no longer part of the class head; instead, it is specified as a type
synonym associated with the class. We define instances of such a class in much the
same way as before, we only need to define the associated type synonym of the
class in addition to its method.

instance Add′ Int Float where
type Result Int Float = Float
add′ i f = primFloatAdd (intAsFloat i) f

Associated type synonyms introduce an equality relation on types that is not
based purely on syntactic equality. Consider the types Result Int Float and Float
in the preceding example. Clearly, the two types are syntactically different. Nev-
ertheless, they can be used interchangeably because the associated type synonym
definition in the instance for Add′ defines them as equal.

3.3.3. Abstract associated type synonyms

None of the features of Haskell type classes seen so far provides a way to make
certain types abstract. But a translation of ML’s module system to Haskell type
classes definitely needs to be able to handle abstract types! After all, abstract types
are one of the key features of a module system.

One possible solution to this problem would be to use Haskell’s module sys-
tem [DJH02]. We have not introduced Haskell’s module system, but all you need
to know in order to understand this solution is that Haskell lets you hide the con-
structors of algebraic data types in the export list of a module. Hence, a type can
be made abstract by wrapping it in an algebraic data type3 in a separate module
that does not export the data constructors of the data type. This solution is unsat-
isfactory for two reasons. First of all, explicit conversion code is necessary to turn
a value of the concrete type into a value of the abstract type and vice versa. Such
a conversion is not necessary when abstract types are implemented using the ML
module system as demonstrated in Section 2.1. The second reason for not using
Haskell’s module system is that I want to compare ML modules with Haskell type
classes and not ML modules with “Haskell type classes plus the Haskell module
system”.

3In Haskell, you would probably use a newtype.

3.3. Tiny-HS+ 39

Therefore, I propose abstract associated type synonyms as an extension to associ-
ated type synonyms, and use them to implement abstract types in Haskell. In-
terestingly, the idea behind abstract associated type synonyms goes back to ML’s
abstype feature, which is nowadays essentially deprecated; a similar feature is
also implemented in the Haskell interpreter Hugs [JP99, Section 7.3.5]. The idea is
the following: To make a type synonym abstract, we only have to limit the scope
of the right-hand side of its definition. In ML and Hugs, this is done by explic-
itly stating the constructs that are allowed to access the concrete definition. With
abstract associated type synonyms, the scope is determined implicitly by the in-
stance defining the synonym: Inside the instance, the right–hand side is visible,
but outside it is hidden; that is, the associated type synonym is equated with some
fresh type constructor.

Let us illustrate abstract associated type synonyms by implementing sets of in-
tegers with type classes, where the concrete type used to implement sets is hidden
from the clients of the implementation.4 We first define a type class SET that de-
fines the set interface independent from the concrete element type:

class SET a where
type Elem a
type Set a
empty :: a → Set a
member :: a → Elem a → Set a → Bool
insert :: a → Elem a → Set a → Set a

The type variable a in the class definition is only used to index the associated
type synonyms Elem and Set, and the methods of the class. We cannot do without
a in the method signatures; otherwise, the signatures would be ambiguous (am-
biguity in the presence of associated type synonyms will be formally defined in
Definition 3.9 on page 42). Note that the type variable a is not the type of the set
implementation; instead, the set implementation is represented by the associated
type synonym Set. This is important for being able to use an abstract associated
type synonym to keep the concrete implementation type hidden.

We need to define a data type that plays the role of a in the instance definition
for SET. We leave the right-hand side of the following data type definition empty
to emphasize that we never examine values of this type.

data IntSet

Now we can make IntSet an instance of SET. The keyword abstype is used to
introduce an abstract associated type synonym.5

4You may notice that the example is more or less a translation of the IntSet2 example from page 6.
However, a comparison between the ML and Haskell code would hamper the discussion at hand.
The translation from ML to Haskell is extensively covered in Chapter 4.

5In a real implementation, the syntax type Set IntSet hiding [Int] would be desirable because it
avoids the new keyword abstype. Thanks to Donald Steward for pointing this out.

40 Chapter 3. Haskell type classes

instance SET IntSet where
type Elem IntSet = Int
abstype Set IntSet = [Int]
empty = []
member x s = exists (λy . primIntEq x y) s
insert x s = if member (⊥ :: IntSet) x s then s else (x : s)

Note that we never examine a value of type IntSet; hence, it is safe to use the
diverging value ⊥ in the definition of insert. In fact, the IntSet type only directs
the type checker in selecting the right instance. The effect of using an abstract
associated type synonym for Set is that the type equality Set IntSet = [Int] is not
visible outside the instance definition, so that clients cannot treat sets like lists. For
example, we can write insert (⊥ :: IntSet) 1 (empty (⊥ :: IntSet)), but insert (⊥ ::
IntSet) 1 [] does not type check. However, the type equality is visible inside the
instance definition; this is crucial so as to type check the methods of the instance.

3.3.4. Syntax

The syntax of Tiny-HS+ is shown in Figure 3.4. We use the same symbols for
Tiny-HS and Tiny-HS+, sometimes with a different meaning. This does not cause
any problems because it is always clear from the context which meaning is rele-
vant: The rest of this chapter and the whole Chapter 4 uses Tiny-HS+ exclusively,
whereas Chapter 5 uses only Tiny-HS.

Tiny-HS+’s syntax is very similar to the syntax of Tiny-HS. Method identifiers
are no longer needed because we do not differ between method and term variables
anymore. We require that the set TyconId contains a type constructor Tκ for every
Tiny-ML type constructor Tκ, so that we can translate Tiny-ML types correctly into
Tiny-HS+ types. There is a new identifier set ASynId for identifiers of associated
type synonyms S. Along the lines of type constructors, associated type synonyms
are equipped with a kind κ ∈ N. The kind of an associated type synonym corre-
sponds to the number of parameters of the class declaring the synonym. This is a
restriction of the system of Chakravarty et al. [CKP05], where an associated type
synonym may have more parameters than the class that declares it. Tiny-HS+ does
not need this greater generality.

The syntax of types τ ∈ Typ is extended with associated type synonym applica-
tions η ∈ ATyp. An associated type synonym application must always be saturated
in order to keep type inference decidable.

Constraints π ∈ Constr and constraint schemes θ ∈ ConstrSc contain not only
class constraints but also equality constraints. Equality constraints are used to
model nonsyntactic type equalities. Note that a class constraint C τ can have mul-
tiple parameters in Tiny-HS+.

The syntax of expressions w ∈ Exp is extended with a wildcard λ-abstraction of
the form λ_.w. Additionally, expressions can now have type annotations, written
(w :: σ).

3.3. Tiny-HS+ 41

Figure 3.4. Syntax of Tiny-HS+

Identifiers
C ∈ ClassId class identifiers

T ∈ TyconId = {→, Int, . . . } type constructor identifiers
S ∈ ASynId associated type synonym identifiers

z ∈ VarId term variables
a, b ∈ TypVar type variables

Types
Typ 3 τ ::= a | Tκ τκ (as for Tiny-HS)

| η associated type synonym

ATyp 3 η ::= Sκ τκ associated type synonym application

QTyp 3 ρ ::= π ⇒ τ qualified type

TypSc 3 σ ::= ∀A.ρ type scheme

A, B ∈ Fin(TypVar) set of type variables

Constraints
Constr 3 π ::= C τ class constraint

| η = τ equality constraint

ConstrSc 3 θ ::= ∀A.π ⇒ C τ constraint scheme
| ∀A.η = τ equality constraint scheme

Expressions
Exp 3 w ::= z | λz.w | w1 w2 | let z = w1 in w2 (as for Tiny-HS)

| λ_.w wildcard λ-abstraction
| (w :: σ) type annotation

Instances, classes, data types, and programs

Inst 3 inst ::= instance ∀A.Ci ai
i∈[r] ⇒ C τ where

tdef mval
instance definition

Tdef 3 tdef ::= type Sκ τκ = τ ′ associated type synonym definition
| abstype Sκ τκ = τ ′ abstract associated type synonym

definition

Mval 3 mval ::= m = w method implementation

Cls 3 cls ::= class ∀A.Ci ai
i∈[r] ⇒ C a where

tdec msig
class definition

Tdec 3 tdec ::= type Sκ aκ associated type synonym declaration

Msig 3 msig ::= m :: ∀A.τ method signature

Ddec 3 ddec ::= data T data type definition

Pgm 3 pgm ::= ddec cls inst program

42 Chapter 3. Haskell type classes

Instance definitions inst ∈ Inst in Tiny-HS+ can have multiple parameters in
the instance context and the instance head, and they have to provide definitions
for the associated type synonyms of the class. Definitions of associated type syn-
onyms come in two flavors: they either define a (non–abstract) associated type
synonym using the keyword type, or they define an abstract associated type syn-
onym using the keyword abstype. Perhaps surprisingly, equality constraints in
instance contexts are not needed for the translation from modules to type classes,
so they have been omitted from Tiny-HS+. Note that it is not possible to ensure
syntactically that instance heads contain at least one type constructor. However,
without this condition, type checking might be undecidable for Tiny-HS+. There-
fore, we assume implicitly that all instance heads of a Tiny-HS+ program contain
at least one type constructor.

Along the lines of instances, class definitions cls ∈ Cls can have multiple pa-
rameters in the class context and head. They may also contain associated type
synonym declarations tdec ∈ Tdec.

The new top-level definition data T defines a new type constructor T of kind 0.
Strictly speaking, such data type constructor definitions are not valid Haskell 98
because they do not define any data constructors. However, we do not need data
constructors in the translation from ML modules to Tiny-HS+, so we omitted them
for clarity.

We need to refine the definition of ambiguity in the presence of associated type
synonyms. For example, the type scheme ∀{a}.C a ⇒ S a is ambiguous because
knowing that S a = τ for some τ does not tell us to which instance the definition
of S belongs. However, according to the old definition of ambiguity on page 31,
the type scheme would be unambiguous.

Definition 3.9 (Unambiguous type schemes in Tiny-HS+). In the presence of as-
sociated type synonyms, we call a type schemeσ = ∀A.ρ unambiguous if FVa(ρ)∩
A ⊆ Fixv(ρ). Here, the set of fixed type variables Fixv(ρ) of a qualified type ρ is
defined as follows:

Fixv(a) = {a}
Fixv(Tκ τκ) = ∪i∈[κ] Fixv(τi)

Fixv(Sκ τκ) = ∅
Fixv(C τ ⇒ ρ) = Fixv(ρ)

Fixv((η = τ) ⇒ ρ) = Fixv(τ) ∪ Fixv(ρ)

3.3.5. Typing judgments

Before discussing the typing judgments for Tiny-HS+, we need to adopt the defi-
nitions for environments and superclasses from Section 3.2.2. The following defi-
nition of environments for Tiny-HS+ drops the somewhat artificial distinction be-
tween the three components of a constraint environment.

3.3. Tiny-HS+ 43

Figure 3.5. Judgment for well-formedness of types in Tiny-HS+

Θ̂ ` τ

Θ̂ ` τi
i∈[κ]

Θ̂ C τκ (S is an associated type of C)

Θ̂ ` Sκ τκ
(wfsyn)+

T is a builtin or user-defined
type constructor of kind κ Θ̂ ` τi

i∈[κ]

Θ̂ ` Tκ τκ
(wftycon)+

Θ̂ ` a
(wfvar)+

Definition 3.10 (Tiny-HS+ environments). A variable environment Γ̂ ∈ VarId
fin−→

TypSc is a mapping between term variables and type schemes. A constraint en-
vironment Θ̂ ∈ Fin(Constr) ∪ Fin(ConstrSc) records constraints and constraint
schemes.

The definition of superclasses must take multi-parameter type classes into ac-
count because a class can now have superclasses with fewer parameters than the
class itself. Therefore, it is necessary to relate superclasses to the parameters of the
class.

Definition 3.11 (Superclasses for Tiny-HS+). The set of immediate superclasses

of C τn in Θ̂ is Sup(Θ̂, C τn) := {[τi/ai
i∈[n]

](C′ bm) | ∀A.C an ⇒ C′ b
m ∈ Θ̂}.

The typing judgments for Tiny-HS+ are shown in Figures 3.5 through 3.8. The
judgments are a combination of the judgments given by Chakravarty et al. [CKP05]
and the judgments for Tiny-HS from Section 3.2.2.

Well-formedness, entailment, and expression typing

The judgment in Figure 3.5 defines a well-formedness predicate Θ̂ ` τ on types.
(wfsyn)+ is the interesting rule; it ensures that an associated type synonym is ap-
plied only to types for which Θ̂ is strong enough to derive the class declaring the
synonym.

The judgment Θ̂ π for entailment is shown in Figure 3.6. The Tiny-HS rules
(elementail), (instentail), and (superentail) are merged into a single rule (mpentail)+, and
there are new rules for deriving nonsyntactic type equalities provoked by associ-
ated type synonyms.

The judgment Θ̂; Γ̂ ` w : σ , also shown in Figure 3.6, assigns a type scheme σ to
the expression w under the environments Θ̂ and Γ̂ . The rules are taken unchanged
from [CKP05], with the addition of rule (wildcard)+ and the ambiguity checks in
rules (let)+ and (sig)+. The important rule of this judgment is rule (conv)+, which
incorporates nonsyntactic type equalities.

44 Chapter 3. Haskell type classes

Figure 3.6. Judgments for entailment and expression typing in Tiny-HS+

Entailment Θ̂ π

(∀A.πn ⇒ C τ ′) ∈ Θ̂

τ = ψ(τ ′) Θ̂ ψ(πi)
i∈[n]

Dom(ψ) = A

Θ̂ C τ
(mpentail)+

(∀A.η′ = τ ′) ∈ Θ̂

ψ(η′ = τ ′) = (η = τ) Dom(ψ) = A

Θ̂ η = τ
(eqdefentail)+

Θ̂ τ = τ
(eqreflentail)+

Θ̂ τ2 = τ1

Θ̂ τ1 = τ2
(eqsymmentail)+ Θ̂ τ1 = τ2 Θ̂ τ2 = τ3

Θ̂ τ1 = τ3
(eqtransentail)+

Θ̂ [τ1/a]π Θ̂ τ1 = τ2

Θ̂ [τ2/a]π
(eqsubstentail)+

Expression typing Θ̂; Γ̂ ` w : σ

Γ̂ (z) = σ

Θ̂; Γ̂ ` z : σ
(var)+ Θ̂; Γ̂ ` w : τ ′ Θ̂ τ ′ = τ

Θ̂; Γ̂ ` w : τ
(conv)+

Θ̂; Γ̂ ` w1 : τ ′ → τ Θ̂; Γ̂ ` w2 : τ ′

Θ̂; Γ̂ ` w1 w2 : τ
(→E)+

Θ̂; Γ̂ , z 7→ τ ′ ` w : τ Θ̂ ` τ1

Θ̂; Γ̂ ` λz.w : τ ′ → τ
(→I)+ Θ̂; Γ̂ ` w : τ Θ̂ ` τ1

Θ̂; Γ̂ ` λ_.w : τ ′ → τ
(wildcard)+

Θ̂; Γ̂ ` w1 : σ ′ Θ̂; Γ̂ , z 7→ σ ′ ` w2 : σ σ ′ unambiguous

Θ̂; Γ̂ ` let z = w1 in w2 : σ
(let)+

Θ̂; Γ̂ ` w : σ FVa(σ) = ∅ σ unambiguous

Θ̂; Γ̂ ` (w :: σ) : σ
(sig)+

(Θ̂ ∪ {π}); Γ̂ ` w : ρ

Θ̂; Γ̂ ` w : π ⇒ ρ
(⇒I)+ Θ̂; Γ̂ ` w : π ⇒ ρ Θ̂ π

Θ̂; Γ̂ ` w : ρ
(⇒E)+

Θ̂; Γ̂ ` w : ∀A.ρ a /∈ (FVa(Θ̂) ∪ FVa(Γ̂))
Θ̂; Γ̂ ` w : ∀A∪ {a}.ρ

(∀I)+

Θ̂; Γ̂ ` w : ∀A∪ {a}.ρ Θ̂ ` τ
Θ̂; Γ̂ ` w : [τ/a](∀A.ρ)

(∀E)+

3.3. Tiny-HS+ 45

Figure 3.7. Typing judgments for Tiny-HS+ instance definitions

Collecting type equalities A `o,i tdef : θ

A `o,i type Sκ τκ = τ ′ : ∀A.Sκ τκ = τ ′
(type)+

Tκ fresh
A `o abstype Sκ τκ = τ ′ : ∀A.Sκ τκ = Tκ τκ

(abstypeoutside)+

A `i abstype Sκ τκ = τ ′ : ∀A.Sκ τκ = τ ′
(abstypeinside)+

Collecting instance constraints ` inst : Θ̂

θ well-formed A `o tdef i : θi
i∈[n]

` instance θ where tdef
n

mval : {θ,θ
n}

(instcollect)+

Checking instance definitions Θ̂; Γ̂ ` inst

Θ̂′; Γ̂ ; τ
method
` mi = wi (for all i ∈ [n])

Θ̂′; τ
tdef
` tdef i (for all i ∈ [m])

Θ̂′ \ {∀A.π r ⇒ C τ} Csup τ ′ (for all Csup τ ′ ∈ Sup(Θ̂, C τ))

Θ̂′ = Θ̂ ∪ {θm
, π r} A `i tdef i : θi

i∈[m]

Θ̂; Γ̂ ` instance ∀A.π r ⇒ C τ where tdef
m

mi = wi
i∈[n] (instcheck)+

Θ̂; τ
tdef
` tdef

Θ̂ ` τ ′

Θ̂; τκ
tdef
` type Sκ τκ = τ ′

(instcheck-type)+

Θ̂ ` τ ′

Θ̂; τκ
tdef
` abstype Sκ τκ = τ ′

(instcheck-abstype)+

Θ̂; Γ̂ ; τ k
method
` m = w

Γ̂ (m) = ∀A.C ak ⇒ τ ′ Θ̂; Γ̂ ` w : [τi/ai
i∈[k]

]∀A.τ ′

Θ̂; Γ̂ ; τ k
method
` m = w

(instcheck-method)+

46 Chapter 3. Haskell type classes

Instance definitions

The judgments for instance definitions are given in Figure 3.7. They are similar to
those for Tiny-HS, except that they also deal with (abstract) associated type syn-
onyms. The rules are complicated by the necessity to handle abstract associated
type synonyms differently depending on whether the type equalities implied by
them are used outside or inside an instance definition.

The judgment A `o,i tdef : θ collects equality schemes, which introduce new
nonsyntactic type equalities. There are two different versions of this judgment:
version A `o tdef : θ collects constraint schemes for use outside of the instance
defining tdef, whereas version A `i tdef : θ collects constraint schemes for use
inside the instance. Consequently, rule (abstypeoutside)+ equates an abstract associ-
ated type synonym with some fresh type constructor, whereas rule (abstypeinside)+

reveals the true identify of the synonym. The type variables in A are supposed to
be the universally quantified type variables of the instance.

Rule (instcollect)+ then uses the external variant A `o tdef : θ to collect the
constraint schemes resulting from the instance because these constraint schemes
might be used outside the instance. However, rule (instcheck)+ extends the con-
straint environment Θ̂ with constraint schemes collected by the internal variant
A `i tdef : θ because it uses the extended environment Θ̂′ for checking meth-
ods, associated type synonym definitions, and superclass entailment inside the in-
stance. As for Tiny-HS, we remove the constraint scheme resulting from the very
instance from Θ̂′ before checking superclass entailment. Note that it is not possi-
ble that we remove accidentally some constraint scheme resulting from a subclass
definition because instance heads of Tiny-HS+ programs are required to contain
at least one type constructor.

The well-formedness check Θ̂′; τ
tdef
` tdef i for associated type synonyms in rule

(instcheck)+ assumes the whole constraint environment Θ̂. This is an important dif-
ference to Chakravarty and colleagues’ system, which assumes only the superclass
part of Θ̂ to avoid nonterminating associated type synonym definitions. However,
their termination condition is not compatible with the way associated type syn-
onyms are used in the translation from modules to type classes. We discuss on
page 108 that the translation from modules to type classes does not produce non-
terminating associated type synonym definitions; the formalization of a termina-
tion condition compatible with the translation is regarded as future work.

Class definitions and programs

The judgments for class definitions and programs are shown in Figure 3.8. They
are a natural generalization of the corresponding judgments for Tiny-HS (see Fig-
ure 3.3). We add a new judgment Θ̂ ` cls that checks whether the method signa-
tures of cls are well-formed. Another new judgment ` pgm : Θ̂; Γ̂ is added because
it is useful for the proofs in Chapter 4.

3.4. Related work 47

Figure 3.8. Typing judgments for Tiny-HS+ class definitions and programs

Class definitions ` cls : Θ̂; Γ̂

∀A.π r ⇒ C a well-formed
A∩ Ai = ∅ σi = ∀Ai ∪ {a}.C a ⇒ τi unambiguous

FVa(σi) = ∅ (for all i ∈ [n])

` class ∀A.π r ⇒ C a where tdec mi :: ∀Ai.τi
i∈[n]

: {∀A.C a ⇒ πi | i ∈ [r]}; {mi 7→ σi | i ∈ [n]}

(classcollect)+

Θ̂ ` cls

Θ̂ ∪ {C a} ` τi (for all i ∈ [n])

Θ̂ ` class ∀A.π r ⇒ C a where tdec mi :: ∀Ai.τi
i∈[n] (classcheck)+

Programs ` pgm : Θ̂; Γ̂

` clsi : Θ̂i; Γ̂i
i∈[n]

` insti : Θ̂′
i

i∈[m]

Θ̂ =
⋃

i∈[n]

Θ̂i ∪
⋃

i∈[m]

Θ̂′
i Γ̂ =

⋃̇
i∈[n]

Γ̂i

Θ̂ ` clsi
i∈[n]

Θ̂; Γ̂ ` insti
i∈[m]

` cls
n

inst
m : Θ̂; Γ̂

(prog′)+

` pgm

` pgm : Θ̂; Γ̂
` pgm

(prog)+

3.4. Related work

Functional dependencies [Jon00a] are an alternative to associated type synonyms.
They solve the problem of specifying dependencies among class parameters by
adapting the notion of functional dependencies from database theory to Haskell
type classes. For example, the class Add′ from Section 3.1 written with functional
dependencies looks like this:

class Add′ a b c | a b c where
add′ :: a → b → c

Functional dependencies are well-explored, widely used, and available in ma-
jor Haskell systems like GHC [ghc05] and Hugs [hug05], whereas associated type
synonyms are a relatively recent development, for which only a prototype imple-

48 Chapter 3. Haskell type classes

mentation6 exists. Why did we then choose associated type synonyms instead of
functional dependencies? The big advantage of associated type synonyms over
functional dependencies is that you refer to an associated type synonym by name,
whereas functional dependent class parameters are referred to by position in the
class head. This advantage becomes even more relevant if we look ahead to Chap-
ter 4 where type components of ML structures—which are also referred to by
name—are translated into associated type synonyms.

Another form of associating types with type classes is to use data types instead
of type synonyms. With such associated data types [CKPM05], we could write the
Add′ class and a corresponding instance in the following way:

class Add′ a b where
data Result a b
add′ :: a → b → Result a b

instance Add′ Int Float where
data Result Int Float = FloatResult Float
add′ i f = FloatResult (primFloatAdd (intAsFloat i) f)

You see that associated data types introduce new type constructors (just as or-
dinary data types); hence, we have to wrap the result of the floatAdd function
with the data constructor FloatResult. This property makes associated data types
unsuitable for simulating type components of ML structures because type compo-
nents of structures are type synonyms and do not introduce new types. However,
ML also allows the definition of data types as structure components, a feature we
have not introduced in Chapter 2. Associated data types would then correspond
to data type components of ML structures.

6Available from http://www.cse.unsw.edu.au/~chak/papers/CKP05.html.

http://www.cse.unsw.edu.au/~chak/papers/CKP05.html

Chapter 4.

From modules to classes

Now we have set the scene and are ready to develop the translation from ML
modules to Haskell type classes. To give you an intuition of how the translation
works, Section 4.1 shows how a programmer would translate a particular piece of
ML code to Haskell. Section 4.2 then presents the formal translation from Tiny-
ML to Tiny-HS+. In Section 4.3, we prove that every well-typed Tiny-ML program
translates into a well-typed Tiny-HS+ program. Section 4.4 explains why some
features found in Standard ML and some extensions to Standard ML cannot be
translated to Haskell type classes. Finally, Section 4.5 describes an implementation
of the translation, and Section 4.6 discusses related work.

4.1. Example translation

Seeing how a programmer translates ML modules to Haskell type classes helps a
lot to grasp the general idea of the formal translation. Therefore, we first discuss
an example of such a manual translation, which is shown in Figure 4.1; the result
of applying the formal translation to this example can be found in Appendix A.

The Tiny-ML code in Figure 4.1(a) is a slightly modified version of the MkSet
functor example from Section 2.1. The difference is that the functor body does
not define a separate type component for set elements; instead, it uses directly
the type E.t provided by the functor argument. This modification is necessary to
demonstrate a particular detail of the translation.

The Tiny-HS+ version is shown in Figure 4.1(b).1 We first translate the anony-
mous functor argument signature into a type class EQ. The type variable a is only
used to index the associated type synonym T and the method eq; the type signa-
ture of eq would be ambiguous without the extra argument of type a. (We already
saw this technique on page 39.)

The next step is to translate the anonymous result signature of the MkSet func-
tor into a Haskell type class MK_SET. The class MK_SET has two parameters: the
first parameter b represents a possible implementation of the functor body, and
the second parameter a corresponds to the functor argument; it is needed to access
the associated type synonym T of the EQ class, which is used in the type signa-
tures of the methods member and insert as the translation of the type E.t. Now

1We bend the syntax of Tiny-HS+at some points to make the code more readable.

49

50 Chapter 4. From modules to classes

Figure 4.1. Translating modules to type classes by hand

(a) Example in Tiny-ML
functor MkSet (E : sig type t val eq : t → t → bool end) =

struct
type set = list E.t
val empty = []
val member = λx . λs . exists (λy . E.eq x y) s
val insert = λx . λs . if member x s then s else (cons x s)

end :> sig
type set
val empty : set
val member : E.t → set → bool
val insert : E.t → set → set

end

structure IntEq =
struct

type t = int
val eq = λi . λj . primIntEq i j

end

structure IntSet = MkSet (IntEq)

(b) Example translated to Tiny-HS+ by hand
class EQ a where

type T a
eq :: a → T a → T a → Bool

class EQ a ⇒ MK_SET b a where
type Set b a
empty :: b → a → Set b a
member :: b → a → T a → Set b a → Bool
insert :: b → a → T a → Set b a → Set b a

data MkSet

instance EQ a ⇒ MK_SET MkSet a where
abstype Set MkSet a = [T a]
empty = []
member a x s = exists (λy . eq a x y) s
insert a x s = if member (⊥ :: MkSet) a x s then s else (x : s)

data IntEq

instance EQ IntEq where
type T IntEq = Int
eq i j = primIntEq i j

4.1. Example translation 51

Figure 4.2. Analogies between ML modules and Haskell type classes

ML Haskell
structure signature one-parameter type class
structure instance of the corresponding type class
functor argument signature one-parameter type class
functor result signature two-parameter type class, which is a subclass of the

functor argument signature
functor instance of the functor result signature with the

functor argument signature in the instance context
structure/functor name data type
type specification associated type synonym declaration
type definition associated type synonym definition
type occurrence associated type synonym applied to appropriate

argument(s)
value specification method signature
value definition method implementation
value occurrence method applied to appropriate argument(s)

you can see why the example presented here is a modification of the example in
Section 2.1: If E.t did not appear in a value specification in the functor body, the
second parameter of MK_SET would not be needed.

Now that we have translated the functor’s argument and result signatures into
Haskell type classes, we translate the functor body into an instance of type class
MK_SET. We first define a data type MkSet, which corresponds to the name of the
functor in ML. The instance definition itself is straightforward. The first parameter
of the type class is filled with the name MkSet, whereas the second parameter—
representing the functor argument—is left as a type variable. The constraint EQ a
in the instance context is necessary because we use the associated type synonym T
and the method eq of EQ in the definition of the abstract associated type synonym
Set and the method member, respectively. The definition of insert shows that we
use a method of the MK_SET instance from inside the instance the same way as
from outside. Note that it is safe to use the diverging ⊥ value because member (as
well as all other methods of the instance) does not examine its first argument.

The translation of the functor application MkSet(IntEq) is straightforward: We
only need to provide an appropriate EQ instance. There is no counterpart of the
IntSet structure in Haskell. For example, to construct the singleton set {1}, we
simply write insert (⊥ :: MkSet) (⊥ :: IntEq) 1 (empty(⊥ :: MkSet)(⊥ :: IntEq)).
This also demonstrates that structures in Haskell are first-class by default because
structures are just arbitrary values of a certain type.

Figure 4.2 summarizes the analogies between ML modules and Haskell type
classes we encountered so far. A more complete comparison between ML modules

52 Chapter 4. From modules to classes

and Haskell type classes is deferred until Section 6.1.

4.2. Formal translation

The development of the formal translation from ML modules to Haskell type
classes proceeds in two steps. Section 4.2.1 first gives some preparatory defini-
tions; one of the things we define is a variant of Tiny-ML with type annotations.
The actual translation in Section 4.2.2 then translates a Tiny-ML program with type
annotations into a Tiny-HS+ program. The translation from Tiny-ML to Tiny-HS+

is then obtained by first annotating a Tiny-ML program using an extended version
of Tiny-ML’s typing judgments, and then translating the annotated program to
Tiny-HS+.

4.2.1. Preparations

This section prepares the translation by defining facilities for manipulating iden-
tifiers, by defining the environments used in the translation, and by defining a
type-annotated variant of Tiny-ML, which is the actual source language of the
translation. The typing judgments for Tiny-ML can be extended easily to add the
type annotations to a Tiny-ML program.

Identifier manipulation

During the translation, we need to map Tiny-ML to Tiny-HS+ identifiers and we
need access to fresh identifiers. Figure 4.3 lists functions for this purpose and
defines an intuitive shorthand notation for function application. The idea behind
these functions becomes clear once we use them in the translation; for now, we just
require that all functions are injective, and that their images are pairwise disjoint.

Moreover, the images of the last two functions are required to be disjoint from
the structure and functor identifiers of the program under translation because we
use these functions to generate fresh identifiers. Clearly, the two functions depend
on the given Tiny-ML program.

We also postulate the existence of a set of fresh Tiny-HS+ term variables and
a set of fresh Tiny-HS+ type variables, FreshVarIds ⊆ VarId and FreshTypVars ⊆
TypVar, respectively. The sets FreshVarIds and FreshTypVars are required to be dis-
joint from the images of the functions in Figure 4.3, and must contain at least two
elements.

Environments

Figure 4.4 shows the environments used in the translation from Tiny-ML to Tiny-
HS+. An occurrence environment Φ maps value occurrences and semantic type
variables to the appropriate Tiny-HS+ constructs. The Tiny-HS+ translation of

4.2. Formal translation 53

Figure 4.3. Identifier manipulation functions

Function signature Function application
StrId → TyconId TX

StrId → ClassId CX

StrId×TypId → ASynId SX.t

StrId×ValId → VarId zX.y

FunId → TyconId TF

FunId×N → TyconId TF,k

FunId → ClassId CF

FunId → ClassId CF,arg

FunId×TypId → ASynId SF,t

FunId×ValId → VarId zF,x

FunId×N×TypId → ASynId SF,i,t

FunId×N×ValId → VarId zF,i,x

CoreId → VarId zc

SimTypVar → TypVar a‘a

StrId → StrId X?

FunId → FunId F?

Figure 4.4. Environments

Occurrence environment

Φ :=

Φl
x ∪Φ

g
x ∪Φα

∣∣∣∣∣∣∣∣
Φl

x ∈ ValId fin−→ Exp,

Φ
g
x ∈ StrId×ValId fin−→ Exp,

Φα ∈ TypVar fin−→ ATyp.

Code environment

Ω :=

{
Ωt ∪Ωx

∣∣∣∣∣ Ωt ∈ TypId fin−→ Typ,

Ωx ∈ ValId fin−→ Exp

}

54 Chapter 4. From modules to classes

Figure 4.5. Syntax of Annotated Tiny-ML
(extends syntax in Figure 2.1 and changes syntax in Figure 2.2)

Structure bodies
StrBod 3 b ::= . . .

| type t = u〈u〉; b

Structure expressions
StrExp 3 s ::= . . .

| X〈S〉

| F〈k,F〉(X〈Si〉
i

i∈[n]
) (k ∈ N, k unique among all functor

applications in the program)

Sealed structure expressions
PStrExp:> 3 ps:> ::= ps〈∃P .S〉

| ps〈∃P
′ .S ′〉 :> S〈ΛP .S〉

StrExp:> 3 s:> ::= s〈∃P .S〉

| s〈∃P
′ .S ′〉 :> S〈ΛP .S〉

Programs
Prog 3 prog ::= . . .

| functor F〈F〉 (Xi : Si
i∈[n]) = ps:>; prog

4.2. Formal translation 55

value occurrences x and X.y is given by Φ(x) and Φ(X, y), respectively. Accord-
ing to Figure 4.2, Φ(x) and Φ(X, y) are methods applied to appropriate argu-
ments. The Tiny-HS+ translation of a semantic type variable α is given by Φ(α).
Semantic type variables represent type occurrences, which are (according to Fig-
ure 4.2) translated into associated type synonyms applied to appropriate argu-
ments. Hence, Φ(α) is an element of ATyp. We shall see in Section 4.2.2 that the
translation operates on semantic objects and not on syntactic types; therefore, we
do not need to record information about type occurrences t and X.t.

A code environment Ω maps type and value identifiers to the Tiny-HS+ transla-
tions of the simple types and value expressions bound by the identifiers. For some
type definition type t = u, Ω(t) is the translation of u , where u is the denotation
of u. (We shall see in the next section how we get this u.) Ω(x) is the translation of
the expression e for some value definition val x = e.

Annotated Tiny-ML

We already saw in the preceding section that the translation operates on seman-
tic objects and not on syntactic types. Therefore, we need access to the semantic
objects of several syntactic constructs during the translation.

For example, we said that Ω(t) is the translation of u, where u is the denotation
of u for some type definition type t = u. In order to get the denotation of u (and
the semantic objects of other syntactic constructs), we define in Figure 4.5 a type-
annotated variant of Tiny-ML called Annotated Tiny-ML. The type annotations are
written as superscripts enclosed in 〈〉. Note that we only need to annotate module
language constructs. The functor identifier F in some functor application F(Xn)
is not only annotated with the corresponding semantic functor F , but also with
some k ∈ N that is required to be distinct from the ks used in the annotations of all
other functor applications in the program.

It is obvious how to add the annotations while constructing a typing derivation
for a Tiny-ML program, so the rules are not shown here. In the following, we
implicitly assume that the annotations result from a valid typing derivation.

4.2.2. The translation

This section presents the translation from Annotated Tiny-ML to Tiny-HS+. The
translation is organized as a set of functions, which map Annotated Tiny-ML con-
structs to the appropriate Tiny-HS+constructs. We now discuss these functions
in a bottom-up fashion; that is, we begin with the translation functions for value
expressions and semantic types (where a semantic type is either a semantic sim-
ple type or a semantic value type), then continue with the translation of structure
expressions, and finally discuss the translation of whole programs.

56 Chapter 4. From modules to classes

Figure 4.6. Translation of semantic types and value expressions

TuJuKΦ = τ

TuJ‘aKΦ = a‘a

TuJTκ uκKΦ = Tκ TuJuKΦ
i∈κ

TuJαKΦ = Φ(α)

Tv JvKΦ = σ

Tv J∀A.uKΦ = ∀{a‘a | ‘a ∈ A}.TuJuKΦ

EJeKΦ = w

EJcKΦ = zc

EJλc.eKΦ = λzc.EJeKΦ
EJe1 e2KΦ = EJe1KΦ EJe2KΦ

EJlet c = e1 in e2KΦ = let zc = EJe1KΦ in EJe2KΦ
EJyKΦ = Φ(y)

EJX.yKΦ = Φ(X, y)

Translation of semantic types and value expressions

Figure 4.6 shows the translation functions Tu , Tv , and E, which translate semantic
simple types, semantic value types, and value expressions into Tiny-HS+ types,
type schemes, and expressions, respectively. A semantic simple type variable ‘a is
translated into the corresponding Tiny-HS+ type variable a‘a by using the appro-
priate identifier manipulation function from Figure 4.3. A semantic type variable
α is translated into the Tiny-HS+ type Φ(α).

The translation of value expressions is straightforward as well: zc is used as
the translation of core variables c, and the occurrence environment Φ provides
translations of value occurrences y and X.y.

Translation of structure bodies and unsealed structure expressions

Figure 4.7 shows the translation functions Sb and S for structure bodies b and
unsealed structure expressions s, respectively. The domain of the occurrence envi-
ronment Φ used in the definitions of Sb and S is expected to contain at least the
following elements:

• All semantic type variables used in b or s.

• All value identifiers used in b or s.

• A pair (X, y) for all value identifiers y defined by some structure X provided
X is used in b or s.

4.2. Formal translation 57

Figure 4.7. Translation of structure bodies and unsealed structure expressions

SbJbKΦ = Ω

SbJtype t = u〈u〉; bKΦ = SbJbKΦ, t 7→ TuJuKΦ
SbJval x = e; bKΦ = SbJbKΦ, x 7→ EJeKΦ

SbJεbKΦ = ∅

SJsKΦ = 〈Ω, ddec, inst〉
SJstruct b endKΦ = 〈SbJbKΦ,ε,ε〉

SJX〈S〉KΦ = 〈{t 7→ TuJS(t)KΦ | t ∈ Dom(S)} ∪
{y 7→ Φ(X, y) | y ∈ Dom(S)},ε,ε〉

SJF〈k,∀Q .S ′n→∃P .S ′〉(X〈Si〉
i

i∈[n]
)KΦ = 〈Ω, ddec, inst〉

where ddec = data TF,k

inst = instance CF,arg TF,k where
type SF,i,t TF,k = TuJSi(t)KΦ i ∈ [n], t ∈ Dom(S ′i)
zF,i,y = λ_.Φ(Xi, y) i ∈ [n], y ∈ Dom(S ′i)

Ω = {t 7→ SF,t TF TF,k | t ∈ Dom(S ′)} ∪
{x 7→ zF,x (⊥ :: TF) (⊥ :: TF,k) | x ∈ Dom(S ′)}

In particular, the value identifiers defined by b must already be contained in Φ

because the right-hand side of a value definition may use value identifiers intro-
duced by earlier value definitions. The translation functions that make use of Sb

and S ensure that this precondition on Φ holds.
A structure body b is translated by Sb into a code environment Ω that contains

the Tiny-HS+ code for the components of b. Sb uses the annotation of a type
definition to retrieve the semantic simple type corresponding to the right-hand
side of the definition.

S translates an unsealed structure expression into a triple consisting of a code
environment Ω, and two sequences of data type and instance definitions. The case
for enclosed structure bodies struct b end is straightforward because we can use
the function Sb.

The case for structure variables X〈S〉 is slightly more interesting. Conceptually,
we simulate expanding the structure variable X into a structure body and return-
ing the translation of this structure body; that is, the code environment of SJXSKΦ
is the same as

SbJtype t = X.t〈S(t)〉t∈Dom(S)
val y = X.yy∈Dom(S)KΦ.

The only case for which the sequences of data type and instance definitions of
the result triple is not empty is the one for functor applications. In Tiny-ML, the
actual functor arguments are matched implicitly against the argument signatures
of the functor. In Tiny-HS+, we have to make this matching explicit by creating a

58 Chapter 4. From modules to classes

new instance of the type class CF,arg, which is the translation of the functor argu-
ment signatures. We shall see how the type class CF,arg is defined once we discuss
the translation of functor definitions; for now, it suffices to know that CF,arg is a
single-parameter class that declares associated type synonyms SF,i,t and methods
zF,i,x for all type and value components of all functor argument signatures S ′i . We
implement these associated type synonyms and methods by translating the se-
mantic simple types found in the semantic structures Si of the actual arguments,
and by looking up the relevant value occurrences in the occurrence environment
Φ, respectively.

The data type used in the instance head needs to be defined as well. We use the
natural number k from the functor annotation to create an identifier for the data
type that is unique among all other data types in the program.

The code environment Ω contains the Tiny-HS+ code for all components of the
functor’s result signature S ′. We have not seen yet how functor definitions are
translated, but all you need to know to understand the definition of Ω is the fol-
lowing: The body of a functor definition is translated into a two-parameter type
class CF that declares associated type synonyms SF,t and methods zF,x for all com-
ponents of the body; the translation is done in the style of the example discussed
in Section 4.1. Furthermore, an instance of this class is defined for TF and some
type variable a provided a is an instance of CF,arg. Therefore, SF,t TF TF,k is the
translation of a type component t, and zF,x (⊥ :: TF) (⊥ :: TF,k) is the translation
of a value component x of the result of the functor application.

Translation of structure definitions

We now discuss the translation of structure definitions; the next section then deals
with the translation of functor definitions. However, before we can tackle the
translation, we first have to clarify to which Tiny-HS+ type a fresh semantic type
variable introduced by some structure definition should be mapped.

We have already seen that the translation operates on semantic objects and not
on syntactic types. Therefore, we have to extend the current occurrence environ-
ment whenever a new semantic type variable is introduced. Clearly, we should
bind the new semantic type variable to an application of the associated type syn-
onym that corresponds to the type component that introduced the semantic type
variable. But we do not necessarily know which type component introduced the
semantic type variable! Consider the following structure definition:

structure X = struct type t = int type s = int end :> sig type t type s = t end

The semantic structure for X is S = {t 7→ α, s 7→ α} and that is all the translation
knows. We cannot tell from looking at S whether t or s introduced α. Luckily,
it does not really matter which type identifier we choose, so we can define an
operation pick that selects some type identifier among the candidates. We must
define pick slightly more general, so that it is also possible to select a type identifier
among candidates from several semantic structures.

4.2. Formal translation 59

Definition 4.1 (The pick operation). The operation pick(Sn
,α) = 〈i, t〉 selects the

lexicographically smallest 〈i, t〉 with i ∈ [n] and t ∈ Dom(Si) such that Si(t) = α.
We write pick(S ,α) = t if n = 1.

Clearly, pick(Sn
,α) is only well-defined if there is some i ∈ [n] and some

t ∈ Dom(Si) such that Si(t) = α. For the rest of the translation, we use the
pick operation without worrying about its well-definedness; instead, we prove in
Section 4.3.1 that the whole translation (and so every usage of the pick operation)
is well-defined.

Now we can turn our attention to the translation of structure definitions. We
first define a function X in Figure 4.8 that translates structure definitions structure
X = s〈∃P .S〉 with unsealed right-hand sides. X returns a triple of data type, class,
and instance definitions. These definitions define a new type class CX, and make
the new data type TX an instance of this class. The class CX is the translation
of the semantic structure S ; the general idea behind this translation was already
discussed in Section 4.1. In order to translate a value type S(y) into a Tiny-HS+

type scheme ∀By.τy, we need to extend the occurrence environment Φ with the
semantic type variables in P because S(y) might contain these variables. The pick
operation from Definition 4.1 is used to choose the appropriate associated type
synonyms for these semantic type variables.

The instance definition for CX TX binds the translations of the type and value
components of the structure expression s. We use the previously defined function
S to translate s. Note that Φ′′ already contains the translation for occurrences of
value components defined by s. However, Φ′′ does not contain the semantic type
variables in P . These semantic type variables are not needed because the semantic
objects in the annotations of s can only contain variables from P if s has the form
struct b end; but then P is empty.

Figure 4.9 shows the two cases for structure definitions of the function P that
translates an Annotated Tiny-ML program into a triple of data type, class, and
instance definitions, which can be assembled to form a Tiny-HS+ program. The
two cases of P for functor definitions are discussed in the next section.

There are two cases for structure definitions because we differentiate between
unsealed and sealed right-hand sides. We cannot handle the two cases uniformly
because code inside a sealed structure expression possibly knows more about the
structure expression than code that accesses the sealed structure expression from
outside. However, the method implementations of an instance definition in Tiny-
HS+ know—apart from the true identities of abstract associated type synonyms—
only as much as code outside of the instance definition. Consider the following
Tiny-ML example:

structure Y =
struct

val f = λc . c
val b = f true

end :> sig

60 Chapter 4. From modules to classes

Figure 4.8. Translation of structure definitions with unsealed right-hand sides

XJstructure X = s〈∃P .S〉KΦ = 〈ddec, cls, inst〉

XJstructure X = s〈∃P .S〉KΦ =
〈data TX ddec

, class CX a where
type SX.t a t ∈ Dom(S)
zX.y :: ∀By.a → τy y ∈ Dom(S)

, instance CX TX where
type SX.t TX = Ω(t) t ∈ Dom(S)
zX.y = λ_.Ω(y) y ∈ Dom(S)

inst〉
where

∀By.τy = Tv JS(y)KΦ′

Φ′ = Φ ∪̇ {α 7→ SX.t a | α ∈ P , t = pick(S ,α)}
〈Ω, ddec, inst〉 = SJsKΦ′′

Φ′′ = Φ ∪̇ {y 7→ zX.y (⊥ :: TX) | y ∈ Dom(S)}
a ∈ FreshTypVars

val f : int → int
val b : bool

end

If we translated the example naively to Tiny-HS+, we would end up with a
program that does not type check:

data TY

class CY a where
f :: a → Int → Int
b :: a → Bool

instance CY TY where
f = λ . λz . z
b = λ . f (⊥ :: TY) True

We now continue with the explanation of the two cases for structure definitions
(Figure 4.9). The case for structure definitions with an unsealed right-hand side
is straightforward because all work is done by the previously defined function
X. Note that we extend the occurrence environment Φ with the semantic type
variables and the value identifiers introduced by the structure definition when
translating the rest of the program.

The case for structure definitions with a sealed right-hand side is more involved.
Conceptually, we simulate splitting the structure definition

4.2. Formal translation 61

Figure 4.9. Translation of structure definitions

PJprogKΦ = 〈ddec, cls, inst〉

PJstructure X = s〈∃P .S〉; progKΦ = 〈ddec ddec′, cls cls′, inst inst′〉
where

〈ddec, cls, inst〉 = XJstructure X = s〈∃P .S〉KΦ
〈ddec′, cls′, inst′〉 = PJprogKΦ′

Φ′ = Φ ∪̇ {α 7→ SX.t TX | α ∈ P , t = pick(S ,α)}
∪̇ {(X, y) 7→ zX.y (⊥ :: TX) | y ∈ Dom(S)}

PJstructure X = s〈∃P
′ .S ′〉 :> S〈ΛP .S〉; progKΦ =

〈data TX ddec ddec′

, cls
class CX a where

type SX.t a t ∈ Dom(S)
zX.y :: ∀By.a → τy y ∈ Dom(S)

cls′

, instance CX TX where
type SX.t TX = SX? .t TX?

t ∈ Dom(S), S(t) /∈ P
abstype SX.t TX = SX? .t TX?

t ∈ Dom(S), S(t) ∈ P ,
t = pick(S , S(t))

type SX.t TX = SX.t′ TX t ∈ Dom(S), S(t) ∈ P ,
t′ = pick(S , S(t)), t′ 6= t

zX.y = λ_.zX? .y (⊥ :: TX?) y ∈ Dom(S)

inst inst′〉
where

〈ddec, cls, inst〉 = XJstructure X? = s〈∃P
′ .S ′〉KΦ

〈ddec′, cls′, inst′〉 = PJprogKΦ′

Φ′ = Φ ∪̇ {α 7→ SX.t TX | α ∈ P , t = pick(S ,α)}
∪̇ {(X, y) 7→ zX.y (⊥ :: TX) | y ∈ Dom(S)}

∀By.τy = Tv JS(y)KΦ′′

Φ′′ = Φ ∪̇ {α 7→ SX.t a | α ∈ P , t = pick(S ,α)}
a ∈ FreshTypVars

62 Chapter 4. From modules to classes

structure X = s〈∃P
′ .S ′〉 :> S〈ΛP .S〉

into two structure definitions

structure X? = s〈∃P
′ .S ′〉

structure X = X?〈S ′〉 :> S〈ΛP .S〉.

The structure definition for X? is translated using the function X. Then we de-
fine a class CX, which is the translation of the semantic structure S , and make the
new data type TX an instance of this class. The instance definition simply copies
all methods and those associated type synonyms, which correspond to type com-
ponents that do not introduce new abstract types, from the translation of X?. Type
components t with S(t) ∈ P introduce new abstract types, so they must be treated
differently. There are two sorts of type components introducing abstract types:
those which are selected by the pick operation to represent some semantic type
variable, and those which are not selected. The former are translated into abstract
associated type synonyms, whereas the latter are translated into regular associ-
ated type synonyms. The definitions of these regular associated type synonyms
propagate the relevant type equalities between type components selected by pick
and those which are not.

Strictly speaking, the propagation of type equalities is not needed because the
newly introduced semantic type variables are always represented by the associ-
ated type synonym that is selected by pick (this can be seen from the definition of
Φ′). However, if the formal translation is used as a model for a manual translation,
the propagation of such type equalities gives us the freedom to translate a seman-
tic type variable into applications of different associated type synonyms; hence,
we can maintain a closer match between the original Tiny-ML source program
and the translated Tiny-HS+ program.

Figure 4.9 contains associated type synonym definitions that would be rejected
by Chakravarty and colleagues’ system [CKP05] because they might not termi-
nate. For example, the definition type SX.t TX = SX? .t TX?

is not valid in their
system because SX? .t is an associated type synonym of class CX?

but CX?
TX?

is
not derivable without using the instance definitions of the program. Tiny-HS+ ac-
cepts the definition because it uses the instance definitions of the program when
checking the well-formedness of associated type synonym definitions. Note that
such associated type synonym definitions, which are well-formed in Tiny-HS+ but
not in the system proposed by Chakravarty et al., do not occur only in Figure 4.9
but at all places where the right-hand side of an associated type synonym defini-
tion is the translation of a type u that contains a type variable α. We discuss in
Section 6.1.1 that all associated type synonym definitions in a Tiny-HS+ program,
which results from the translation of a Tiny-ML program, are terminating.

Translation of functor definitions

The translation of functor definitions is the last piece missing to complete the trans-
lation from Annotated Tiny-ML to Tiny-HS+. Similar to the translation of struc-

4.2. Formal translation 63

Figure 4.10. Translation of functor definitions with unsealed right-hand sides

FJfunctor F〈∀Q .Sn→S〉(Xi : Si
i∈[n]) = ps〈S〉KF′Φ = 〈ddec, cls, inst〉

FJfunctor F〈∀Q .Sn→S〉(Xi : Si
i∈[n]) = struct b end〈S〉KF′Φ =

〈data TF

, class CF′ ,arg a where

type SF′ ,i,t a i ∈ [n], t ∈ Dom(Si)
zF′ ,i,x :: ∀Bx,i.a → τx,i i ∈ [n], x ∈ Dom(Si)

class CF′ ,arg a ⇒ CF b a where
type SF,t b a t ∈ Dom(S)
zF,x :: ∀Bx.b → a → τx x ∈ Dom(S)

, instance CF′ ,arg a ⇒ CF TF a where
type SF,t TF a = Ω(t) t ∈ Dom(S)
zF,x = λ_.λz.Ω(x) x ∈ Dom(S)

〉
where

∀Bx,i.τx,i = Tv JSi(x)KΦ′

∀Bx.τx = Tv JS(x)KΦ′

Φ′ = Φ ∪̇ {α 7→ SF′ ,i,t a | α ∈ Q , 〈i, t〉 = pick(S ,α)}
Ω = SbJbKΦ′′

Φ′′ = Φ′ ∪̇ {(Xi, y) 7→ zF′ ,i,y z | i ∈ [n], y ∈ Dom(Si)}
∪̇ {x 7→ zF,x (⊥ :: TF) z | x ∈ Dom(S)}

z ∈ FreshVarIds, a 6= b ∈ FreshTypVars.

ture definitions, we first define in Figure 4.10 a function F that translates functor
definitions with unsealed right-hand sides. This function takes an extra functor
identifier F′. We shall see later why this extra functor identifier is needed. F ac-
cepts only functor definitions for which the semantic structure S in the annotation
on the left-hand and on the right-hand side are equal. All well-typed functor defi-
nitions satisfy this criteria.

The triple of data type, class, and instance definitions returned by F define a new
class CF′ ,arg, which is the translation of the argument signatures Sn

. We already
discussed on page 57 that instances of the class CF′ ,arg are used to translate functor
applications. Note that we accumulate all argument signatures into a single type
class. To translate a value type Si(x) to a Tiny-HS+ type scheme ∀Bx,i.τx,i, we need
to extend the occurrence environment with the semantic type variables in Q .

We also define a new type class CF and make the new data type TF an instance
of CF. The class CF is the translation of the functor result signature S . CF′ ,arg has
to be a superclass of CF because S(x) might contain semantic type variables from
Q , which are represented by applications of associated type synonyms declared

64 Chapter 4. From modules to classes

in CF′ ,arg. The instance definition for CF uses the code obtained by translating the
functor body b with the function Sb defined in Figure 4.7. Note that we extend
the occurrence environment with the semantic type variables and the value com-
ponents introduced by the functor arguments, and with the value components
defined in the functor body.

Figure 4.11 shows the two missing cases of the program translation function
P. This function puts, similar to F, certain restrictions on the annotations of the
functor definitions it accepts. All type correct functor definitions fulfill these re-
strictions.

The case for functor definitions with an unsealed right-hand side is trivial be-
cause all work is done by the function F. Note that we do not need to extend the
occurrence environment Φ for translating the rest of the program because a func-
tor definition per se does not introduce any new semantic type variables or value
identifiers.

The case for functor definitions with a sealed right-hand side is more compli-
cated. Along the lines of the case for structure definitions, we conceptually simu-
late splitting the functor definition

functor F〈∀Q .Sn→∃P .S〉(Xi : Si
i∈[n]) = ps〈S

′〉 :> S〈ΛP .S〉

into two functor definitions2

functor F?〈∀Q .Sn→S ′〉(Xi : Si
i∈[n]) = ps〈S

′〉

functor F〈∀Q .Sn→∃P .S〉(Xi : Si
i∈[n]) = F?(Xn) :> S〈ΛP .S〉.

The functor definition for F? is translated by the function F. Now we can see
why the function F takes an extra functor identifier as a parameter: The functor
argument signatures need to be translated into a type class CF,arg, whereas the
functor result signature must be translated into a type class CF?

. F generates an
instance definition instance CF,arg a ⇒ CF?

TF?
a where . . . as well.

Then we define a class CF as the translation of the functor result signature S . The
instance definition instance CF,arg a⇒ CF TF a where . . . simply copies all methods
and those associated type synonyms, which correspond to type components that
do not introduce new abstract types, from the translation of F?. Type components
that introduce abstract types are translated along the lines of the translation of
structure definitions with sealed right-hand sides (see page 62).

However, this time we could not do without propagating type equalities be-
tween abstract types. Consider the following example:

functor F (X : sig end) =
struct

type s = int

2The functor application on the right-hand side of the second functor definition is not valid Anno-
tated Tiny-ML because the annotations for F? and for the arguments Xi are missing. However,
we do not really split the functor definition in the translation; the code should only illustrate the
idea behind the translation.

4.2. Formal translation 65

Figure 4.11. Translation of functor definitions

PJprogKΦ = 〈ddec, cls, inst〉

PJfunctor F〈∀Q .Sn→S〉(Xi : Si
i∈[n]) = ps〈S〉; progKΦ =

〈ddec ddec′, cls cls′, inst inst′〉
where

〈ddec, cls, inst〉 = FJfunctor F〈∀Q .Sn→S〉(Xi : Si
i∈[n]) = ps〈S〉KFΦ

〈ddec′, cls′, inst′〉 = PJprogKΦ

PJfunctor F〈∀Q .Sn→∃P .S〉(Xi : Si
i∈[n]) = ps〈S

′〉 :> S〈ΛP .S〉; progKΦ =

〈data TF ddec ddec′

, cls
class CF,arg a ⇒ CF b a where

type SF,t b a t ∈ Dom(S)
zF,x :: ∀Bx.b → a → τx x ∈ Dom(S)

cls′

, instance CF,arg a ⇒ CF TF a where
type SF,t TF a = SF? ,t TF?

a t ∈ Dom(S), S(t) /∈ P
abstype SF,t TF a = SF? ,t TF?

a t ∈ Dom(S), S(t) ∈ P
t = pick(S , S(t))

type SF,t TF a = SF,t′ TF a t ∈ Dom(S), S(t) ∈ P
t′ = pick(S , S(t)), t′ 6= t

zF,x = λ_.λz.zF? ,x (⊥ :: TF?) z x ∈ Dom(S)
inst inst′〉

where

〈ddec, cls, inst〉 = FJfunctor F?〈∀Q .Sn→S ′〉(Xi : Si
i∈[n]) = ps〈S

′〉KFΦ

〈ddec′, cls′, inst′〉 = PJprogKΦ
∀Bx.τx = Tv JS(x)KΦ′

Φ′ = Φ ∪̇ {α 7→ SF,i,t a | α ∈ Q , 〈i, t〉 = pick(S ,α)}
∪̇ {α 7→ SF,t b a | α ∈ P , t = pick(S ,α)}

z ∈ FreshVarIds, a 6= b ∈ FreshTypVars

66 Chapter 4. From modules to classes

type t = int
val x = 0

end :> sig type s type t = s val x : s end

structure Empty = struct end

structure Y = F (Empty) :> sig type t val x : t end

If we translated the example to Tiny-HS+ without translating the type equality
between s and t, then the translation of the right-hand side of the definition of Y
did not type check.

4.3. Formal properties

After having defined the translation from Tiny-ML to Tiny-HS+ in the preceding
section, we now prove formal properties of it. The main results are that the trans-
lation is well-defined for every type correct program (Section 4.3.1) and that the
result of the translation is a type correct Tiny-HS+ program given the source pro-
gram is type correct (Section 4.3.2). Taken together, this means that every type cor-
rect Tiny-ML program translates into a type correct Tiny-HS+ program. However,
it does not mean that the translation is sound. To prove soundness, we would also
need to relate the dynamic behavior of a source program to its translation. Nev-
ertheless, the results presented here are a strong indication that the translation is
indeed sound. The material in this section is not important for understanding the
rest of thesis, so you may skip this section if you are not interested in the formal
details.

There is one issue we need to discuss before we can start with the proofs: The
translation from Tiny-ML to Tiny-HS+ first translates a Tiny-ML program into an
Annotated Tiny-ML program, and then translates the Annotated Tiny-ML pro-
gram into a Tiny-HS+ program. However, we have not formalized the translation
from Tiny-ML to Annotated Tiny-ML because it is obvious how to define such a
translation based on Tiny-ML’s typing judgments. Therefore, we assume implic-
itly that every Annotated Tiny-ML fragment complies with the typing derivation
for the corresponding Tiny-ML fragment under discussion.

4.3.1. Well-definedness

It is not obvious that the translation is well-defined for every well-typed program.
Here are some examples for what could go wrong:

• pick(S ,α) is not well-defined of there exists no t ∈ Dom(S) with S(t) = α.

• EJeKΦ is not well-defined if e contains value occurrences not covered by Φ.

• TuJuKΦ is not well-defined if FVα(u) * Dom(Φ).

4.3. Formal properties 67

Therefore, we prove in this section that the translation is indeed well-defined
for every type correct program. We start with some definitions and lemmata that
are important for proving the well-definedness of usages of the pick operation.

Definition 4.2 (Solvability). A signature S is said to be solvable with respect to
P ⊆ TypVar , written Solv(S , P), if for all α ∈ P there exists some t ∈ Dom(S)
such that S(t) = α.

Lemma 4.3 (Solvability of signature expressions). If C ` S . ΛP .S , then we have
also Solv(S , P).

Proof. Simple induction on the rules defining C ` B . L and C ` S . L.

Remark. Definition 4.2 and Lemma 4.3 correspond to Definition 4.2 and Lemma 4.3
in Russo’s thesis [Rus98, page 122], respectively.

Definition 4.4 (Groundness). A semantic functor F = ∀Q .Sn → ∃P .S is ground
if Solv(S , P), and there exist sets Qi with Q = ∪i∈[n]Qi such that Solv(Si, Qi) for
all i ∈ [n]. A context C is ground if C(F) is ground for all F ∈ Dom(C).

Remark. The preceding definition of groundness is similar to Definition 4.5 in
Russo’s thesis [Rus98]. The difference is that Russo does not postulate solvabil-
ity of the result signature ∃P .S .

Lemma 4.5 (Solvability of structure expressions). Let C be ground. If C ` s:> :
∃P .S , then Solv(S , P).

Proof. Straightforward rule induction.

Remark. Lemma 4.5 would not hold if we allowed arbitrary structure expressions
(and not only structure variables) as functor arguments.

The following lemma states that denotation and classification judgments do not
introduce new type variables. The lemma is taken from Russo’s thesis as well.

Lemma 4.6 (Free type variables and typing judgments).

• C ` u . u implies FVα(u) ⊆ FVα(C) and FV ‘a(u) ⊆ FV ‘a(C).

• C ` v . v implies FVα(v) ⊆ FVα(C) and FV ‘a(v) ⊆ FV ‘a(C).

• C ` B . L implies FVα(L) ⊆ FVα(C) and FV ‘a(L) ⊆ FV ‘a(C).

• C ` S . L implies FVα(L) ⊆ FVα(C) and FV ‘a(L) ⊆ FV ‘a(C).

• C ` e : v implies FVα(v) ⊆ FVα(C) and FV ‘a(v) ⊆ FV ‘a(C).

• C ` b : S implies FVα(S) ⊆ FVα(C) and FV ‘a(S) ⊆ FV ‘a(C).

• C ` s:> : X implies FVα(X) ⊆ FVα(C), provided C is ground.

68 Chapter 4. From modules to classes

• C ` s:> : X implies FV ‘a(X) ⊆ FV ‘a(C).

Proof. All claims are proved by straightforward rule inductions.

The following definition relates a context C to an occurrence environment Φ.

Definition 4.7 (Validity of occurrence environments). Φ is said to be valid with
respect to C, written Valid(C , Φ), if FVα(C) ⊆ Dom(Φ) and {x | x ∈ Dom(C)} ∪
{(X, y) | X ∈ Dom(C), y ∈ Dom(C(X))} ⊆ Dom(Φ).

Now we can prove the well-definedness of all translation functions except the
program translation function P.

Lemma 4.8 (Well-definedness of expression translation). EJeKΦ is well-defined if
C ` e : u and Valid(C , Φ).

Proof. Straightforward induction on the derivation of C ` e : u .

Lemma 4.9 (Well-definedness of type translation). TuJuKΦ and Tv JvKΦ are well-
defined if FVα(u) ⊆ Dom(Φ) and FVα(v) ⊆ Dom(Φ), respectively.

Proof. Obvious.

Lemma 4.10 (Well-definedness of Sb). SbJbKΦ is well-defined provided C ` b : S ,
Valid(C , Φ), and Dom(Sx) ⊆ Dom(Φ).

Proof. By induction on the structure of b. See Appendix B, page 115.

Lemma 4.11 (Well-definedness of structure expression translation). SJsKΦ is well-
defined if C ` s : X , Valid(C , Φ), and Dom(Sx) ⊆ Dom(Φ).

Proof. By structural induction on s. See Appendix B, page 115.

Lemma 4.12. If SJsKΦ = 〈Ω, ddec, inst〉 and C ` s : ∃P .S , then Dom(Ω) =
Dom(S).

Proof. Straightforward structural induction on s.

Lemma 4.13 (Well-definedness of translation of structure definitions with un-
sealed right-hand sides). XJstructure X = s〈X 〉KΦ is well-defined if C ` s : X ,
Valid(C , Φ), and C ground.

Proof. See Appendix B, page 116.

Lemma 4.14 (Well-definedness of translation of functor definitions with un-
sealed right-hand sides). FJfunctor F〈∀Q .Sn→S〉(Xi : Si

i∈[n]) = ps〈S〉KF′Φ is well-
defined if C , Xi 7→ Si

i∈[n] ` b : S , C and ∀Q .Sn → S ground, and Valid(C , Φ).

Proof. See Appendix B, page 116.

4.3. Formal properties 69

We need another simple lemma before we can prove the well-definedness of the
program translation function P.

Lemma 4.15 (Properties of helper judgment for functor arguments). If C
funargs

`
Xi : Si

i∈[n]
. ∀P .Sn

, then FVα(∀P .Sn) ⊆ FVα(C) and for all i ∈ [n] exist Pi with
P = ∪i∈[n]Pi such that Solv(Si, Pi).

Proof. We prove the first proposition by induction on n using Lemma 4.6. The
second proposition follows directly from Lemma 4.3.

Now we can state and prove the main result of this section.

Theorem 4.16 (Well-definedness of program translation). PJprogKΦ is well-defined
if C ` prog, C ground, and Valid(C , Φ).

Proof. By structural induction on prog. See Appendix B, page 116.

Corollary 4.17. PJprogK∅ is well-defined if ∅ ` prog.

Proof. Follows directly from Theorem 4.16.

4.3.2. Type correctness

This section proves that the result of the translation is a type correct Tiny-HS+

program provided the source program is a type correct Tiny-ML program. In the
following, all usages of the translation functions and all usages of the pick oper-
ation are well-defined. The well-definedness property is easy to verify, so we do
not mention it explicitly.

We first have to relate the environments Θ̂ and Γ̂ used in the typing judgments
for Tiny-HS+ to the context C used in the typing judgments for Tiny-ML.

Definition 4.18 (Equivalence of Tiny-HS+ environments and Tiny-ML contexts).
Θ̂, Γ̂ are equivalent to C modulo Φ, written Θ̂; Γ̂ ≡Φ C, if the following conditions
hold:

1. C ground

2. Valid(C , Φ)

3. FVz(Φ) ∩ {zc | c ∈ CoreId} = ∅

4. For x ∈ Dom(C): Θ̂; Γ̂ ` Φ(x) : Tv JC(x)KΦ

5. For X ∈ Dom(C), y ∈ Dom(C(X)): Θ̂; Γ̂ ` Φ(X, y) : Tv JC(X)(y)KΦ

6. For c ∈ Dom(C): Γ̂ (zc) = Tv JC(c)KΦ

7. For F ∈ Dom(C) with C(F) = ∀Q .Sn → ∃P .S :

70 Chapter 4. From modules to classes

7.1. For all i ∈ [n], t ∈ Dom(Si): SF,i,t is an associated type synonym of type
class CF,arg

7.2. For all i ∈ [n], x ∈ Dom(Si): Γ̂ (zF,i,x) = ∀A ∪̇ {a}.CF,arg a ⇒ a → τ ,
where ∀A.τ = Tv JSi(x)KΦ′, Φ′ := Φ ∪̇ {α 7→ SF,i,t a | α ∈ Q , 〈i, t〉 =
pick(S ,α)}

7.3. (∀{a}.CF,arg a ⇒ CF TF a) ∈ Θ̂ where TF is a user-defined data con-
structor of kind 0

7.4. For all t ∈ Dom(S): SF,t is an associated type synonym of type class
CF and Θ̂ [τ/a](SF,t TF a = TuJS(t)KΦ′′) for all τ , where Φ′′ :=
Φ′ ∪̇ {α 7→ SF,t TF a | α ∈ P , t = pick(S ,α)}

7.5. For all x ∈ Dom(S): Γ̂ (zF,x) = ∀A ∪̇ {a, b}.CF b a ⇒ b → a → τ ,
where ∀A.τ = Tv JS(x)KΦ′′′, Φ′′′ := Φ′ ∪̇ {α 7→ SF,t b a | α ∈ P , t =
pick(S ,α)}

7.6. Sup(Θ̂, CF,arg a) = ∅, Sup(Θ̂, CF b a) = {CF,arg a}

We extend to well-formedness predicate for Tiny-HS+ types (see Figure 3.5 on
page 43) to whole occurrence environments. This enables us to state and prove a
lemma about the well-formedness of translated types.

Definition 4.19 (Well-formedness of occurrence environments). Φ is said to be
well-formed under Θ̂, written Θ̂ ` Φ, if Θ̂ ` Φ(α) for allα ∈ Dom(Φ).

Lemma 4.20 (Well-formedness of translated types). If TuJuKΦ = τ and Θ̂ ` Φ,
then Θ̂ ` τ .

Proof. Straightforward induction on the structure of u. Note that we postulated
in Section 3.3.4 that every Tiny-ML type constructor Tκ has a builtin Tiny-HS+

counterpart Tκ.

The next lemma proves that it does not matter whether we first apply a sub-
stitution to a Tiny-ML type and then translate the resulting type, or whether we
translate the type first and then apply a corresponding substitution on the result.

Lemma 4.21 (Type translation and substitutions). Suppose φ is a substitution from
SimTypVar to SimTyp and Φ is an occurrence environment with FVα(φ) ⊆ Dom(Φ),
FVa(Φ) ∩ {a‘a | ‘a ∈ Dom(φ)} = ∅. Define ψ := {a‘a 7→ TuJφ(‘a)KΦ | ‘a ∈
Dom(φ)}. Then we have TuJφ(u)KΦ = ψ(TuJuKΦ) for all u with FVα(u) ⊆ Dom(Φ).

Proof. Straightforward induction on the structure of u.

The following lemma is a simple weakening lemma.

Lemma 4.22 (Weakening).

• Θ̂ π and Θ̂ ⊆ Θ̂′ imply Θ̂′ τ .

4.3. Formal properties 71

• Θ̂ ` τ and Θ̂ ⊆ Θ̂′ imply Θ̂′ ` τ .

• Θ̂; Γ̂ ` w : σ , Θ̂ ⊆ Θ̂′, and Γ̂ ⊆ Γ̂ ′ imply Θ̂′; Γ̂ ′ ` w : σ .

Proof. All claims are proved by rule induction. For the case (∀I)+ of the last claim,
we safely assume that (A ∪ {a}) ∩ (FVa(Θ̂′) ∪ FVa(Γ̂ ′)) = ∅ where σ = ∀A ∪
{a}.ρ.

The next lemma states that if we can assign some type scheme to an expression,
then we can also assign instances of the type scheme to the expression.

Lemma 4.23 (Instantiation of type schemes). If Θ̂; Γ̂ ` w : ∀A.ρ andψ is a substitu-
tion with Dom(ψ) = A such that Θ̂ ` ψ(a) for all a ∈ A, then Θ̂; Γ̂ ` w : ψ(ρ).

Proof. We can safely assume that A ∩ FVa(ψ) = ∅. The proof is now by induction
on |A| using rule (∀E)+.

Now we can prove that type correct Tiny-ML expressions are translated into
type correct Tiny-HS+ expressions.

Lemma 4.24 (Type correctness of translated expressions). If EJeKΦ = w and C `
e : u, then Θ̂; Γ̂ ` w : τ and TuJuKΦ = τ , provided the following assumptions hold:

• Θ̂; Γ̂ ≡Φ C

• Θ̂ ` Φ

• FVα(u) ⊆ Dom(Φ)

Proof. By induction on the structure of e. See Appendix B on page 118.

Corollary 4.25 (Type correctness of translated, polymorphic expressions). If we
have EJeKΦ = w and C ` e : v , then we have also Θ̂; Γ̂ ` w : σ and Tv JvKΦ = σ ,
provided Θ̂; Γ̂ ≡Φ C and Θ̂ ` Φ hold.

Proof. Follows directly from Lemma 4.24, Lemma 4.6, rule (exppoly), and rule (∀I)+.

The next lemma states that the elements of a code environment Ω returned by
the translation function Sb have the “expected properties”.

Lemma 4.26 (Type correctness of translated structure bodies). Suppose

• C ` b : S

• SbJbKΦ = Ω

• Θ̂; Γ̂ ≡Φ C

• Θ̂ ` Φ

72 Chapter 4. From modules to classes

• Θ̂; Γ̂ ` Φ(x) : Tv JS(x)KΦ for all x ∈ Dom(S)

Then we have

• Θ̂ ` Ω(t) for all t ∈ Dom(Ω)

• Ω(t) = TuJS(t)KΦ for all t ∈ Dom(Ω)

• Θ̂; Γ̂ ` Ω(x) : Tv JS(x)KΦ for all x ∈ Dom(Ω)

Proof. By structural induction on b. See Appendix B, page 120.

The following three lemmata prove various propositions about the type transla-
tion function Tu .

Lemma 4.27 (Type translation, type equality, and substitutions). Suppose Θ̂
Φ(α) = TuJϕ(α)KΦ for all α ∈ Dom(ϕ), where ϕ is a substitution from TypVar to
SimTyp such that Dom(ϕ)∪FVα(ϕ) ⊆ Dom(Φ). Then Θ̂ TuJuKΦ = TuJϕ(u)KΦ,
provided FVα(u) ⊆ Dom(Φ).

Proof. Straightforward induction over the structure of u .

Lemma 4.28 (Type translation and type equality). If Dom(Φ) = Dom(Φ′), Θ̂
Φ(α) = Φ′(α) for all α ∈ Dom(Φ), and FVα(u) ⊆ Dom(Φ), then Θ̂ TuJuKΦ =
TuJuKΦ′.

Proof. Straightforward structural induction over u.

Lemma 4.29 (Type translation and free simple type variables). Let u be a semantic
simple type with FVα(u) ⊆ Dom(Φ). Then we have FVa(TuJuKΦ) ⊆ FVa(Φ)∪ {a‘a |
‘a ∈ FV ‘a(u)}. Similarly, for a semantic simple type scheme v with FVα(v) ⊆ Dom(Φ)
we have FVa(Tv JvKΦ) ⊆ FVa(Φ) ∪ {a‘a | ‘a ∈ FV ‘a(v)}.

Proof. Straightforward structural inductions on u and v , respectively.

The next two lemmata are important because they connect the enrichment rela-
tion of Tiny-ML with type assignments in Tiny-HS+. They basically state that if
some expression has typeσ then it also has typeσ ′, providedσ andσ ′ are transla-
tions of v and v ′, respectively, and v enriches v ′.

Lemma 4.30 (Typing and value type enrichment). Suppose v < v ′ and FVα(v ′) ⊆
Dom(Φ). If Θ̂; Γ̂ ` w : Tv JvKΦ and Θ̂ ` Φ, then Θ̂; Γ̂ ` w : Tv Jv ′KΦ.

Proof. See Appendix B, page 121.

Lemma 4.31 (Typing and structure enrichment). Suppose S <ϕ(S ′), x ∈ Dom(S ′),
Θ̂; Γ̂ ` w : Tv JS(x)KΦ, and Θ̂ ` Φ. Then we have also Θ̂; Γ̂ ` w : Tv JS ′(x)KΦ′

for all Φ′ = Φ ∪̇ {α 7→ τα | α ∈ Dom(ϕ), Θ̂ τα = TuJϕ(α)KΦ} provided
Dom(ϕ) ∩Dom(Φ) = ∅ and FVα(ϕ) ∪ (FVα(S ′) \Dom(ϕ)) = Dom(Φ).

4.3. Formal properties 73

Proof. See Appendix B, page 122.

The preceding two lemmata make it possible to prove that the translation of
unsealed structure expressions yields the “desired result”.

Lemma 4.32 (Type correctness of translated structure expressions). Given

• C ` s : ∃P .S

• SJsK(Φ ∪̇Φ′) = 〈Ω, ddec, inst
m〉

• Θ̂; Γ̂ ≡Φ∪̇Φ′ C

• Θ̂ ` Φ

• Dom(Sx) = Dom(Φ′)

• Θ̂; Γ̂ ` Φ′(x) : Tv JS(x)K(Φ ∪̇ Φ′′) for all x ∈ Dom(S) and some Φ′′ with
Φ′′ = {α 7→ τα | α ∈ P , t = pick(S ,α), Θ̂ τα = Ω(t), FVa(τα) = ∅}

• FV ‘a(C) ∪ FVa(Φ) = ∅

Then ` insti : Θ̂i for all i ∈ [m], and with Θ̂′ := Θ̂ ∪⋃
i∈[m] Θ̂i

• Θ̂′; Γ̂ ` insti for all i ∈ [m]

• Θ̂′ ` Ω(t) for all t ∈ Dom(S)

• Θ̂′ Ω(t) = TuJS(t)K(Φ ∪̇Φ′′) for all t ∈ Dom(S)

• Θ̂′; Γ̂ ` Ω(x) : Tv JS(x)K(Φ ∪̇Φ′′) for all x ∈ Dom(S)

Proof. The proof is by structural induction on s. The interesting case is the one for
functor application. See Appendix B on page 122 for a detailed proof.

We need two more definitions and a simple lemma before we can prove the
type correctness of the translation for whole programs. The following definition
introduces a convenient notation for the triples returned by functions X, F, and P.

Definition 4.33 (Program vector). A program vector pv is a three-element vector
〈ddec, inst, cls〉. We define the following operations on program vectors:

• −→pv denotes the program ddec inst cls obtained by concatenating the elements
of the program vector pv.

• pv ⊕ pv′ is defined as the concatenation of the program vectors pv and pv′;
that is, 〈ddec, inst, cls〉 ⊕ 〈ddec′, inst′, cls′〉 := 〈ddec ddec′, inst inst′, cls cls′〉.

• pv
−→⊕ pv′ is a short hand notation for

−−−−→
pv⊕ pv′.

74 Chapter 4. From modules to classes

The next definition connects a Tiny-ML context C with a Tiny-HS+ program
vector pv. Intuitively, pv provides C if pv is the translation of the Tiny-ML program
whose type information is contained in C.

Definition 4.34 (Tiny-ML context provider). A program vector pv provides C
through Φ at Θ̂, Γ̂ if ` −→pv : Θ̂; Γ̂ , Θ̂ ` Φ, and Θ̂; Γ̂ ≡Φ C. If the specific Θ̂ and
Γ̂ do not matter, we just say that pv provides C through Φ.

We now extend the weakening lemma 4.22 to work for whole programs.

Lemma 4.35 (Weakening for whole programs). Suppose

• ` cls
n

inst
m : Θ̂; Γ̂

• ` clsi : Θ̂i; Γ̂i for i ∈ {n + 1, . . . , n + k} =: N

• ` insti : Θ̂′
i for i ∈ {m + 1, . . . , m + l} =: M

• Γ̂ , Γ̂n+1, . . . , Γ̂n+k pairwise disjoint

Define Θ̂′ := Θ̂ ∪⋃
i∈N Θ̂i ∪

⋃
i∈M Θ̂′

i and Γ̂ ′ := Γ̂ ∪⋃
i∈N Γ̂i. If now Θ̂′ ` clsi for i ∈ N

and Θ̂′; Γ̂ ′ ` insti for i ∈ M, then ` cls
n+k

inst
m+l : Θ̂′; Γ̂ ′.

Proof. Follows from Lemma 4.22.

The remainder of this section contains the type correctness proof for translated
programs. Corollary 4.39 states the main result.

Lemma 4.36 (Type correctness of translated structure definitions with unsealed
right-hand sides). If

• XJstructure X = s〈∃P .S〉KΦ = pv

• C ` s : ∃P .S

• there exists some pv′ that provides C through Φ

• FV ‘a(C) ∪ FVa(Φ) = ∅

• {(X, y) | y ∈ ValId} ∩Φ = ∅

then

• pv′ ⊕ pv provides C , X 7→ S through Φ̃ = Φ ∪̇ {α 7→ SX.t TX | α ∈ P , t =
pick(S ,α} ∪̇ {(X, y) 7→ zX.y (⊥ :: TX) | y ∈ Dom(S)} at Θ̂,Γ̂

• Θ̂ CX TX

• SX.t is an associated type synonym of class CX for all t ∈ Dom(S)

• Θ̂ SX.t TX = TuJS(t)KΦ̃ for all t ∈ Dom(S)

4.3. Formal properties 75

Proof. See Appendix B, page 126.

Lemma 4.37 (Type correctness of translated functor definitions with unsealed
right-hand sides). If

• FJfunctor F〈∀Q .Sn→S〉(Xi : Si
i∈[n]) = ps〈S〉KF′Φ = pv

• C , Xi 7→ Si
i∈[n] ` ps : S

• there exists some pv′ that provides C through Φ

• FV ‘a(C) ∪⋃
i∈[n] FV ‘a(Si) ∪ FVa(Φ) = ∅

then

1. ` pv′ ⊕ pv : Θ̂; Γ̂

2. Θ̂ ` Φ

3. For all i ∈ [n], t ∈ Dom(Si): SF′ ,i,t is an associated type synonym of type class
CF′ ,arg

4. For all i ∈ [n], x ∈ Dom(Si): Γ̂ (zF′ ,i,x) = ∀A ∪̇ {a}.CF′ ,arg a ⇒ a → τ , where
∀A.τ = Tv JSi(x)KΦ′, Φ′ := Φ ∪̇ {α 7→ SF′ ,i,t a | α ∈ Q , 〈i, t〉 = pick(S ,α)}

5. (∀{a}.CF′ ,arg a ⇒ CF TF a) ∈ Θ̂ where TF is a user-defined data constructor of
kind 0

6. For all t ∈ Dom(S): SF,t is an associated type synonym of type class CF and
(∀{a}.SF,t TF a = TuJS(t)KΦ′) ∈ Θ̂

7. For all x ∈ Dom(S): Γ̂ (zF,x) = ∀A ∪̇ {a, b}.CF b a ⇒ b → a → τ , where
∀A.τ = Tv JS(x)KΦ′

8. Sup(Θ̂, CF′ ,arg a) = ∅, Sup(Θ̂, CF b a) = {CF′ ,arg a}

Proof. See Appendix B, page 128

Theorem 4.38 (Type correctness of translated programs). If

• PJprogKΦ = pv

• C ` prog

• there is some pv′ that provides C through Φ

• FV ‘a(C) ∪ FVa(Φ) = ∅

• {(X, y) | X ∈ StrId \Dom(C), y ∈ ValId} ∩Dom(Φ) = ∅

then ` pv′
−→⊕ pv

76 Chapter 4. From modules to classes

Proof. The proof is by structural induction on prog. See Appendix B on page 131
for a detailed proof.

Corollary 4.39. If PJprogK∅ = pv and ∅ ` prog, then ` −→pv .

Proof. Follows directly from Theorem 4.38.

4.4. Restrictions on the source language Tiny-ML

We already noticed at the beginning of Section 2.3 that Tiny-ML does not sup-
port some features of Standard ML’s module system, namely nested structures,
parameterizable type components, arbitrary structure expressions as functor ar-
guments and functor bodies, weak sealing, and data types. Moreover, Tiny-ML
does not support higher-order functors [MT94] and applicative functors [Ler95],
two widespread extensions to Standard ML. These features are not supported ei-
ther because the translation to Tiny-HS+ could not handle them, or because they
would only complicate the translation without adding much to the comparison
between ML modules and Haskell type classes. We now discuss if and how we
could extend the translation to cope with these features.

Nested structures. Nested structures in ML would correspond to nested classes
and nested instances, which are not supported by Haskell 98 or any extension.
One possibility to translate nested structures would be to lift them to the top level.
However, this would probably require a nontrivial transformation because nested
structures may refer to components of the structure that contains them. I have not
investigated this problem any further.

Parameterizable type components. In Standard ML, type components can be
parameterized over simple type variables. This feature has been omitted from
Tiny-ML to keep the translation simple. It is unproblematic to translate a parame-
terized type component to an associated type synonym that has more parameters
than the class that declares it. (This feature has been omitted from Tiny-HS+ but
is supported by the system of Chakravarty et al. [CKP05].)

Arbitrary structure expressions as functor arguments. The translation of func-
tor applications with arbitrary functor arguments is possible by binding the func-
tor arguments to fresh structure variables and replacing the arguments with these
variables.

Arbitrary structure expressions as functor bodies. Support for arbitrary struc-
ture expressions as functor bodies seems not to be possible. The problematic case
is a functor body consisting of a functor application that uses an argument of the
original functor; that is, something like functor F(X) = G(X). The problem is that

4.5. Implementation 77

the translation to Tiny-HS+ generates a new instance definition for the functor ap-
plication G(X). However, the Tiny-HS+ counterpart of the functor argument X is
only available inside a class or instance definition, but nested classes and instances
are not supported by Haskell 98 or any extension.

Weak sealing. Weak sealing only hides type and value components; it does not
introduce new abstract types. Extending the translation with support for weak
sealing is straightforward.

Data types. In Standard ML, signatures and structures can also contain data type
components. Such data types correspond to associated data types, a Haskell ex-
tension suggested by Chakravarty et al. [CKPM05].

Higher-order functors. Higher-order functors [MT94] are functors that take other
functors as parameters or return them as result. Higher-order functors pose a se-
rious problem to the translation. A possible solution for functors taking other
functors as arguments could be universal quantifiers in class contexts. For exam-
ple, the class corresponding to a higher-order functor HF, which takes a functor F
as argument, could be written class (∀c. S c ⇒ F a c) ⇒ HF b a where . . . , where
S is the translation of F’s argument signature. Such universal quantifiers in class
contexts are mentioned by Peyton Jones et al. [PJM97, Section 5.2]. However, the
authors state that universal quantification in constraints would mean a “substan-
tial complication” of the type system and therefore reject the extension. However,
Rossberg and Sulzmann show in [RS02, Section 4.3] that such universal quantifi-
cations can be encoded in the Haskell-like language Chameleon [SW05].

Applicative functors. Functors in Standard ML are generative; that is, they gen-
erate new abstract types every time they are invoked. Functors translated to Tiny-
HS+ behave generatively as well because a fresh type constructor and a fresh in-
stance of the functor argument class is generated for each invocation. Applicative
functors [Ler95] yield compatible abstract types when applied to compatible argu-
ments. The translation to Tiny-HS+ can be extended to handle applicative func-
tors; only some extra bookkeeping is needed to avoid the generation of fresh type
constructors and instances when a functor is applied to compatible arguments for
the second time.

4.5. Implementation

A Haskell implementation of the translation from Tiny-ML to Tiny-HS+ is avail-
able from http://www.stefanwehr.de/diplom. The Tiny-ML examples in Chap-
ter 2 and the example in Figure 4.1(a) were checked against this implementation.

http://www.stefanwehr.de/diplom

78 Chapter 4. From modules to classes

In fact, Appendix A shows the (slightly edited) Tiny-HS+ code generated by the
implementation for the ML code in Figure 4.1(a).

The type annotations for Tiny-ML are obtained by running the Moscow ML in-
terpreter [RRK+03] on a pretty-printed and slightly modified version of the Tiny-
ML abstract syntax tree. The interpreter outputs a textual form of the semantic
objects, which can be parsed to get the type annotations.

The implementation of the translation itself is merely a Haskell version of the
translation functions from Section 4.2. The result of the translation is an abstract
syntax tree for PHRaC3, which implements the target language Tiny-HS+. PHRaC
was developed by Gabriele Keller, Donald Stewart, and the author of this work.

4.6. Related work

Section 1.2 of the introduction already mentioned work related to the translation
from ML modules to Haskell type classes. This sections contains a more detailed
discussion of this work, and discusses other approaches to modular programming
in Haskell.

Kahl and Scheffczyk propose in [KS01] named instances for Haskell type classes.
Named instances allow the definition of more than one instance for the same type;
the instances are then distinguished by their name. Such named instances are
not used automatically in resolving overloading; however, the programmer can
customize overloading resolution by supplying them explicitly. My translation
from ML modules to Haskell type classes represents the name of a structure or
functor as a data type. Kahl and Scheffczyk’s extension would make it possible to
avoid this detour because names are directly available in their language. However,
associated type synonyms are not part of their extension. Kahl and Scheffczyk
motivate and explain their extension in terms of OCaml’s [Ler00b] module system;
they do not consider any kind of translation from ML modules to Haskell type
classes.

Shan [Sha04] presents a formal translation from a sophisticated ML module cal-
culus [DCH03] into System Fω [Gir72]. The source ML module calculus is a unified
formalism that covers a large part of the design space of ML modules. In contrast,
my source language Tiny-ML supports only basic features of the ML module sys-
tem. The target language System Fω of Shan’s translation can be encoded in Has-
kell extended with higher-rank types [PS04b]; however, this encoding is orthog-
onal to the type class system. Shan implements abstract types using existential
quantification in contrast to abstract associated type synonyms used in my work.
Kiselyov builds on Shan’s work and presents a Haskell example with type classes
of an applicative translucent functor [Kis04]. However, he does not give a formal
translation.

3PHRaC is available from http://www.cse.unsw.edu.au/~chak/papers/CKP05.html; however,
the distribution from http://www.stefanwehr.de/diplom already contains PHRaC.

http://www.cse.unsw.edu.au/~chak/papers/CKP05.html
http://www.stefanwehr.de/diplom

4.6. Related work 79

Jones suggests in [Jon96] an approach to modular programming that is differ-
ent from the approach taken by ML: signatures cannot contain type components,
but they may be parameterized over type variables; structures are then simply
polymorphic records. Abstraction can be performed by using some sort of quan-
tifier, which is left unspecified by Jones’ theory. The approach of parameterized
signatures is interesting because it avoids the use of a separate module language,
which means that modules are first-class by default and functors are just ordinary
functions.

Building on the ideas of Jones and other existing concepts, Shields and Peyton
Jones [SP02] extend Haskell’s core language in such a way that it can be used as
a module language. They use existential quantification to encode abstract types
and introduce a new construct to open existentials at the top level. Their resulting
module system offers first-class modules, type abstraction, generative functors,
type sharing, incremental compilation, and recursive and nested signatures and
structures.

80 Chapter 4. From modules to classes

Chapter 5.

From classes to modules

The translation from Haskell type classes to ML modules, which we develop in
this chapter, is very similar to other evidence translations [WB89, Jon94,HHPW96,
Fax02] that make ad-hoc polymorphism introduced by type classes explicit; in
our case, first-class structures are used as runtime evidence for constraints. We
first discuss an example translation in Section 5.1, and then develop the formal
translation from Tiny-HS to Tiny-ML+ in Section 5.2. Section 5.3 proves that all
well-formed and type correct Tiny-HS programs are translated into type correct
Tiny-ML+ programs. We discuss why full Haskell 98 type classes cannot be trans-
lated to ML modules in Section 5.4. An implementation of the translation is the
topic of Section 5.5, and related work is discussed in Section 5.6.

5.1. Example translation

Starting with an example translation helps a lot to understand the general idea
behind the translation from type classes to ML modules. The Tiny-HS code of the
example is shown in Figure 5.1;1 it is a slightly modified version of the example
presented in Section 3.1. The expression at the end of the program is the main
expression.

The translation to Tiny-ML+ is shown in Figure 5.2. We first define abbrevia-
tions for the signatures representing the type classes Eq and Num.2 A type class is
translated into a signature with a single opaque type specification t, which corre-
sponds to the type variable in the class head, and with value specifications corre-
sponding to the methods of the class. Classes with superclasses have additional
value specifications, one for every immediate superclass. The type of such a super-
class value is that of a first-class structure of the superclass signature. For example,
the value specification superEq in the signature Num represents Num’s superclass
Eq. Note that we use a type realization where type t = t to make sure that the type
specifications in the superclass and subclass signature are compatible.

All instance definitions in a Tiny-HS program are translated into a single group
of recursive functors, which contains a functor definition for every instance defini-
tion. The arguments of such a functor correspond to the constraints in the context

1We bend Tiny-HS’s syntax slightly to avoid unnecessary clutter.
2Signature abbreviations are supported in Standard ML but not in Tiny-ML. We can eliminate the
abbreviations by replacing every signature identifier with its right-hand side.

81

82 Chapter 5. From classes to modules

Figure 5.1. Translating type classes to modules by hand: Tiny-HS code

class Eq a where
eq :: a → a → Bool

class Eq a ⇒ Num a where
plus :: a → a → a

instance Eq Int where
eq = primIntEq

instance Num Int where
plus = primIntAdd

instance Eq a ⇒ Eq [a] where
eq l l′ = if null l ∧ null l′ then True else

if null l ∨ null l′ then False else
eq (head l) (head l′) ∧ eq (tail l) (tail l′)

let p = λx . λy . eq x y ∧ eq [plus x y] [plus y x] in
if p 1 42 then 1 else 2

of the instance definition; we translate an instance with an empty context into a
functor with an empty argument list rather than into a structure because Tiny-
ML+ does not support recursive structures. The functor definitions have to be
mutually recursive because instances may be mutually recursive. Note that the
group of recursive functors is not necessarily minimal; it would be straightfor-
ward but tedious to extend the translation with a dependency analysis so as to
generate a set of minimal recursive functor groups.

The functors EqInt and NumInt are the translations of the instances Eq Int and
Eq Num, respectively. We use the previously defined signature abbreviations to-
gether with a type realization as the mandatory type annotations for the functor
bodies. The superEq value in NumInt’s body is defined as a first-class structure
that contains the result of invoking the EqInt functor.

The functor EqList is the translation of the instance definition for equality of
lists. The functor argument X : Eq corresponds to the constrain Eq a in the instance
head. The type occurrence X.t in the type realization where type t = list X.t and
in the type definition type t = list X.t reflects the connection between the type
variable a in the instance context and the type [a] in the instance head.

The definition of eq shows how the functor argument X is used on the value
level. You see that the EqList functor is applied inside its own body so as to invoke
eq recursively. We already saw this trick in Section 2.4.2.

So far, we did not see how values of qualified types are translated. Generally, a
value of some qualified Tiny-HS type C τ⇒ ρ is translated into a λ-abstraction that
takes a dictionary as an extra argument. The dictionary provides runtime evidence
for the constraint C τ ; it contains the methods of class C at type τ . In our case,
the dictionary is a first-class structure of type <S where type t = u>, where S is the

5.1. Example translation 83

Figure 5.2. Translating type classes to modules by hand: Tiny-ML+ code

signature Eq = sig type t val eq : t → t → bool end

signature Num = sig
type t
val plus : t → t → t
val superEq : <Eq where type t = t>

end

rec
functor EqInt () : Eq where type t = int =

struct type t = int val eq = primIntEq end

functor NumInt () : Num where type t = int =
struct

type t = int
val plus = primIntAdd
val superEq = pack EqInt () as Eq where type t = int

end

functor EqList (X : Eq) : Eq where type t = list X.t =
struct

type t = list X.t
val eq = λl . λl′ .

if null l ∧ null l′ then true else
if null l ∨ null l′ then false else
X.eq (head l) (head l′)
∧ (open (pack EqList (X) as Eq where type t = list X.t)

as Y : Eq where type t = list X.t
in Y.eq (tail l) (tail l′))

end

structure Main =
struct val main = let p : ∀{ ‘a} . <Num where type t = ‘a> → ‘a → ‘a → bool

= λd . λx . λy .
open d as N : Num where type t = ‘a in
open N.superEq as E : Eq where type t = ‘a in
open (pack EqList (E) as Eq where type t = list ‘a)

as L : Eq where type t = list ‘a
in E.eq x y ∧ L.eq [N.plus x y] [N.plus y x]

in if p (pack NumInt () as Num where type t = int) 1 42
then 1 else 2

end

84 Chapter 5. From classes to modules

signature corresponding to C, and u is the translation of τ .
You might wonder why we do not use Standard ML records as dictionaries.

In fact, records could be used as dictionaries for the example discussed in this
section. But in general, method signatures may contain universally quantified
type variables that are different from the type variable in the class head. We would
need polymorphic records to represent dictionaries of such type classes adequately.
However, record entries in Standard ML are monomorphic; hence, we use first-
class structures as dictionaries, whose value components might be polymorphic.

The translation of the main expression let p = . . . in . . . exemplifies how a value
of a qualified type is encoded in Tiny-ML+. In Tiny-HS, the let-bound variable p
has type ∀{a}. Num a ⇒ a → a → Bool. Consequently, the value p in Tiny-ML+

has type ∀{‘a}. <Num where type t = ‘a> → ‘a → ‘a → bool. The type annotation
for p is essential; it makes the type variable ‘a accessible in the body of p. We bind
the dictionary of type <Num where type t = ‘a> to an extra dictionary parameter
d; the open construct uses d to bring structure variables N, E, and L into scope,
which give access to the overloaded values necessary to translate the body of p.
Note that we use the type variable ‘a, introduced by the type annotation for p,
in the signatures required by open. The translation of the application p 1 42 con-
structs the additional dictionary parameter by packaging the result of applying
the functor NumInt as a first-class structure.

The formal translation presented in the following section produces a result very
similar to the manual translation shown here. Three things are slightly different in
the output of the formal translation:

• Signature abbreviations are not used; instead, the whole signature is re-
peated at every point of use.

• The functors representing instance definitions have an additional argument,
which represents type variables free in the instance head but not constrained
by the instance context. An empty signature is used if there are no such type
variables. In our case, none of the three instance definitions in Figure 5.1 has
such type variables, so we omitted the empty arguments in Figure 5.2 for
clarity.

• Dictionaries (i.e., first-class structures) are re-opened inside every subexpres-
sion that accesses an overloaded operation. In Figure 5.2, we reduced the
number of open constructs to make the code more readable.

5.2. Formal translation

The formal translation from Tiny-HS to Tiny-ML+ extends to typing judgments for
Tiny-HS with an additional output parameter, which gives the result of the trans-
lation. Additionally, we introduce new judgments for translating Tiny-HS types.
We first make some preparations in Section 5.2.1 before we define the translation
judgments in Section 5.2.2.

5.2. Formal translation 85

Figure 5.3. Identifier manipulation functions

Function signature Function application
MethodId → ValId, xm

ClassId → ValId, xC

VarId → CoreId, cz

TypVar → TypId, ta

TypVar → SimTypVar, ‘aa

TypVar → SimTypVar , ‘aa

5.2.1. Preparations

Figure 5.3 shows injective functions for converting Tiny-HS identifiers to Tiny-
ML+ identifiers, and defines an intuitive shorthand notation for function applica-
tion. We require that the images of all functions are pairwise disjoint. Furthermore,
we postulate the existence of a set of fresh core identifiers, FreshCoreIds ⊆ CoreId,
such that FreshCoreIds∩ {cz | z ∈ VarId} = ∅.

We need to adjust the original definition of environments (Definition 3.5 on
page 32) because constraint environments carry extra information for the trans-
lation; we also need two additional environments.

Definition 5.1 (Environments for the translation from Tiny-HS to Tiny-ML+). A
variable environment Γ maps term and method variables to type schemes, just as
the variable environment Γ̂ in the original type system does. A constraint environ-
ment Θ is similar to a constraint environment Θ̂ in the original Tiny-HS type sys-
tem but provides access to additional information: Θs contains constraint schemes
resulting from subclass definitions, just as Θ̂s does; Θi maps constraint schemes
originating from instance definitions to the names of the functors the instances are
translated to; Θl records for constraints added during the translation the expres-
sions providing evidence for the constraints. A type environment Σ maps Tiny-
HS type variables to Tiny-ML+ simple types. Finally, a signature environment ∆

maps classes to signature expressions that represent the classes in Tiny-ML+. The
environment ∆ is necessary because we do not use signature abbreviations in the
formal translation. The environments are defined as follows:

Γ ∈ VarId∪MethodId
fin−→ TypSc Variable environment

Θ :=

Θs ∈ Fin(ConstrSc),

Θi ∈ ConstrSc
fin−→ FunId,

Θl ∈ Constr
fin−→ Exp

 Constraint environment

Σ ∈ TypVar
fin−→ SimTyp Type environment

∆ ∈ ClassId
fin−→ SigExp Signature environment

It is sometimes convenient to treat Θ as a finite map and not as a triple contain-
ing a set and two finite maps. Hence, we define the following notation:

86 Chapter 5. From classes to modules

Figure 5.4. Translation of types

Translation of type schemes ∆; Σ ` σ v

∆; Σ−→∪ {a 7→ ‘aa | a ∈ A} ` ρ u
∆; Σ ` ∀A.ρ ∀{‘aa | a ∈ A}.u

(typtransscheme)t

Translation of qualified types ∆; Σ ` ρ u

Σ ` τ u ∆; Σ ` ρ u′ C ∈ Dom(∆)
∆; Σ ` C τ ⇒ ρ <∆(C) where type t = u> → u′

(typtransqual)t

Σ ` τ u
∆; Σ ` τ u

(typtransqual′)t

Translation of monotypes Σ ` τ u

Σ ` τi ui (i ∈ [κ])
Σ ` Tκ τκ Tκ uκ

(typtranstycon)t Σ(a) = u
Σ ` a u

(typtranstyvar)t

Definition 5.2 (Operations on constraint environments). The operations ∪̇ and−→∪ for finite maps are defined component-wise for constraint environments:

Θ ∪̇Θ′ := (Θs ∪Θs ′, Θi ∪̇Θi ′, Θl ∪̇Θl ′)
Θ
−→∪ Θ′ := (Θs ∪Θs ′, Θi −→∪ Θi ′, Θl −→∪ Θl ′)

5.2.2. The translation

The translation of Tiny-HS types into Tiny-ML+ types is shown in Figure 5.4. The
judgments ∆; Σ ` σ v and ∆; Σ ` ρ u need the signature environment ∆

because rule (typtransqual)t translates a constraint C τ into an appropriate package
type. ∆(C) is the signature representing the class C in Tiny-ML+.

The entailment judgment ∆; Σ; Θ π e is shown in Figure 5.5; the expression
e is a dictionary that provides evidence for the constraint π . Rule (elementail)t is
trivial because the evidence is already contained in the local part of the constraint
environment Θ.

Rule (instentail)t handles the case where some instance definition provides ev-
idence for π . We convert the dictionaries ei for the constraints in the instance
context into structure variables Xi by using the open construct. Then we apply
the functor F, which is the translation of the instance, and package the result as a
first-class structure. The extra argument for F represents the type variables free in
the instance head but not constrained by the instance context.

Rule (superentail)t derives evidence for a superclass from a subclass constraint.

5.2. Formal translation 87

Figure 5.5. Entailment with translation

∆; Σ; Θ π e

Θl(π) = e
∆; Σ; Θ π e

(elementail)t

F = Θi(∀A.Ci ai
i∈[r] ⇒ C τ ′) τ = ψ(τ ′) ∆; Σ; Θ Ci ψ(ai) ei

Σ ` τ u Σ ` ψ(ai) ui Σ ` ψ(b) ub (b ∈ B)
Dom(ψ) = A B = FVa(τ ′) \ {ai | i ∈ [r]}

C, Ci ∈ Dom(∆) Xr pairwise distinct and fresh

∆; Σ; Θ C τ
open ei as (Xi : ∆(Ci) where type t = ui) in

i∈[r]

pack F(Xr, struct type tb = ub
b∈B

end)
as (∆(C) where type t = u)

(instentail)t

(∀a.Csub a ⇒ Csup a) ∈ Θs ∆; Σ; Θ Csub τ e Σ ` τ u

∆; Σ; Θ Csup τ open e as (X : ∆(Csub) where type t = u) in X.xCsup (superentail)t

Hence, the resulting expression opens the first-class structure for the subclass con-
straint and selects the dictionary xCsup

for the superclass from it.
The typing and translation judgment ∆; Σ; Θ; Γ ` w e : τ is defined in Fig-

ure 5.6; here, the Tiny-ML+ expression e is the translation of the Tiny-HS expres-
sion w. A variable z is translated by rule (var)t to the corresponding core variable
cz applied to dictionaries for the constraints in z’s type.

Rule (method)t handles method variables m. The type of a method is always of
the form ∀A.C b ⇒ τ ′, where C is the class declaring the method, because methods
in Tiny-HS cannot have additional constraints. We use the entailment judgment to
get the dictionary e for C at the right type. Then we open the first-class structure e
and select the right method xm from it.

Rules (→E)t and (→I)t are straightforward. Rule (let)t is more interesting. We
define an extended type environment Σ′ that contains the quantified type variables
A ofσ , whereσ is the generalization of τ ′. It may seem strange that we then use Σ′

to derive the very type τ ′; but keep in mind that the translation system does not
describe a concrete algorithm, so we have the freedom to “guess” the correct Σ′.
We have to annotate the translated let-binding with the translation of σ because
the subexpression e1 may contain signature or structure expressions that use some
of the simple type variables ‘aa for a ∈ A.

The definition of generalization in Figure 5.6 is the same as for Tiny-HS in Fig-
ure 3.2. However, there is a minor problem: The order of constraints in a qualified
type π ⇒ τ becomes now important because dictionary parameters are passed
in the same order as the constraints π are written. But in the definition of gener-

88 Chapter 5. From classes to modules

Figure 5.6. Translation of expressions

∆; Σ; Θ; Γ ` w e : τ

Γ(z) = ∀A.πn ⇒ τ ′

ψ = [τa/a
a∈A

] ψ(τ ′) = τ ∆; Σ; Θ ψ(πi) ei
i∈[n]

∆; Σ; Θ; Γ ` z cz en : τ
(var)t

Γ(m) = ∀A.C b ⇒ τ ′ ψ = [τa/a
a∈A

]
ψ(τ ′) = τ ∆; Σ; Θ C τb e Σ ` τb ub C ∈ Dom(∆)

∆; Σ; Θ; Γ ` m
open e as (X : ∆(C) where type t = ub)
in X.xm : τ

(method)t

∆; Σ; Θ; Γ ` w1 e1 : τ ′ → τ ∆; Σ; Θ; Γ ` w2 e2 : τ ′

∆; Σ; Θ; Γ ` w1 w2 e1 e2 : τ
(→E)t

Σ; Θ; Γ , z 7→ τ ′ ` w e : τ
∆; Σ; Θ; Γ ` λz.w λcz.e : τ ′ → τ

(→I)t

Σ′ = Σ
−→∪ {a 7→ ‘aa | a ∈ A}

Θ′ = (Θs, Θi, {πi 7→ ci
i∈[n]}); ∆; Σ′; Θ′; Γ ` w1 e1 : τ ′

ci ∈ FreshCoreIds, Gen(Θ′, Γ , τ ′) = ∀A.ρ = σ unambiguous
∆; Σ ` σ v ∆; Σ; Θ; Γ , z 7→ σ ` w2 e2 : τ

∆; Σ; Θ; Γ ` let z = w1 in w2 let cz : v = λc
n
.e1 in e2 : τ

(let)t

Generalization

Gen((Θs, Θi, {πi 7→ ei
i∈[n]}), Γ , τ) :=

∀((FVa(πn) ∪ FVa(τ)) \ (FVa(Γ) ∪ FVa(Θs) ∪ FVa(Θi))).πn ⇒ τ

5.2. Formal translation 89

Figure 5.7. Translation of instance definitions

Constraint collection ` inst Θ

θ well-formed F fresh

` instance θ where mval
n
 (∅, {θ 7→ F}, ∅)

(instcollect)t

Instance translation ∆; Θ; Γ ` inst rfun

∆; Σ; Θ′; Γ; A; τ
method
` mi = wi ei : vi (i ∈ [n])

sup = {〈Csup, esup〉 | Csup ∈ Sup(Θ, C),
Σ; (Θ′s, Θ′i \ {θ 7→ F}, Θ′ l) Csup τ esup}

Θ′ =
(
Θs, Θi, {Ci ai 7→ pack Xi as Si | i ∈ [r]}

)
Σ = {ai 7→ Xi.t | i ∈ [r], ai 6= a j for all j ∈ [i− 1]} ∪ {b 7→ Y.tb | b ∈ B}

Σ ` τ u B = FVa(τ) \ {ai | i ∈ [r]}

Si =

{
∆(Ci) if ai 6= a j for all j ∈ [i− 1],
∆(Ci) where type t = X j.t if ai = a j for some j ∈ [i− 1].

Xr, Y pairwise distinct and fresh

F = Θi(θ) θ = ∀A.Ci ai
i∈[r] ⇒ C τ

∆; Θ; Γ ` instance ∀A.Ci ai
i∈[r] ⇒ C τ where mi = wi

i∈[n]

 functor F(Xi : Si
i∈[r], Y : sig type tb

b∈B
end)

: ∆(C) where type t = u =
struct

type t = u

val xmi : vi = ei
i∈[n]

val xCsup = esup
〈Csup,esup〉∈sup

end

(instcheck)t

Method translation ∆; Σ; Θ; Γ; τ
method
` m = w e : v

Γ(m) = ∀A.C b ⇒ τ ′ A∩ (FVa(τ) ∪ FVa(Θ) ∪ FVa(Γ)) = ∅
∆; Σ′; Θ; Γ ` w e : [τ/b]τ ′ Σ′ ` [τ/b]τ ′ u′

v = ∀{‘aa | a ∈ A \ {b}}.u′ Σ′ = {a 7→ ‘aa | a ∈ A \ {b}}

∆; Σ; Θ; Γ; τ
method
` m = w e : v

(instcheck-method)t

90 Chapter 5. From classes to modules

Figure 5.8. Translation of class definitions and programs

Translation of class definitions ∆ ` cls ∆; Θ; Γ

a /∈ Ai σi := (∀(Ai ∪ {a}).C a ⇒ τi) unambiguous
FVa(σi) = ∅ ∅; {a 7→ t} ` ∀Ai.τi vi (for all i ∈ [n])

S = sig
type t

val xmi : vi
i∈[n]

val xCi : <∆(Ci) where type t = t>
i∈[r]

end

∆ ` class ∀{a}.Ci a
i∈[r] ⇒ C a where mi :: ∀Ai.τi

i∈[n]

 {C 7→ S}
; ({∀{a}.C a ⇒ Ci a | i ∈ [r]}, ∅, ∅)
; {mi 7→ σi | i ∈ [n]}

(class)t

Translation of programs ` pgm prog

∪̇ j∈[i−1]∆ j ` clsi ∆i; Θi; Γi
i∈[n] ` insti Θ′

i
i∈[m]

∆ = ∪̇i∈[n]∆i Θ =
⋃̇

i∈[n]
Θi ∪̇

⋃̇
i∈[m]

Θ′
i Γ =

⋃̇
i∈[n]

Γi

∆; Θ; Γ ` insti rfuni
i∈[m]

∆; ∅; Θ; Γ ` w e : Int

` cls
n

inst
m

rec rfun
m;

structure Main = struct val main = e end

(prog)t

alization, we take constraints from an unordered set and use them in a qualified
type! We can solve this problem by agreeing on some ordering relation on Constr,
the set of all constraints; the ordering relation is then used implicitly to order the
constraints before forming the qualified type.

Figure 5.7 shows the translation judgments for instance definitions. The judg-
ment ` inst Θ just collects the constraint scheme of an instance definition and
associates it with a fresh functor identifier. The judgment ∆; Θ; Γ ` inst rfun
uses this functor identifier to generate a new recursive functor definition. The
functor arguments Xi correspond to the constraints Ci ai in the instance context.
The purpose of the extra parameter Y was mentioned several times before: It rep-
resents the type variables free in the instance head but not constrained by the in-
stance context.

In the premise of rule (instcheck)t, we first translate the method implementations
and derive dictionaries for the immediate superclasses. The results are used to
define the value components xmi and xCsup

of the functor body. The explicit type
annotations vi for the value components xmi are needed because ei itself might
contain some of the universally quantified simple type variables of vi. The con-

5.3. Formal properties 91

straint environment Θ′ is extended with the constraints from the instance context
bound to the functor arguments Xi packaged as first-class structures. The type
environment Σ maps type variables to type components of functor arguments: a
type variable a constrained by the instance context is bound to Xi.t, where Ci ai
is the first constraint with a = ai; a type variable b free in the instance head but
not constrained by the instance context is bound to Y.tb. Note that the signature
expressions Si correctly model sharing introduced by constraints on the same type
variable.

The translation judgment ∆ ` cls ∆; Θ; Γ for class definitions is shown in
Figure 5.8. Its main task is to construct the signature S as the translation of the
class C. Figure 5.8 contains also the translation judgment ` pgm prog for whole
programs. We first collect the environments resulting from class and instance def-
initions. Then we translate the instance definitions into recursive functors and the
Tiny-HS main expression into a Tiny-ML+ expression. Finally, we form a group of
recursive functors and define a main structure.

5.3. Formal properties

This section proves formal properties of the translation from Tiny-HS to Tiny-
ML+. We first prove in Section 5.3.1 that the translation of well-formed programs
is sound and complete with respect to the type system of Tiny-HS defined in Sec-
tion 3.2.2. Then we show in Section 5.3.2 that the translation of a well-formed and
type correct Tiny-HS program yields a type correct Tiny-ML+ program. Taken
together, this proves that every type correct and well-formed Tiny-HS program
translates into a type correct Tiny-ML+ program. It does not prove that the trans-
lation is sound because we do not show that executing a Tiny-HS program and
its translation yields the same result. However, knowing that the translation pre-
serves type correctness is a strong indication that the translation is indeed sound.
You may skip this section if you are not interested in the formal details because
they are not important for understanding the rest of the thesis.

5.3.1. Soundness and completeness with respect to Tiny-HS’ type system

It is obvious that a program that is type correct with respect to the type-directed
translation defined in Section 5.2 is also type correct with respect to Tiny-HS’ type
system from Section 3.2.2 (soundness). Therefore, we do not need to state and prove
soundness explicitly in this section.

However, it is not so clear that every program that is well-formed and type
correct according to the system in Section 3.2.2 is also type correct according to
the translation in Section 5.2 (completeness). In particular, the type translation Σ `
τ u may rule out certain programs because we can only construct a derivation
if FVa(τ) ⊆ Dom(Σ) holds.

92 Chapter 5. From classes to modules

We now prove completeness of the translation with respect to the original Tiny-
HS type system, provided the program under translation is well-formed. The main
result of the section is found in Theorem 5.12. We begin with some basic defini-
tions.

Definition 5.3 (Well-formed constraint environments). A constraint environment
Θ is called well-formed if all θ ∈ Dom(Θi) are well-formed.

Definition 5.4 (Unambiguous variable environments). A variable environment Γ

is called unambiguous if all σ ∈ Img(Γ) are unambiguous.

Definition 5.5 (Comparing Θ with Θ̂). We write Θ ⊆ Θ̂ for Θs ⊆ Θ̂s, Dom(Θi) ⊆
Θ̂i, and Dom(Θl) ⊆ Θ̂l . Θ̂ ⊆ Θ is defined analogously. Θ = Θ̂ stands for Θ ⊆ Θ̂

and Θ̂ ⊆ Θ.

Definition 5.6 (Collecting class identifiers). The function CS : Typ∪QTyp∪TypSc
∪ Constr ∪ ConstrSc → Fin(ClassId) collects all class identifiers of a type or con-
straint. It is defined in the obvious way.

The following lemma formulates conditions that ensure that a Tiny-HS type can
be translated into a Tiny-ML+ type.

Lemma 5.7 (Type translation).

• If FVa(τ) ⊆ Dom(Σ), then there is some u such that Σ ` τ u.

• If FVa(ρ) ⊆ Dom(Σ) and CS(ρ) ⊆ Dom(∆), then there is some u such that
∆; Σ ` ρ u.

• If FVa(σ) ⊆ Dom(Σ) and CS(σ) ⊆ Dom(∆), then there is some v such that
∆; Σ ` σ v.

Proof. Simple induction on the structure of τ , ρ and τ .

The next lemma proves completeness of the entailment relation defined in Fig-
ure 5.5 on page 87 with respect to the relation defined in Figure 3.2 on page 33.

Lemma 5.8 (Completeness of entailment). If Θ̂ π , then there exists some e such
that ∆; Σ; Θ π e, provided

• Θ̂ ⊆ Θ, Θ well-formed

• FVa(π) ⊆ Dom(Σ)

• CS(π) ∪ CS(Θ) ⊆ Dom(∆)

Proof. By induction on the derivation of Θ̂ π . See Appendix B, page 137.

5.3. Formal properties 93

We need two more lemmata to prove completeness of the expression-translation
judgment in Figure 5.6 on page 88. The first lemma is a standard substitution
lemma. The second lemma is a strengthening lemma, which enables us to remove
certain constraints from a constraint environment without making an entailment
or expression-translation derivation invalid.

Lemma 5.9 (Substitution lemma). If Θ̂; Γ̂ ` w : τ and ψ ∈ TypVar → Typ is a
substitution, then ψ(Θ̂);ψ(Γ̂) ` w : ψ(τ).

Proof. See [Jon94, p. 24,133]. Note that unambiguity of type schemes is preserved
under substitution (the additional premise “σ unambiguous” in rule (let) is the
only significant difference between Jones’ syntax directed system and ours).

Lemma 5.10 (Constraint strengthening). If Θ̂ π and C /∈ (CS(π) ∪ CS(Θ̂s) ∪
CS(Θ̂i)), then (Θ̂s, Θ̂i, Θ̂l \ {C τ ′}) π for any τ ′.

If Θ̂; Γ̂ ` w : τ and C /∈ (CS(Γ̂)∪CS(Θ̂s)∪CS(Θ̂i)), then (Θ̂s, Θ̂i, Θ̂l \ {C τ ′}); Γ̂ `
w : τ for any τ ′.

Proof. The first part is proved by rule induction, the second part by structural in-
duction on w.

We now prove completeness of the expression-translation judgment defined in
Figure 5.6 on page 88 with respect to the typing judgment in Figure 3.2 on page 33.

Lemma 5.11 (Completeness of typing). If Θ̂; Γ̂ ` w : τ , then there exists some e such
that ∆; Σ; Θ; Γ ` w e : τ , provided

• Θ̂ = Θ, Θ well-formed

• Γ̂ = Γ , Γ unambiguous

• FVa(τ) ∪ FVa(Γ) ∪ FVa(Θ) ⊆ Dom(Σ)

• CS(Θ) ∪ CS(Γ) ⊆ Dom(∆)

Proof. By structural induction on w. See Appendix B, page 138.

Finally, we prove completeness of the program translation judgment defined in
Figure 5.8 on page 90 with respect to the original Tiny-HS judgment defined in
Figure 3.3 on page 35.

Theorem 5.12 (Soundness and completeness of program judgment). Suppose pgm
is well-formed according to Definition 3.8. Then ` pgm prog implies ` pgm.

Proof. See Appendix B, page 140.

94 Chapter 5. From classes to modules

5.3.2. Type correctness

The purpose of this section is to prove that the translation from Tiny-HS to Tiny-
ML+ produces only type correct programs provided that the source program is
well-formed and type correct.

We first define a notation for translating Tiny-HS types into semantic Tiny-ML+

types. Such a notation is useful because the typing judgments for Tiny-ML+ (see
Figure 2.9 and Figure 2.10) are formulated in terms of semantic objects. However,
the type translation defined in Figure 5.4 translates Tiny-HS types into syntactic
Tiny-ML+ types.

Definition 5.13 (Semantic type translation). Σ; C ` τ u is an abbreviation for
Σ ` τ u and C ` u . u. We call the semantic object u the semantic translation of
the source type τ . Similarly, ∆; Σ; C ` ρ u means ∆; Σ ` ρ u and C ` u . u.
Finally, ∆; Σ; C ` σ v is short for ∆; Σ ` σ v and C ` v . v .

We now prove uniqueness and existence of semantic type translations.

Lemma 5.14 (Uniqueness of semantic type translations).

• If Σ; C ` τ u and Σ; C ` τ u ′, then u = u ′.

• If ∆; Σ; C ` ρ u and ∆; Σ; C ` ρ u ′, then u = u ′.

• If ∆; Σ; C ` σ v and ∆; Σ; C ` σ v ′, then v = v ′.

Proof. Simple rule inductions.

Lemma 5.15 (Existence of semantic type translations).

• If FVa(τ) ⊆ Dom(Σ) and for all a ∈ FVa(τ) there exists some u ′ such that
C ` Σ(a) . u ′, then there is some u with Σ; C ` τ u.

• If CS(ρ) ⊆ Dom(∆), FVa(ρ) ⊆ Dom(Σ), and for all a ∈ FVa(ρ) there exists
some u ′ such that C ` Σ(a) . u ′, then there is some u with ∆; Σ; C ` ρ u.

• If CS(σ) ⊆ Dom(∆), FVa(σ) ⊆ Dom(Σ), and for all a ∈ FVa(σ) there exists
some u ′ such that C ` Σ(a) . u ′, then there is some v with ∆; Σ; C ` σ v .

Proof. Simple rule inductions.

It is often more convenient to translate a Tiny-HS type directly into a semantic
Tiny-ML+ type. Hence, we introduce a new translation judgment and prove that
it is equivalent to a semantic type translation.

Definition 5.16 (Direct semantic type translation). Let T ∈ TypVar
fin−→ SimTyp.

We call T ` τ u the direct semantic translation of type τ into the semantic
object u, and define the translation as follows:

T ` τi ui (i ∈ [κ])
T ` Tκ τκ Tκ uκ

T (a) = u
T ` a u

5.3. Formal properties 95

Lemma 5.17 (Equivalence of semantic type translations). If T ` τ u and Σ; C `
a T (a) for all a ∈ Dom(T), then Σ; C ` τ u. If Σ; C ` τ u, then T ` τ u
provided T ⊆ {a 7→ ua | a ∈ FVa(τ), Σ; C ` a ua}.

Proof. Simple induction on the structure of τ .

We now prove existence and uniqueness of direct semantic type translations.

Corollary 5.18 (Existence and uniqueness of direct semantic type translations).
If FVa(τ) ⊆ Dom(T), then there is some u such that T ` τ u. If T ` τ u and
T ` τ u ′, then u = u ′.

Proof. Follows from Lemmata 5.14, 5.15, and 5.17.

The following lemma states that direct semantic type translations are preserved
under substitutions.

Lemma 5.19 (Substitution lemma for direct semantic type translations). If T `
τ u andϕ is some substitution from TypVar to SimTyp, thenϕ(T) ` τ ϕ(u).

Proof. Straightforward rule induction.

The following three rather technical lemmata state properties of direct semantic
type translations.

Lemma 5.20. Let T ∪̇ T ′ ` τ u, T bijective, Img(T) ⊆ SimTypVar , and FV ‘a(T ′)
∩ Img(T) = ∅. Let ψ be a substitution with Dom(ψ) = Dom(T), FVa(ψ) ⊆

Dom(T ′). Then T ′ ` ψ(τ) φ(u), where φ := {‘a 7→ u‘a | ‘a ∈ Img(T), T ′ `
ψ(T −1(‘a)) u‘a}.

Proof. By induction on τ . See Appendix B, page 140.

Lemma 5.21. Let T ∪̇ T ′ ` τ u, T bijective, Img(T) ⊆ TypVar , and FVα(T ′) ∩
Img(T) = ∅. Letψ be a substitution with Dom(ψ) = Dom(T), FVa(ψ) ⊆ Dom(T ′).
Then T ′ ` ψ(τ) ϕ(u), whereϕ := {α 7→ uα | α ∈ Img(T), T ′ ` ψ(T −1(α))
uα}.

Proof. See proof of Lemma 5.20.

Lemma 5.22. Let T ` τ u , T bijective, Img(T) ⊆ TypVar , and Dom(T) =
FVa(τ). Letψ be a substitution with Dom(ψ) = FVa(τ). Given T ′ such that FVa(ψ) ⊆
Dom(T ′), then T ′ ` ψ(τ) ϕ(u) where ϕ := {α 7→ uα | α ∈ Img(T), T ′ `
ψ(T −1(α)) uα}.

Proof. We first note thatϕ is well-defined because of Corollary 5.18 and the given
assumptions. The proof itself is by induction over the structure of τ .

96 Chapter 5. From classes to modules

The following definition introduces the important notion of well-typed signa-
ture environments. Intuitively, a signature environment ∆ is well-typed with re-
spect to a constraint environment Θ and a variable environment Γ if the signatures
in ∆ correctly reflect the information contained in Θ and Γ .

Definition 5.23 (Well-typed signature environments). A signature environment
∆ is said to be well-typed with respect to a constraint environment Θ and a vari-
able environment Γ (short: ∆ well-typed w.r.t. Θ, Γ), if the following holds for
every C ∈ Dom(∆):

1. ∅ ` ∆(C) . Λ{α}.S , FVα(S) ⊆ {α}

2. t ∈ Dom(S), S(t) = α

3. For all m ∈ Dom(Γ) with Γ(m) = ∀A.C b ⇒ τ : xm ∈ Dom(S), FV ‘a(S(xm)) =
∅, and S(xm) = ∀{‘aa | a ∈ A \ {b}}.u with {b 7→ α} ∪̇ {a 7→ ‘aa | a ∈
A \ {b}} ` τ u

4. For all C′ ∈ Sup(Θ, C): C′ ∈ Dom(∆), ∅ ` ∆(C′) . Λ{α′}.S ′, xC′ ∈ Dom(S),
FV ‘a(S(xC′)) = ∅, and S(xC′) = <[α/α′]S ′>

5. S contains no other elements

We call ∆ well-typed if only conditions 1 and 2 hold.

The next definition introduces a notation for the denotation of dictionaries.

Definition 5.24 (Denotation of dictionaries). If ∆ is well-typed, then the denota-
tion of a structure representing the dictionary of an instance of class C at type u is
written S∆(C, u), and defined as

S∆(C, u) := [u/α]S

where ∆(C) = Λ{α}.S .

We can move substitutions “inside” the denotation of dictionaries, as formalized
in the following lemma.

Lemma 5.25 (S∆ and substitutions). If ∆ is well-typed, and ϕ is a substitution from
TypVar to SimTyp, thenϕ(S∆(C, u)) = S∆(C,ϕ(u)). Similarly, if φ is a substitution
from SimTypVar to SimTyp, thenφ(S∆(C, u)) = S∆(C,φ(u)).

Proof. ∆ is well-typed, so we have ∆(C) = Λ{α}.S and FVα(S) ⊆ {α}. Hence,
ϕ(S∆(C, u)) =ϕ([u/α]S) = [ϕ(u)/α]S = S∆(C,ϕ(u)).

The proof of the second claim is similar, we just note that FV ‘a(S) = ∅ because
∆ is well-typed.

The following three lemmata allow us to reason about the denotations of fre-
quently used Tiny-ML+ constructs.

5.3. Formal properties 97

Lemma 5.26 (Denotation of type realizations in signature expressions). If ∆ well-
typed, and C ` u . u, then C ` ∆(C) where type t = u . S∆(C, u).

Proof. Follows directly from the assumptions and rule (sigexppatch)+.

Lemma 5.27 (Denotation of superclass components). Let ∆ be well-typed w.r.t. Θ, Γ .
If C′ ∈ Sup(Θ, C) and S = S∆(C, u), then xC′ ∈ Dom(S) and S(xC′) = <S∆(C′, u)>.

Proof. Follows directly from the assumptions and Definition 5.23.

Lemma 5.28 (Denotation of method components). Let ∆ be well-typed w.r.t. Θ, Γ .
If m ∈ Dom(Γ), Γ(m) = ∀A.C b ⇒ τ , S = S∆(C, u), then xm ∈ Dom(S), and
S(xm) = ∀{‘aa | a ∈ A \ {b}}.u ′ where {b 7→ u} ∪̇ {a 7→ ‘aa | a ∈ A \ {b}} ` τ
u ′.

Proof. Follows from the well-typedness of ∆ and Lemma 5.19.

The next two lemmata describe the form of translated type schemes and of trans-
lated function types.

Lemma 5.29 (Translation of type schemes). If ∆; Σ; C ` σ v and σ = ∀A.

Ci τi
i∈[n] ⇒ τ , then v = ∀{‘aa | a ∈ A}.<S∆(Ci, ui)>

i∈[n] → u, such that Σ′; C ′ ` τi
ui and Σ′; C ′ ` τ u with Σ′ := Σ

−→∪ {a 7→ ‘aa | a ∈ A}, C ′ := C −→∪ {‘aa 7→ ‘aa |
a ∈ A}.

Proof. Straightforward induction on the rules defining ∆; Σ ` σ v, ∆; Σ ` ρ
u, Σ ` τ u, C ` u . u, and C ` v . v . We use Lemma 5.26 for the case
(typtransqual)t.

Lemma 5.30 (Translation of function types). If T ` τ1 → τ2 u, then u = u1 →
u2 with T ` τ1 u1 and T ` τ2 u2.

Proof. Straightforward rule induction.

The following two lemmata are a simple weakening and strengthening lemma.

Lemma 5.31 (Weakening).

1. If C ` u . u and X /∈ FVX(u), then C , X 7→ S ` u . u for arbitrary S .

2. If C ` S . S and X /∈ FVX(S), then C , X 7→ S ′ ` S . S for arbitrary S ′.

3. If C ` s : X and X /∈ FVX(s), then C , X 7→ S ` s : X for arbitrary S .

4. If C ` e : u and X /∈ FVX(e), then C , X 7→ S ` e : u for arbitrary S .

5. If C ` e : u and c /∈ FVc(e), then C , c 7→ v ` e : u for arbitrary v .

Proof. Obvious.

98 Chapter 5. From classes to modules

Lemma 5.32 (Strengthening). If Σ; C ` τ u, then Σ; C \ (c, C(c)) ` τ u for
arbitrary c ∈ Dom(C).

Proof. Trivial.

Before we can start with the actual correctness proofs, we need to establish a
connection between a Tiny-ML+ context C and the environments ∆, Σ, and Θ used
in the Tiny-HS typing judgments. Intuitively, C is compatible with ∆, Σ, and Θ if
C correctly reflects the information recorded in ∆, Σ, and Θ.

Definition 5.33 (Compatibility of Tiny-ML+ contexts). Let ∆ be well-typed w.r.t.
Θ and some arbitrary Γ , let Θ be well-formed, CS(Θ) ⊆ Dom(∆), and suppose
that FVa(Θl) ⊆ Dom(Σ) for a type environment Σ. A context C is said to be
compatible with ∆, Σ, and Θ, if the following conditions hold:

1. For all u ∈ Img(Σ), there is some u such that C ` u . u.

2. For all (C τ , e) ∈ Θl , we have FVc(e) ⊆ FreshCoreIds, and C ` e : <S∆(C, u)>
with Σ; C ` τ u.

3. For allθ := (∀A.Ci ai
i∈[r] ⇒ C τ) ∈ Dom(Θi), we have Θi(θ) = F ∈ Dom(C),

C(F) = ∀P .S r+1 → S , and with B := FVa(τ) \ {ar}, the following condi-
tions hold:

3.1. t ∈ Dom(Si) for all i ∈ [r],

3.2. P = {Si(t) | i ∈ [r + 1], t ∈ Dom(Si)}
3.3. Si = S∆(Ci, Si(t)) for all i ∈ [r]

3.4. Si(t) = S j(t) iff ai = a j for i, j ∈ [r]

3.5. Dom(Sr+1) = {tb | b ∈ B} and Sr+1(tb) 6= Sr+1(tb
′) if b 6= b′

3.6. t ∈ Dom(S)

3.7. S = S∆(C, u), where {ai 7→ Si(t) | i ∈ [r]} ∪̇ {b 7→ Sr+1(tb) | b ∈ B} `
τ u

3.8. FVα(C(F)) = ∅

The following lemma formalizes the intuition that the expression resulting from
an entailment derivation is a first-class structure of the “right” signature.

Lemma 5.34 (Type correctness of entailment with translation). If ∆; Σ; Θ C τ
e, then C ` e : <S∆(C, u)> with Σ; C ` τ u, provided

• ∆ well-typed w.r.t. Θ and some arbitrary Γ

• Θ well-formed

• CS(Θ) ∪ {C} ⊆ Dom(∆)

5.3. Formal properties 99

• FVa(Θl) ∪ FVa(τ) ⊆ Dom(Σ)

• C compatible with ∆, Σ, and Θ

Proof. The proof is by rule induction. See Appendix B on page 141 for a detailed
proof.

The next two lemmata state that if we can translate a type, then this type does
not contain any new type variables or class identifiers.

Lemma 5.35 (Type translation and free type variables).

• If Σ ` τ u, then FVa(τ) ⊆ Dom(Σ).

• If ∆; Σ ` ρ u, then FVa(ρ) ⊆ Dom(Σ).

• If ∆; Σ ` σ v, then FVa(σ) ⊆ Dom(Σ).

Proof. Straightforward induction on the structure of τ , ρ, and σ .

Lemma 5.36 (Type translation and class identifiers). If ∆; Σ ` σ v, then CS(σ) ⊆
Dom(∆).

Proof. Immediate from the rule (typtransqual)t.

Similarly, if we can derive some constraint, then this constraint does not contain
new type variables.

Lemma 5.37 (Entailment with translation and free type variables). If ∆; Σ; Θ
π e and FVa(Θ) ⊆ Dom(Σ), then FVa(π) ⊆ Dom(Σ).

Proof. Straightforward induction on the derivation of ∆; Σ; Θ π e, using
Lemma 5.35 for the cases (instentail)t and (superentail)t.

We also need a substitution lemma for the expression translation.

Lemma 5.38 (Substitution lemma for expression translation). Let ψ be a substi-
tution from TypVar to Typ. If ∆; Σ; Θ; Γ ` w e : τ , FVa(Θ) ⊆ Dom(Σ), and
Dom(ψ) ∩Dom(Σ) = ∅, then ∆; Σ; Θ;ψ(Γ) ` w e : ψ(τ).

Proof. By induction on the structure of w. See Appendix B, page 143.

Now we can prove that a translated expression has the translated type of the
source expression.

Lemma 5.39 (Type correctness of expression translation). If ∆; Σ; Θ; Γ ` w e :
τ , then C ` e : u with Σ; C ` τ u, provided

1. ∆ well-typed w.r.t. Θ, Γ

2. Θ well-formed

100 Chapter 5. From classes to modules

3. Γ unambiguous, FVa(Γ(m)) = ∅ for all m ∈ Dom(Γ)

4. CS(Θ) ∪ CS(Γ) ⊆ Dom(∆)

5. FVa(Θ) ∪ FVa(Γ) ∪ FVa(τ) ⊆ Dom(Σ)

6. C compatible with ∆, Σ, and Θ

7. If Γ(z) = σ , then C(cz) = v with ∆; Σ; C ` σ v

Proof. By induction on the structure of w. See Appendix B, page 146.

The following lemma states that Tiny-ML+ judgments do not introduce new
type variables. It is very similar to Lemma 4.6 on page 67, except that the lemma
here is for Tiny-ML+ and not for Tiny-ML.

Lemma 5.40 (Free variables and Tiny-ML+ typing judgments).

• C ` u . u implies FVα(u) ⊆ FVα(C).

• C ` v . v implies FVα(v) ⊆ FVα(C).

• C ` B . L implies FVα(L) ⊆ FVα(C).

• C ` S . L implies FVα(L) ⊆ FVα(C).

• C
funargs

` Xi : Si
i∈[n]

. ∀P .Sn
implies FVα(∀P .Sn) ⊆ FVα(C).

Proof. All propositions except the last one are proved by parallel induction on the
term size. The last proposition is proved by induction on n.

The following lemma shows that the translation of an instance definition, which
is a recursive functor, defines the signature for the functor body in a way that
correctly reflects the instance definition.

Lemma 5.41 (Denotation of recursive functors resulting from instance definition
translation). If ∆; Θ; Γ ` inst rfun, ` inst Θ′ with Θ′ ⊆ Θ, and ∆ is well-typed
w.r.t. Θ and Γ , then ∅ ` rfun . C such that C is compatible with ∆, Σ = ∅, and Θ′.

Proof. See Appendix B, page 151

We also want to show that the body of such a recursive functor matches the
signature of the functor body. We need two more lemmata before we can prove
this proposition.

Lemma 5.42 (Type translation and substitutions). If Σ; C ` [τ ′/a]τ u and Σ; C `
τ ′ u ′, then {a 7→ u ′} ∪̇ {b 7→ ub | b ∈ FVa(τ) \ {a}, Σ; C ` b ub} ` τ u.

Proof. Straightforward structural induction on τ .

5.3. Formal properties 101

Lemma 5.43 (Properties of method translation). If ∆; Σ; Θ; Γ; τ
method
` m = w e :

v and

• ∆ well-typed w.r.t. Θ, Γ

• Θ well-formed

• Γ unambiguous, Dom(Γ) ⊆ MethodId

• CS(Θ) ∪ CS(Γ) ⊆ Dom(∆)

• FVa(Θ) ∪ FVa(Γ) = ∅, FVa(τ) ⊆ Dom(Σ)

• C compatible with ∆, Σ, and Θ

• Σ; C ` τ u

then we also have

1. Γ(m) = ∀A.C b ⇒ τ ′

2. v = ∀{‘aa | a ∈ A \ {b}}.u′

3. {b 7→ u} ∪̇ {a 7→ ‘aa | a ∈ A \ {b}} ` τ ′ u ′

4. {‘aa | a ∈ A \ {b}} ∩ FV ‘a(C) = ∅

and for C ′ := C , {‘aa 7→ ‘aa | a ∈ A \ {b}}

5. C ′ ` u′ . u ′

6. C ′ ` e : u ′

Proof. See Appendix B, page 152.

Now we can prove that the body of a recursive functor that is the translation of
an instance definition matches the signature of the functor body.

Lemma 5.44 (Classification of recursive functors resulting from instance defini-
tion translation). If ∆; Θ; Γ ` inst rfun, and

1. ∆ well-typed w.r.t. Θ, Γ

2. Θ well-formed

3. Γ unambiguous, Dom(Γ) ⊆ MethodId

4. CS(Θ) ∪ CS(Γ) ⊆ Dom(∆)

5. FVa(Θ) ∪ FVa(Γ) = ∅

6. C compatible with ∆, Σ = ∅, and Θ

102 Chapter 5. From classes to modules

7. ∅ ` rfun . {F 7→ C(F)}, C(F) = ∀P .S r+1 → S

8. rfun = functor F(Xi : Si
i∈[r], Y : SY) : S = s

then we have that C , Xi 7→ Si
i∈[r]

, Y 7→ Sr+1 ` s : S .

Proof. See Appendix B, page 153

The following lemma shows that the translation judgment for classes (Figure 5.8
on page 90) produces only well-typed class environments.

Lemma 5.45 (Well-typedness of class environments). If ∆ ` cls ∆′; Θ′; Γ ′, C is
the class defined by cls, and

• ∆ well-typed w.r.t. some Θ, Γ

• Dom(∆) ∩Dom(∆′) = ∅

• Sup(Θ, C) = ∅

• Dom(Γ) ∩Dom(Γ ′) = ∅ and there is no m with Γ(m) = ∀A.C b ⇒ ρ

then ∆ ∪̇ ∆′ is well-typed w.r.t. Θ ∪̇Θ′ and Γ ∪̇ Γ ′.

Proof. See Appendix B, page 154.

Eventually, we are able to prove the main result of this section.

Theorem 5.46 (Type correctness of program translation). If ` pgm prog and
pgm well-formed, then ∅ ` prog.

Proof. See Appendix B, page 154.

5.4. Restrictions on the source language Tiny-HS

As already mentioned at the beginning of Section 3.2, the source language Tiny-
HS of our translation to ML modules does not support constructor classes, class
methods with constraints, and default definitions for methods. We now discuss
why these restriction are necessary, and if and how we could extend the translation
so as to remove the restrictions.

5.4. Restrictions on the source language Tiny-HS 103

Constructor classes. A constructor class [Jon95a] is a type class that ranges over
(possibly higher-order) type constructors. The translation to ML modules can-
not support constructor classes because ML does not support higher-order type
constructors. You might argue that we could at least translate constructor classes
ranging over first-order type constructors, because parameterizable type compo-
nents could be used as the translation of first-order type constructors. Indeed, it
is straightforward to write the signature corresponding to such a type class. For
example, a type class for monads

class ∀{m} . Monad m where
bind :: ∀{a, b} . m a → (a → m b) → m b
return :: ∀{a} . a → m a

might be translated into the following signature (parameterizable type compo-
nents, which are not supported in Tiny-ML+, are written type t ‘a):

signature Monad =
sig

type m ‘a
val bind : ∀{ ‘a, ‘b} . m ‘a → (‘a → m ‘b) → m ‘b
val return : ∀{ ‘a} . ‘a → m ‘a

end

However, we run into serious problems when we try to translate a type scheme
like ∀{a, b, m}.Monad m ⇒ m a → m b → m b. We cannot translate the constraint
Monad m into a package type <Monad where type m = ‘m> because the type vari-
able ‘m would then be of higher order. The type

∀{‘a, ‘ma, ‘b, ‘mb} . <Monad where type m ‘a = ‘ma where type m ‘b = ‘mb>
→ ‘ma → ‘mb → ‘mb

looks like a solution, but it is invalid because the second type realization where
type m ‘b = ‘mb refers to the now transparent type component m. What we would
really need is the ability to name the content of the package type <Monad>; that is,
something like

∀{‘a, ‘b} . <X : Monad> → X.m ‘a → X.m ‘b → X.m ‘b

Neither Tiny-ML+ nor Russo’s proposal for first-class structures [Rus00a] sup-
ports such named package types. Another possible approach to the problem,
which seems to work even for higher-order constructor classes, is to simulate
higher-order types with functors. Both approaches are considered interesting fu-
ture work.

Class methods with constraints. In Haskell 98, method signatures may contain
constraints, which may lead to recursive classes. Here is a rather artificial example:

class ∀{a} . C a where
foo :: ∀{b} . C b ⇒ b → a

104 Chapter 5. From classes to modules

We cannot translate such a recursive class into an ML signature because the
resulting signature would be recursive as well. Inventing some syntax for binding
recursive signature variables, we could write the signature for C as follows:

µZ.sig type t val foo : ∀{‘b}.<Z where type t = ‘b> → ‘b → t end

Crary et al. [CHP99] introduced the notion of recursively dependent signatures;
however, in their setting, the recursion variable is a structure, not a signature vari-
able.

Default definitions for methods. In Haskell 98, type class may provide default
definitions for methods. The translation could handle such default definitions by
copying the translated code of a default definition to the translations of those in-
stance definitions that do not overwrite the default definition. However, it is not
possible to put default definitions directly into signatures because signatures can-
not contain code for value components.

5.5. Implementation

A Haskell implementation of the translation from Tiny-HS to Tiny-ML+ is avail-
able from http://www.stefanwehr.de/diplom. The implementation is based on
Jones’ “Typing Haskell in Haskell” [Jon00b] and on the overloading-resolution al-
gorithm described by Peterson and Jones [PJ93]. Moscow ML [RRK+03] acts as
the target language of the implementation because it supports all features of Tiny-
ML+. The example in Figures 5.1 and 5.2 was checked against the implementation.

A minor problem in implementing the translation is how to construct the type
environment Σ′ in the premise of rule (let)t in Figure 5.6 on page 88. We already
discussed that we would need to guess the correct Σ′, but this is not feasible in an
implementation. We can solve the problem by maintaining the type environment
only for those Tiny-HS type variables a that are not mapped to their “trivial” Tiny-
ML+ counterpart ‘aa. Thereby, we can use Σ instead of Σ′ in the premise of rule
(let)t.

5.6. Related work

A common approach to describe the meaning of programs with ad-hoc polymor-
phism is to make ad-hoc polymorphism explicit by passing around evidence val-
ues (dictionaries) at runtime. Wadler & Blott [WB89] introduce Haskell type classes
and present an evidence translation into a language that resembles the implicitly
typed, polymorphic λ-calculus [Hin69, Mil78, DM82]. Their source language as-
sumes that each type class has exactly one method.

Jones [Jon94] presents a general theory of qualified types, of which type classes
in Haskell are a specific application. Jones defines three equivalent type systems
for qualified types: the first type system is declarative, the second system uses

http://www.stefanwehr.de/diplom

5.6. Related work 105

syntax-directed rules, and the third system is an algorithmic system. Jones uses
these type systems to define type-directed translations into a version of the poly-
morphic λ-calculus extended with constructs for evidence application and abstrac-
tion. Jones’ approach to qualified types is more general than type classes; there-
fore, he does not deal directly with type classes and instances, and treats evidence
values as an abstract concept.

Hall et al. [HHPW96] present an evidence translation for a source language that
supports all important features of type classes in Haskell. Their target language is
similar to System F [Gir72, Rey74]. Faxén [Fax02] gives a static semantics for Has-
kell 98, which includes an evidence translation into a variant of System Fω [Gir72].

The translation from Tiny-HS to Tiny-ML+ (and so the type system of Tiny-HS)
is based on Jones’ syntax directed system [Jon94, Figure 3.2]. We now discuss why
his (probably better known) declarative system [Jon94, Figure 3.1] cannot be used
for the translation. Rule (method)t for method variables in Figure 5.6 on page 88
exemplifies the problem. The declarative system has different rules for variables,
for quantifier elimination, and for constraint elimination. If the translation was
based on this system, we would lookup a method variable in the environment
and instantiate the type of the method to a monotype at two different places in
the derivation tree. But then we could no longer construct the translation of the
method variable because part of the information necessary to construct the trans-
lation (i.e., the name of the method) is available at the place where we lookup the
variable in the environment, but needed at the place where we fully instantiate the
type of the method.

The translations presented by Hall et al. and Faxén map methods to ordinary
top-level bindings that select the appropriate component from a dictionary passed
to them. Translating methods in such a way would allow us to use Jones’ declara-
tive system. However, we cannot translate methods to top-level bindings because
selecting a component from a first-class structure (i.e., a dictionary) requires open-
ing the first-class structure. But the type information necessary for opening the
first-class structure is only available at the point where the method is actually used,
and cannot be passed to a top-level binding. Passing type information around is
not a problem in the translations presented by Hall et al. and Faxén because their
target languages support explicit type abstraction and application.

Support for ad-hoc polymorphism is very limited in Standard ML [MTHM97]:
Only a few overloaded operators are supported, overloading has to be resolvable
at compile time, and user-defined functions cannot be overloaded. The equal-
ity operator is an exception from this rule: The programmer can use it to define
overloaded functions, and overloading introduced by the equality operator can be
resolved at runtime.

Schneider [Sch00] adds Haskell-style type classes to ML. His solution is conser-
vative in the sense that type classes and modules remain two separate concepts.
He does not translate type classes into modules.

106 Chapter 5. From classes to modules

Chapter 6.

Discussion

The last chapter of the thesis discusses and summarizes the results of the preceding
chapters. Section 6.1 presents a thorough comparison between ML modules and
Haskell type classes. Section 6.2 outlines possible topics for future research based
on the material of this work. Finally, Section 6.3 summarizes the contributions and
concludes.

6.1. ML modules and Haskell type classes: a comparison

Chapter 4 and Chapter 5 presented formal translations from ML modules to Has-
kell type classes and vice versa. Building on the insights obtained by developing
these translations, we now draw a detailed comparison between ML modules and
Haskell type classes.

The comparison proceeds in two steps. Section 6.1.1 compares the two concepts
viewing Haskell type classes as a replacement for ML modules. Then we change
the standpoint and view ML modules as an alternative to Haskell type classes; the
comparison from this perspective is presented in Section 6.1.2. Some of the issues
mentioned in these two sections were already discussed earlier; we repeat them
here for the sake of completeness.

6.1.1. Classes as modules

The translation from ML modules to Haskell type classes in Chapter 4 demon-
strates that Haskell type classes can be used to simulate certain aspects of the ML
module system: Signatures are translated into type classes, structures and functors
are modeled as instances of the type classes corresponding to the signatures of the
structures and functors, and type and value components of signatures and struc-
tures are translated into associated type synonyms (not part of Haskell 98 [Pey03],
see [CKP05]) and type class methods, respectively. The translation also discloses
several differences between the two concepts, which are discussed in the following
paragraphs.

Namespace management. ML modules provide proper namespace management,
whereas Haskell type classes do not: Two different type classes cannot define two

107

108 Chapter 6. Discussion

associated type synonyms or two methods with the same name (unless the two
classes are defined in different Haskell modules).

Signature and structure components. Signatures and structures in ML may con-
tain all sorts of language constructs: values, types, exceptions, substructures, and
so on. Type classes and instances in Haskell 98 may contain only methods; exten-
sions to Haskell 98 also allow type synonyms [CKP05] and data types [CKPM05].
However, there exists no extension that allows nested type classes and instances.

Sequential versus recursive definitions. Definitions in ML are type checked and
evaluated sequentially, with special support for recursive data types and recursive
functions. In particular, recursive definitions of type components in structures are
not possible because a type component can be used only after its definition.

In Haskell, all top-level definitions are mutually recursive, so Chakravarty et
al. [CKP05] need extra conditions to avoid nonterminating associated type syn-
onym definitions. However, their termination conditions disallow certain associ-
ated type synonym definitions that are needed for the translation from ML mod-
ules to Haskell type classes. Hence, we could not use their conditions in the target
language of this translation. Nevertheless, all associated type synonym defini-
tions in the translation from ML modules to Haskell type classes are terminating
because type components in structures (the counterpart of associated type syn-
onyms) cannot be defined recursively, as described in the preceding paragraph.

Implicit versus explicit signatures. In ML, signatures of structures are inferred
implicitly. In Haskell, the type class to which an instance definition belongs has
to be stated explicitly. However, we saw in Section 2.4 that we need explicit sig-
natures in ML as well once we introduce recursive functors, so the difference be-
tween implicit and explicit signatures boils down to the difference between se-
quential and recursive definitions, which we discussed in the preceding point of
our comparison.

Anonymous versus named signatures. Signatures in ML are essentially anony-
mous because named signatures can be removed from the language without losing
expressiveness. Haskell type classes (which are the counterpart of ML signatures)
cannot be anonymous.

Structural versus nominal signature matching. The difference between anony-
mous and named signatures becomes relevant if we compare signature matching
in ML with its Haskell counterpart. In ML, matching a structure against a signa-
ture is performed by comparing the components of the structure with the com-
ponents of the signature; the names of the structure and the signature—if present
at all—do not matter. This sort of signature matching is often called structural

6.1. ML modules and Haskell type classes: a comparison 109

matching (here, the term “structural” is not to be confused with a structure in the
ML-sense).

The Haskell analogon of signature matching is verifying whether the type rep-
resenting a structure is an instance of the type class representing the signature.
The name of a class plays an important role in deciding whether or not some type
is an instance of the class. Therefore, we can characterize the Haskell analogon of
signature matching as nominal.

Translucent versus transparent signatures. A key feature of the ML module sys-
tem are translucent signatures: They allow fine-grained control over how much
type information is propagated, and they are essential to support fully syntactic
signatures [Sha99]. Signatures in Haskell (i.e., type classes) are transparent: The
definitions of associated type synonyms in instances are always visible through
a type class.1 The difference between translucent and transparent signatures be-
comes relevant in the following two points of our comparison.

Abstraction. In ML, abstraction is performed by sealing a structure with a trans-
lucent or opaque signature. Haskell supports only transparent signatures, so ab-
straction has to be performed in instance definitions. We used abstract associated
type synonyms, a contribution of the work at hand, for this purpose.

Separate compilation. We already saw in Chapter 2 that Standard ML [MTHM97]
supports incremental compilation, and that there are extensions supporting sep-
arate compilation [Ler94, HL94, Sha99]. Incremental compilation, not to mention
separate compilation, is not possible for Haskell type classes (if we regard them as
a replacement for ML modules) because type classes are transparent, so it is im-
possible to write fully syntactic signatures with them. Interestingly, the situation
for Haskell type classes with respect to separate/incremental compilation is the
same as for ML modules before the introduction of transparent type components
and strong sealing [Ler94, HL94].

Unsealed and sealed view. A sealed structure body may look different depend-
ing on whether we view the body from inside or outside the signature seal: Inside,
more values and types may be visible, some types may be concrete, and some
values may have a more polymorphic type than outside.

With Haskell type classes, the same set of types and values is visible, and a
value has the same type, regardless of whether we view the instance from inside
or outside. See page 59 for an example illustrating this difference.

1Associated type synonyms can have default definitions in type classes. The difference to transpar-
ent type components in ML signatures is that a default definition of an associated type synonym
can be overwritten with an arbitrary type in the instances of the class, whereas a transparent type
component has to be defined equivalently in a structure matching the signature.

110 Chapter 6. Discussion

First–class structures. First–class structures are a nontrivial extension to Stan-
dard ML. In Haskell, we get first–class structures for free because a structure is
represented as an arbitrary value of a certain type (see Section 4.1).

6.1.2. Modules as classes

In Chapter 5, we demonstrated how to simulate ad-hoc polymorphism introduced
by Haskell type classes with ML modules: Type classes are translated into signa-
tures, instances are mapped to recursive functors (an extension to Standard ML,
see [Rus01]), and first-class structures (an extension to Standard ML, see [Rus00a])
are used as dictionaries providing runtime evidence for type class constraints.
However, ML modules cannot replace Haskell type classes completely. We now
discuss the points missing to make ML modules a coequal replacement for Haskell
type classes.

Implicit versus explicit overloading resolution. Overloading in Haskell is re-
solved implicitly by the compiler. If type classes are simulated with ML modules,
overloading has to be resolved explicitly by the programmer, which leads to awk-
ward and overly verbose code (see Figure 5.2 on page 83 for an example).

Constructor classes. Constructor classes in Haskell cannot be translated to ML
because higher-order types are not supported in ML. Type checking in the pres-
ence of higher-order types is decidable in Haskell because Haskell maintains a
clear distinction between data types (which introduce new type constructors that
can be applied partially yielding higher-order types) and type synonyms (which
introduce only abbreviations for existing types that cannot be applied partially).

ML does not have this clear distinction between data types and type synonyms.
On the one hand, this gives programmers the freedom to specify some type com-
ponent of a signature as a type synonym, and to implement the same component
in a structure matching the signature as a data type. On the other hand, the miss-
ing distinction makes it impossible to support higher-order types in ML. See Sec-
tion 5.4 for further details.

Recursive classes. Type classes in Haskell may be recursive; that is, a class can
be used in a constraint for a method of the same class. We cannot translate such
recursive classes to ML because signatures cannot be recursive. See Section 5.4 for
further details.

Default definitions for methods. Haskell type classes may contain default defi-
nitions for methods. Such default definitions cannot be translated properly to ML
because signatures specify only the types of value components and cannot contain
implementations of value components.

6.2. Future work 111

6.2. Future work

This section outlines topics based on the results of this work that I consider worth-
while for future research.

ML with type classes. The translation from Haskell type classes to ML modules
shows that it is feasible to integrate Haskell-style type classes smoothly into ML
module systems with support for first-class structures: Type classes become des-
ignated signatures (maybe with some restrictions on the content of the signatures)
and instances are represented by a special form of structure and functor defini-
tions. This approach is particularly interesting because it naturally allows for two
useful features [KS04] not found in Haskell’s type class system:

• Type classes and instances can be nested because they are just a special form
of signatures, structures, and functors.

• A syntax for explicit dictionary application and abstraction can be provided
because dictionaries are available to the programmer as first-class structures.

Constructor classes. Constructor classes are an important feature of Haskell’s
type class system. However, they are difficult to translate to ML because ML does
not support higher-order types. Section 5.4 discussed two approaches to the prob-
lem; it would be worthwhile to develop a proper solution.

Flexible termination conditions for associated type synonyms. The target lan-
guage of the translation from ML modules to Haskell type classes allows nonter-
minating associated type synonym definitions (see Section 3.3.5) because the ter-
mination conditions suggested by Chakravarty et al. [CKP05] are not suitable for
the translation from modules to type classes. It would be beneficial to find more
flexible termination conditions that are compatible with the way associated type
synonyms are used in the translation from modules to type classes.

Recursive signatures. The translation from Haskell type classes to ML modules
demonstrates that recursive signatures together with first-class structures are use-
ful (see also Section 5.4). However, no formalization of recursive signatures exists
yet. It would be worthwhile to develop such a formalization.

6.3. Summary and conclusions

I demonstrated how ML modules can be translated to Haskell type classes, proved
that the translation preserves type correctness, and implemented the translation.
The source language of the translation is a subset of Standard ML, the most impor-
tant feature missing is the ability to define nested structures. The target language

112 Chapter 6. Discussion

is a subset of Haskell 98 extended with multi-parameter type classes and (abstract)
associated type synonyms. Abstract associated type synonyms, another contribu-
tion of this work, are used to translate abstract types in ML adequately to Haskell. I
believe that it is feasible to use the general idea behind the translation for practical
programming because a lot of the overhead introduced by the formal translation
can be avoided when writing the Haskell code by hand, as demonstrated in an
example of such a manual translation (Figure 4.1 on page 50).

Furthermore, I showed that Haskell type classes can be translated into ML mod-
ules by using first-class structures as runtime evidence for type class constraints.
I proved that the translation preserves type correctness, and provided an imple-
mentation of the translation. The source language of the translation is a subset of
Haskell 98, which does not support constructor classes, class methods with con-
straints, and default definitions for methods. The target language is a subset of
Standard ML extended with first-class structures and recursive functors. I do not
recommend writing programs in the style of the translation by hand because too
much syntactic overhead is introduced by explicit dictionary abstraction and ap-
plication, and by opening and packaging first-class structures (see Figure 5.2 on
page 83 for an example). However, the translation provides a good starting point
for integrating type classes into the ML module system.

Finally, I presented a thorough comparison between ML modules and Haskell
type classes, which fills a serious gap in the literature because it is the first compar-
ison between the two concepts that is based on formal translations. The compar-
ison shows that there are also significant differences between modules and type
classes.

Appendix A.

Code

Example translation from Tiny-ML to Tiny-HS+

The following Tiny-HS+ code is the result of the formal translation developed in
Section 4.2 applied to the Tiny-ML code from Figure 4.1(a). The code was obtained
by using the implementation of the translation discussed in Section 4.5.

data TMkSet?

data TMkSet

data TIntEq

data TMkSet,1

data TIntSet

class CMkSet,arg a where

type SMkSet,1,t a

zMkSet,1,eq :: a → SMkSet,1,t a → SMkSet,1,t a → Bool

class CMkSet,arg a ⇒ CMkSet?
b a where

type SMkSet? ,set b a

zMkSet? ,empty :: b → a → [c]
zMkSet? ,member :: b → a → SMkSet,1,t a → [SMkSet,1,t a] → Bool

zMkSet? ,insert :: b → a → SMkSet,1,t a → [SMkSet,1,t a] → [SMkSet,1,t a]

class CMkSet,arg a ⇒ CMkSet b a where

type SMkSet,set b a

zMkSet,empty :: b → a → SMkSet,set b a

zMkSet,member :: b → a → SMkSet,1,t a → SMkSet,set b a → Bool

zMkSet,insert :: b → a → SMkSet,1,t a → SMkSet,set b a → SMkSet,set b a

class CIntEq a where
type SIntEq.t a
zIntEq.eq :: a → Int → Int → Bool

class CIntSet a where
type SIntSet.set a
zIntSet.empty :: a → SIntSet.set a

zIntSet.member :: a → Int → SIntSet.set a → Bool
zIntSet.insert :: a → Int → SIntSet.set a → SIntSet.set a

113

114 Appendix A. Code

instance CMkSet,arg a ⇒ CMkSet?
TMkSet?

a where

type SMkSet? ,set TMkSet?
a = [SMkSet,1,t a]

zMkSet? ,empty = λ . λz . []
zMkSet? ,member = λ . λz . λx . λs . exists (λy . zMkSet,1,eq z x y) s

zMkSet? ,insert = λ . λz . λx . λs .
if zMkSet? ,member (⊥ :: TMkSet?

) z x s then s else (x : s)

instance CMkSet,arg a ⇒ CMkSet TMkSet a where

abstype SMkSet,set TMkSet a = SMkSet? ,set TMkSet?
a

zMkSet,empty = λ . λz . zMkSet? ,empty (⊥ :: TMkSet?
) z

zMkSet,member = λ . λz . zMkSet? ,member (⊥ :: TMkSet?
) z

zMkSet,insert = λ . λz . zMkSet? ,insert (⊥ :: TMkSet?
) z

instance CIntEq TIntEq where
type SIntEq.t TIntEq = Int
zIntEq.eq = λ . λi . λj . i == j

instance CMkSet,arg TMkSet,1 where

type SMkSet,1,t TMkSet,1 = Int

zMkSet,1,eq = λ . zIntEq.eq (⊥ :: TIntEq)
instance CIntSet TIntSet where

type SIntSet.set TIntSet = SMkSet,set TMkSet TMkSet,1

zIntSet.empty = λ . zMkSet,empty (⊥ :: TMkSet) (⊥ :: TMkSet,1)
zIntSet.member = λ . zMkSet,member (⊥ :: TMkSet) (⊥ :: TMkSet,1)
zIntSet.insert = λ . zMkSet,insert (⊥ :: TMkSet) (⊥ :: TMkSet,1)

Appendix B.

Long proofs

Proofs for Section 4.3.1

Proof of Lemma 4.10

By induction on the structure of b.

CASE b = εb: Trivial.

CASE b = type t = u〈u〉; b′: We have C ` u . u because of C ` s : S . Hence,

FVα(u)
Lemma 4.6

⊆ FVα(C)
Valid(C ,Φ)

⊆ Dom(Φ). Now the claim follows by Lemma 4.9
and the induction hypothesis.

CASE b = val x = e; b′: We have C ` e : S(x) because of C ` s : S . Now the
proposition follows with Lemma 4.8 and the induction hypothesis.

Proof of Lemma 4.11

By structural induction on s.

CASE s = struct b end: Immediate from Lemma 4.10.

CASE s = X〈S〉: The last rule in the derivation of C ` s : X must be (strexpvar),
hence C(X) = S . The claim now follows from the assumption Valid(C , Φ) and
Lemma 4.9.

CASE s = F〈∀Q .S ′n→X〉(X〈Si〉
i

i∈[n]
): The last rule in the derivation of C ` s : X must

be (strexpfapp). We get from the premise of this rule

Si <ϕ(S ′i) (i ∈ [n])
C(Xi) = Si

Now we have Dom(S ′i) ⊆ Dom(Si), so TuJSi(t)KΦ (in the definition of the asso-
ciated type synonym SF,i,t) is well-defined for all t ∈ Dom(S ′i) by Lemma 4.9 and
Valid(C , Φ), and Φ(Xi, y) (in the definition of method zF,i,y) is well-defined for all
y ∈ Dom(S ′i) because Valid(C , Φ).

115

116 Appendix B. Long proofs

Proof of Lemma 4.13

It is straightforward to verify that all usages of Ω, Tv , S and pick in the definition
of X are well-defined:

• Ω(t) in the definition of the associated type synonym SX.t and Ω(y) in the
definition of the method zX.y are well-defined by Lemma 4.12.

• Tv JS(y)KΦ′ and SJsKΦ′′ are well-defined by Lemmata 4.9 and 4.11, respec-
tively.

• pick(S ,α) in the definition of Φ′ and Φ′′ is well-defined by Lemma 4.5.

Proof of Lemma 4.14

It is straightforward to verify that all usages of Ω, Tu , Tv , S and pick in the defi-
nition of F are well-defined:

• Ω(t) in the definition of the associated type synonym SF,t and Ω(x) in the
definition of the method zF,x are well-defined by Lemma 4.12.

• Tv JSi(x)KΦ′ and Tv JS(x)KΦ′ are well-defined by Lemma 4.9.

• pick(S ,α) in the definition of Φ′ is well-defined because ∀Q .Sn → S is
ground.

• SbJbKΦ′′ is well-defined by Lemma 4.11. Notice that Φ′′ is valid with respect

to C , Xi 7→ Si
i∈[n]

.

Proof of Theorem 4.16

By structural induction on prog. We perform an additional case analysis on the
form of the right-hand side of a program definition, so that we can distinguish
between sealed and unsealed structure expressions.

CASE prog = structure X = s〈∃P .S〉; prog′: The last rule in the derivation of C `
prog must be (progstr). We get from the premise of this rule:

C ` s : ∃P .S
C , X 7→ S ` prog′

The well-definedness is now straightforward to check:

• XJstructure X = s〈∃P .S〉KΦ is well-defined by Lemma 4.13.

• PJprog′KΦ′ is well-defined by the induction hypothesis because Φ′ is valid
w.r.t. C , X 7→ S .

• pick(S ,α) in the definition of Φ′ is well-defined by Lemma 4.5.

Proofs for Section 4.3.1 117

CASE prog = structure X = s〈∃P
′ .S ′〉 :> S〈ΛP .S〉; prog′: Again, the last rule in the

derivation must be (progstr). We get from the premise of this rule and from the
premise of rule (strexpsealed):

C ` s :> S : ∃P .S
C ` s : ∃P ′.S ′

C ` S . ΛP .S
C , X 7→ S ` prog′

The well-definedness is now easy to check:

• pick(S , S(t)) in the definition of the associated type synonym SX.t is well-
defined because S(t) ∈ P .

• XJstructure X? = s〈∃P
′ .S ′〉KΦ is well-defined by Lemma 4.13.

• PJprog′KΦ′ is well-defined by the induction hypothesis because Φ′ is valid
w.r.t. C , X 7→ S .

• pick(S ,α) in the definition of Φ′ and Φ′′ is well-defined by Lemma 4.3.

• Tv JS(y)KΦ′′ is well-defined by Lemma 4.9.

CASE prog = functor F〈∀Q .Sn→S〉(Xi : Si
i∈[n]) = ps〈S〉; prog′: The last rule in the

derivation must be (progfun). We get from the premise of this rule:

C
funargs

` Xi : Si
i∈[n]

. ∀Q .Sn

C , Xi 7→ Si
i∈[n] ` ps : S

C , F 7→ ∀Q .Sn → S︸ ︷︷ ︸
=:F

` prog′

Now the well-definedness is straightforward to verify:

• FJfunctor F〈F〉(Xi : Si
i∈[n]) = ps〈S〉KFΦ is well-defined by Lemma 4.14. No-

tice that F is ground by Lemma 4.15.

• PJprog′KΦ is well-defined by the induction hypothesis. Notice that Φ is valid
w.r.t. C , F 7→ F because FVα(C) = FVα(C , F 7→ F) by Lemmata 4.6 and 4.15.

CASE prog = functor F〈∀Q .Sn→∃P .S〉(Xi : Si
i∈[n]) = ps〈S

′〉 :> S〈ΛP .S〉; prog′: Again,
the last rule in the derivation must be (progfun). We get from the premise of this

118 Appendix B. Long proofs

rule and from the premise of rule (strexpsealed):

C
funargs

` Xi : Si
i∈[n]

. ∀Q .Sn

C , Xi 7→ Si
i∈[n]︸ ︷︷ ︸

=:C ′

` ps : S ′

C ′ ` S . ΛP .S
C , F 7→ ∀Q .Sn → ∃P .S︸ ︷︷ ︸

=:F

` prog′

The well-definedness is now straightforward to verify:

• pick(S , S(t)) in the definition of the associated type synonym SF,t is well-
defined because S(t) ∈ P .

• FJfunctor F?〈F ′〉(Xi : Si
i∈[n]) = ps〈S

′〉KFΦ is well-defined by Lemma 4.14 (F ′ :=
∀Q .Sn → S ′ is ground for the same reason as in the preceding case).

• PJprog′KΦ is well-defined by the induction hypothesis (Φ is valid w.r.t. C , F 7→
F for the same reason as in the preceding case).

• Tv JS(x)KΦ′ is well-defined by Lemma 4.9.

• pick(S ,α) and pick(S ,α) in the definition of Φ′ and Φ′′ are well-defined by
Lemmata 4.15 and 4.3, respectively.

Proofs for Section 4.3.2

Proof of Lemma 4.24

By induction on the structure of e:

CASE e = c: From the assumption C ` c : u, we get with rule (expid)

C(c) = v = ∀A.u ′

φ(u ′) = u where Dom(φ) = A

W.l.o.g., A ⊆ FV ‘a(u ′). Hence, with the assumption FVα(u) ⊆ Dom(Φ),

FVα(φ) ⊆ Dom(Φ)

We now define

ψ := {a‘a 7→ TuJφ(‘a)KΦ | ‘a ∈ A}

We obtain by the assumption Θ̂; Γ̂ ≡Φ C:

Γ̂ (zc) = Tv JvKΦ = ∀{a‘a | ‘a ∈ A}.TuJu ′KΦ (1)

Proofs for Section 4.3.2 119

W.l.o.g., {a‘a | ‘a ∈ A} ∩ FVa(Φ) = ∅. Furthermore, FVα(u ′) ⊆ FVα(u) ⊆
Dom(Φ), so with Lemma 4.21

TuJuKΦ = TuJφ(u ′)KΦ = ψ(TuJu′KΦ) (2)

We get Θ̂ ` TuJφ(‘a)KΦ for all ‘a ∈ A with Lemma 4.20, so

Θ̂; Γ̂ ` zc : TuJuKΦ

by rule (var)+, by Equations 1 and 2, and by Lemma 4.23.

CASE e = λc.e′: The last rule in the derivation of C ` λc.e′ : u must be (expabs).
Hence, we have

u = u1 → u2

C , c 7→ u1 ` e′ : u2

Let us define

τ1 := TuJu1KΦ

To be able to apply the induction hypothesis, we need to show

Θ̂; Γ̂ , zc 7→ τ1 ≡Φ C , c 7→ u1 (3)

From the assumption Θ̂; Γ̂ ≡Φ C we get FVz(Φ) ∩ {zc | c ∈ CoreId} = ∅. Now
Equation 3 follows from the definition of τ1 and the weakening lemma 4.22. Hence

Θ̂; Γ̂ , zc 7→ τ1 ` EJe′KΦ : TuJu2KΦ

by the induction hypothesis and Θ̂ ` τ1 by Lemma 4.20. Therefore, rule (→I)+

can be used to derive the desired result.

CASE e = e1 e2: Follows directly from the induction hypothesis and rule (→E)+.

CASE e = let c = e1 in e2: The last rule in the derivation of C ` e : u must be
(explet), therefore

C ` e1 : v = ∀A.u ′ (4)
C , e 7→ v ` e2 : u

Equation 4 gives us

C ` e1 : u ′

A∩ FV ‘a(C) = ∅

We can safely assume that

{a‘a | ‘a ∈ A} ∩ (FVa(Θ̂) ∪ FVa(Γ̂)) = ∅

120 Appendix B. Long proofs

Now the induction hypothesis and repeated applications of rule (∀I)+ yield

Θ̂; Γ̂ ` EJe1KΦ : Tv JvKΦ︸ ︷︷ ︸
=:σ

The same argumentation as in the case “e = λc.e” can be used that show that

Θ̂; Γ̂ , zc 7→ σ ≡Φ C , c 7→ v

Hence, by the induction hypothesis

Θ̂; Γ̂ , zc 7→ σ ` EJe2KΦ : TuJuKΦ

The claim now follows from rule (let)+ (σ is unambiguous because it does not
contain any constraints).

CASE e = x, e = X.x: Analogous to the case “e = c”.

Proof of Lemma 4.26

The proof is by structural induction on b.

CASE b = (strbε): Obvious.

CASE b = type t = u〈u〉; b′: The last rule in the derivation of C ` b : S must be
(strbt). Hence, we have

C ` u . u
C , t 7→ u ` b′ : S ′ (5)
S = S ′, t 7→ u

Now by definition of Sb

Ω(t) = TuJuKΦ = TuJS(t)KΦ

With Lemma 4.20, we get

Θ̂ ` Ω(t)

Finally, we prove the claim by applying the induction hypothesis to Equation 5.
Notice that FVα(C , t 7→ u) = FVα(C) by Lemma 4.6, so Θ̂; Γ̂ ≡Φ C , t 7→ u .

CASE b = val x = e; b′: The last rule in the derivation of C ` b : S must be (strbv),
so we have from the premise of this rule

C ` e : v (6)
C , x 7→ v︸ ︷︷ ︸

=:C ′

` b′ : S ′ (7)

S = S ′, x 7→ v

Proofs for Section 4.3.2 121

By Equation 6 and Corollary 4.25 we obtain

Θ̂; Γ̂ ` EJeKΦ︸ ︷︷ ︸
=Ω(x)

: Tv JvKΦ︸ ︷︷ ︸
Tv JS(x)KΦ

Applying the induction hypothesis to Equation 7 finishes the proof. Notice that
Θ̂; Γ̂ ≡Φ C ′ holds because Θ̂; Γ̂ ` Φ(x) : Tv JC ′(x)KΦ by the assumptions and
FVα(C ′) = FVα(C) by Lemma 4.6.

Proof of Lemma 4.30

Let us define

∀A.u := v
∀A′.u ′ := v ′

We can safely assume that

FVa(Φ) ∩ {a‘a | ‘a ∈ A} = ∅
(FVa(Θ̂) ∪ FVa(Γ̂)) ∩ {a‘a | ‘a ∈ A′} = ∅ (8)

A ⊆ FV ‘a(u)

We get from v < v ′ by Lemma 2.7

φ(u) = u ′

Dom(φ) = A

Now we have by Lemma 4.21

TuJφ(u)KΦ = ψ(TuJuKΦ) (9)

ψ = {a‘a 7→ TuJφ(‘a)KΦ | ‘a ∈ A}

By Lemma 4.20

Θ̂ ` ψ(a) (a ∈ Dom(ψ))

By the assumption Θ̂; Γ̂ ` w : Tv JvKΦ, by the definition of Tv , and by Lemma 4.23

Θ̂; Γ̂ ` w : ψ(TuJuKΦ)︸ ︷︷ ︸
Equation 9

= TuJu ′KΦ

Equation 8 allows us to apply rule (∀I)+ repeatedly, so we finally get

Θ̂; Γ̂ ` w : Tv Jv ′KΦ

122 Appendix B. Long proofs

Proof of Lemma 4.31

We have S(x) <ϕ(S ′(x)), so by Lemma 4.30

Θ̂; Γ̂ ` w : Tv Jϕ(S ′(x))KΦ

By construction of Φ′ and Lemma 4.27

Θ̂ TuJS ′(x)KΦ′ = TuJϕ(S ′(x))KΦ′︸ ︷︷ ︸
= TuJϕ(S ′(x))KΦ

The claim now follows by rule (conv)+.

Proof of Lemma 4.32

The proof is by structural induction on s. The interesting case is the one for functor
application.

CASE s = struct b end: Follows directly from Lemma 4.26 and from m = 0.

CASE s = X〈S〉: We have C(X) = S and P = ∅. The claim for the insti holds triv-
ially because m = 0. The two claims for t ∈ Dom(S) follow from Lemma 4.20 and
from the definition of Ω. The claim for x ∈ Dom(S) follows from the definition of
Ω and from the assumption Θ̂; Γ̂ ≡Φ∪̇Φ′ C.

CASE s = F〈k,∀Q .S ′n→∃P .S ′〉(X〈Si〉
i

i∈[n]
): We first establish some general properties.

The last rule in the derivation of C ` s : ∃P .S must be (strexpfapp). We get from the
premise of this rule

C(Xi) = Si

C(F) = ∀Q .S ′n → ∃P .S ′

Si <ϕ(S ′i)
ϕ(∃P .S ′) = ∃P .S

Dom(ϕ) = Q

We can safely assume that Q ∩ P = ∅ and FVα(ϕ) ∩ P = ∅, hence

ϕ(S ′) = S (10)

Si <ϕ(S ′i) implies

Si(t) =ϕ(S ′i (t))

C is ground, so we get

ϕ = {α 7→ Si(t) | α ∈ Q , 〈i, t〉 = pick(S ′,α)} (11)

Proofs for Section 4.3.2 123

Let inst be defined as in the relevant case of S. Clearly,

` inst : Θ̂′′

Θ̂′′ := {CF,arg TF,k} ∪ {SF,i,t TF,k = TuJSi(t)KΦ | i ∈ [n], t ∈ Dom(S ′i)}

Note that Φ′ has no effect in the translation of types.

Let us define

Θ̂′ := Θ̂ ∪ Θ̂′′

We then have

Θ̂′ CF,arg TF,k

Θ̂′ SF,i,t TF,k = TuJSi(t)KΦ (i ∈ [n], t ∈ Dom(S ′i)) (12)

We get from the assumption Θ̂; Γ̂ ≡Φ∪̇Φ′ C that

(∀a.CF,arg a ⇒ CF TF a) ∈ Θ̂

so we have by rule (mpentail)+

Θ̂′ CF TF TF,k (13)

Our first goal is to prove that Θ̂′; Γ̂ ` inst. We first note that the Θ̂′ defined in the
premise of rule (instcheck)+ is not different from the Θ̂′ defined here because inst has
an empty context and defines no abstract associated type synonyms. The checks
for entailment of super classes in the premise of the rule succeed trivially because
we have Sup(Θ̂, CF,arg a) = ∅ by Θ̂; Γ̂ ≡Φ∪̇Φ′ C. Furthermore, all associated type
synonyms defined in inst are well-formed by Θ̂ ` Φ and Lemma 4.22. The last
thing to check is the type correctness of the right-hand sides of the methods zF,i,y

for i ∈ [n], y ∈ Dom(S ′i). We get from Θ̂; Γ̂ ≡Φ∪̇Φ′ C and Lemma 4.22

Γ̂ (zF,i,y) = ∀A ∪̇ {a}.CF,arg a ⇒ a → τ

∀A.τ = Tv JS ′i (y)KΦ1

Φ1 =: Φ ∪̇ {α 7→ SF,i,t a | α ∈ Q , 〈i, t〉 = pick(S ′,α)}
Θ̂′; Γ̂ ` Φ(Xi, y) : Tv JSi(y)KΦ

By Si <ϕ(S ′i), Lemma 4.31, and Equations 11 and 12

Θ̂′; Γ̂ ` Φ(Xi, y) : Tv JS ′i (y)KΦ′
1

Φ′
1 := Φ ∪̇ {α 7→ SF,i,t TF,k | α ∈ Q , 〈i, t〉 = pick(S ′,α)}

We have also

∀A.[TF,k/a]τ = [TF,k/a](Tv JS ′i (y)KΦ1)
FV ‘a (C)=∅

=

Tv JS ′i (y)K([TF,k/a]Φ1)
FVa(Φ)=∅

= Tv JS ′i (y)KΦ′
1

124 Appendix B. Long proofs

hence

Θ̂′; Γ̂ ` Φ(Xi, y) : ∀A.[TF,k/a]τ

Applications of rules (∀E)+, (wildcard)+, and (∀I)+ yield

Θ̂′; Γ̂ ` λ_.Φ(Xi, y) : [TF,k/a](∀A.a → τ)

But this is exactly what we need in the premise of rule (instcheck-method)+, so we have

Θ̂′; Γ̂ ` inst

The proof of the second proposition is straightforward: Because SF,t is an as-
sociated type synonym of class CF and TF is an user-defined type constructor of
kind 0 (this follows from the assumption Θ̂; Γ̂ ≡Φ∪̇Φ′ C), we get by Equation 13,
rule (wftycon)+, and rule (wfsyn)+

Θ̂′ ` Ω(t) (for all t ∈ Dom(S) = Dom(Ω))

We now prove the third claim, that is Θ̂′ SF,t TF TF,k = TuJS(t)K(Φ ∪̇Φ′′) for
all t ∈ Dom(S). From the assumption Θ̂; Γ̂ ≡Φ∪̇Φ′ C we get

Θ̂′ SF,t TF TF,k = TuJS ′(t)KΦ2 (14)

Φ2 := Φ ∪̇ {α 7→ SF,i,t TF,k | α ∈ Q , 〈i, t〉 = pick(S ,α)}
∪̇ {α 7→ SF,t TF TF,k | α ∈ P , t = pick(S ,α)}

Let us define

Φ′
2 := Φ ∪̇ {α 7→ SF,i,t TF,k | α ∈ Q , 〈i, t〉 = pick(S ,α)} ∪̇Φ′′

By definition of Φ′′

Dom(Φ2) = Dom(Φ′
2)

Θ̂′ Φ2(α) = Φ′
2(α) (for allα ∈ Dom(Φ2))

We now get by Lemma 4.28 and by Equation 10

Θ̂′ TuJS(t)KΦ′
2 = TuJϕ(S ′(t))KΦ2 (15)

Φ ⊆ Φ2, so by definition of Θ̂′′ and by Equations 11 and 12

Θ̂′ Φ2(α) = TuJϕ(α)KΦ2 (for allα ∈ Dom(ϕ))

We obtain by using Lemma 4.27

Θ̂′ TuJS ′(t)KΦ2 = TuJϕ(S ′(t))KΦ2 (16)

Proofs for Section 4.3.2 125

Now we have by Equations 14, 15, and 16 that

Θ̂′ SF,t TF TF,k = TuJS(t)K(Φ ∪̇Φ′′)︸ ︷︷ ︸
FVα (S)∩Q=∅

= TuJS(t)KΦ′
2

We now turn our attention to proving the last proposition, that is Θ̂′; Γ̂ ` zF,x (⊥ ::
TF) (⊥ :: TF,k) : Tv JS(x)K(Φ ∪̇Φ′′) for all x ∈ Dom(S). We have from the as-
sumption Θ̂; Γ̂ ≡Φ∪̇Φ′ C

Γ̂ (zF,x) = ∀A ∪̇ {a, b}.CF b a ⇒ b → a → τ

∀A.τ = Tv JS ′(x)KΦ3

Φ3 := Φ ∪̇ {α 7→ SF,i,t a | α ∈ Q , 〈i, t〉 = pick(S ′,α)}
∪̇ {α 7→ SF,t b a | α ∈ P , t = pick(S ′,α)}

∀B .u := S ′(x)

A = {a‘a | ‘a ∈ B}

We can safely assume that

(A∪ {a, b}) ∩ (FVa(Θ̂) ∪ FVa(Γ̂)) = ∅
{a, b} ∩ FVa(Φ) = ∅

By using rules (∀E)+, (⇒E)+, (→E)+, and Equation 13, we can derive

Θ̂′; Γ̂ ` zF,x (⊥ :: TF) (⊥ :: TF,k)︸ ︷︷ ︸
=: w

: [TF,k/a, TF/b]︸ ︷︷ ︸
=: ψ

τ (17)

Let us define

Φ′
3 := ψ(Φ3) = Φ ∪̇ {α 7→ SF,i,t TF,k | α ∈ Q , 〈i, t〉 = pick(S ′,α)}

∪̇ {α 7→ SF,t TF TF,k | α ∈ P , t = pick(S ′,α)}

Because Φ ⊆ Φ′
3, we get from Equations 11 and 12

Θ̂′ Φ′
3(α) = TuJϕ(α)KΦ′

3 (for allα ∈ Dom(ϕ))

Hence, by Lemma 4.27

Θ̂′ TuJuKΦ′
3 = TuJϕ(u)KΦ′

3︸ ︷︷ ︸
=: τ ′

(18)

W.l.o.g. {a‘a , b‘a} ∩ FV ‘a(u) = ∅, so we have

ψ(τ) = ψ(TuJuKΦ3) = TuJuKΦ′
3 (19)

126 Appendix B. Long proofs

Using Equations 17, 18, 19, we can derive with rule (conv)+

Θ̂′; Γ̂ ` w : τ ′

Because A∩ (FVa(Θ̂) ∪ FVa(Γ̂)) = ∅, we have by rule (∀I)+

Θ̂′; Γ̂ ` w : ∀A.τ ′

Moreover,

Tv JS(x)KΦ
Φ⊆Φ′

3= Tv JS(x)KΦ′
3
S=ϕ(S ′)

= Tv J∀B .ϕ(u)KΦ′
3 =
∀A.TuJϕ(u)KΦ′

3 = ∀A.τ ′

Hence

Θ̂′; Γ̂ ` w : Tv JS(x)K(Φ ∪̇Φ′′)

Proof of Lemma 4.36

Let Φ′, Φ′′, and ∀By.τy be defined as in the body of X. We have from the assump-
tions

`
−→
pv′ : Θ̂′; Γ̂ ′ (20)

Θ̂′ ` Φ

Θ̂′; Γ̂ ′ ≡Φ C

and from the definition of X

〈Ω, ddec, inst
m〉 = SJsKΦ′′ (21)

By Lemma 4.29

` class CX a where . . . : ∅; Γ̂ ′′ (22)

Γ̂ ′′ := {zX.y 7→ ∀By ∪ {a}.CX a ⇒ a → τy | y ∈ Dom(S)}

Clearly,

` instance CX TX where . . . : Θ̂′′ (23)

Θ̂′′ := {CX TX} ∪ {SX.t TX = Ω(t) | t ∈ Dom(S)} (24)

Let us define

Θ̂′′′ := Θ̂′ ∪ Θ̂′′

Γ̂ := Γ̂ ′ ∪̇ Γ̂ ′′

Proofs for Section 4.3.2 127

We get from Definition 4.18 and the weakening lemma 4.22

Θ̂′′′; Γ̂ ≡Φ′′ C (25)

Moreover

Θ̂′′′ ` Φ′′ (26)

Because Γ̂ (zX.y) is closed it is easy to verify that

Θ̂′′′; Γ̂ ` zX.y (⊥ :: TX) : [TX/a](∀By.τy)

so we have with FV ‘a(C) ∪ FVa(Φ) = ∅ that

Θ̂′′′; Γ̂ ` Φ′′(y) : Tv JS(y)KΦ′′′ (27)

Φ′′′ := Φ ∪̇ {α 7→ SX.t TX | α ∈ P , t = pick(S ,α)}

We can now apply Lemma 4.32 (Φ′ and Φ′′ mentioned in the assumptions of the
lemma correspond to Φ′′ \Φ and Φ′′′ \Φ, respectively; moreover, Equations 21,
24, 25, and 27 give us the nontrivial assumptions) and obtain

` insti : Θ̂′
i (i ∈ [m]) (28)

Θ̂ := Θ̂′′′ ∪
⋃

i∈[m]

Θ̂′
i

Θ̂; Γ̂ ` insti (i ∈ [m]) (29)

Θ̂ ` Ω(t) (t ∈ Dom(S)) (30)

Θ̂ Ω(t) = TuJS(t)KΦ′′′ (t ∈ Dom(S)) (31)

Θ̂; Γ̂ ` Ω(y) : Tv JS(y)KΦ′′′ (y ∈ Dom(S)) (32)

We now show that the class and instance definitions for CX produced by X pass
the rules (classcheck)+ and (instcheck)+, respectively. Let us first prove the case for
class definitions. We have

Θ̂ ∪ {CX a} ` Φ′

so by Lemma 4.20

Θ̂ ∪ {CX a} ` ∀By.τy

Therefore

Θ̂ ` class CX a where . . . (33)

Now we prove the case for the instance definition. From Equation 32 and from
FV ‘a(C) = FVa(Φ) = ∅ we get

Θ̂; Γ̂ ` Ω(y) : [TX/a](Tv JS(y)KΦ′) (y ∈ Dom(S))

128 Appendix B. Long proofs

We can easily derive that

Θ̂; Γ̂ ` λ_.Ω(y) : [TX/a](∀By.a → τy)

Hence

Θ̂; Γ̂
method
` zX.y = λ_.Ω(y)

Furthermore, we get by Equation 30

Θ̂; TX
tdef
` type SX.t TX = Ω(t)

Hence

Θ̂; Γ̂ ` instance CX TX where . . . (34)

Using Equations 20, 22, 23, 28, 29, 33, 34, and Lemma 4.35, we can show that

` pv′
−→⊕ pv : Θ̂; Γ̂

Obviously,

Θ̂; Γ̂ ` Φ̃(X, y) : Tv JS(y)KΦ̃ (y ∈ Dom(S))

hence

Θ̂; Γ̂ ≡Φ̃ C , X 7→ S

Moreover,

Θ̂ ` Φ̃

This proves that pv′
−→⊕ pv provides C , X 7→ S through Φ̃ at Θ̂, Γ̂ . The claim Θ̂

SX.t TX = TuJS(t)KΦ̃ follows from Equations 24 and 31. The two remaining claims
hold trivially.

Proof of Lemma 4.37

Let Φ′, Φ′′, ∀Bx,i.τx,i, ∀Bx.τx, and z be defined as in the body of F. We have from
the assumptions for ps = struct b end

`
−→
pv′ : Θ̂′; Γ̂ ′

Θ̂′ ` Φ (35)

Θ̂′; Γ̂ ′ ≡Φ C
C ′ ` b : S (36)

C ′ := C , Xi 7→ Si
i∈[n]

Proofs for Section 4.3.2 129

and from the definition of F

Ω = SbJbKΦ′′ (37)

By Lemma 4.29

` class CF′ ,arg a where . . . : ∅; Γ̂ ′′

Γ̂ ′′ := {zF′ ,i,x 7→ ∀Bx,i ∪ {a}.CF′ ,arg a ⇒ a → τx,i | i ∈ [n], x ∈ Dom(Si)}
` class CF′ ,arg a ⇒ CF b a where . . . : Θ̂′′; Γ̂ ′′′

Θ̂′′ := {∀{a, b}.CF b a ⇒ CF′ ,arg a}
Γ̂ ′′′ := {zF,x 7→ ∀Bx ∪ {a, b}.CF b a ⇒ b → a → τx

Clearly,

` instance CF′ ,arg a ⇒ CF TF a where . . . : Θ̂′′′

Θ̂′′′ := {∀{a}.CF′ ,arg a ⇒ CF TF a} ∪
{∀{a}.SF,t TF a = Ω(t) | t ∈ Dom(S)}

(38)

Let us define

Θ̂ := Θ̂′ ∪ Θ̂′′ ∪ Θ̂′′′

Θ̂1 := Θ̂ ∪ {CF′ ,arg a}
Γ̂ := Γ̂ ′ ∪̇ Γ̂ ′′ ∪̇ Γ̂ ′′′

Γ̂1 := Γ̂ , z 7→ a

Because Γ̂1(zF′ ,i,x) is closed we can derive easily

Θ̂1; Γ̂1 ` zF′ ,i,x z : Tv JSi(x)KΦ′

hence

Θ̂1; Γ̂1 ≡Φ′′ C ′ (39)

Moreover,

Θ̂1 ` SF′ ,i,t a

hence

Θ̂1 ` Φ′′ (40)

Because Γ̂1(zF,x) is closed it is easy to check that

Θ̂1; Γ̂1 ` zF,x (⊥ :: TF) z : [TF/b]∀Bx.τx

130 Appendix B. Long proofs

so we have for all x ∈ Dom(S)

Θ̂1; Γ̂1 ` Φ′′(x) : Tv JS(x)KΦ′′ (41)

We can now apply Lemma 4.26 to SbJbKΦ′′ (Equations 36, 37, 39, 40, and 41 are
exactly the assumptions of this lemma) and obtain

Θ̂1 ` Ω(t) (t ∈ Dom(Ω) = Dom(S)) (42)
Ω(t) = TuJS(t)KΦ′′ (t ∈ Dom(S)) (43)

Θ̂1; Γ̂1 ` Ω(x) : TuJS(x)KΦ′′ (x ∈ Dom(S)) (44)

We now show that the class and instance definitions for CF′ ,argand CF produced
by F pass rules (classcheck)+ and (instcheck)+, respectively. Let us begin with the case
for the class definitions. We have by Lemma 4.20

Θ̂1 ` Tv JSi(x)KΦ′

hence with Lemma 4.29

Θ̂ ` class CF′ ,arg a where . . . (45)

With similar arguments we can show that

Θ̂ ` class CF′ ,arg a ⇒ CF b a where . . . (46)

Let us now check the instance definition for CF. Using Equation 44, we can
derive easily

Θ̂1; Γ̂ ` λ_.λz.Ω(x) : [TF/b](∀Bx.b → a → τx)

hence

Θ̂1; Γ̂
method
` zF,x = λ_.λz.Ω(x)

Furthermore, we get by Equation 42

Θ̂1; TF a
tdef
` type SF,t TF a = Ω(t)

We have also

Θ̂1 \ {∀{a}.CF′ ,arg a ⇒ CF TF a} CF′ ,arg a

hence

Θ̂; Γ̂ ` instance CF′ ,arg a ⇒ CF TF a where . . . (47)

Now we can show that all claims of the lemma hold: the first claim, namely `
pv′

−→⊕ pv : Θ̂; Γ̂ , follows by Lemma 4.35 and by Equations 45, 46, 47; the second
claim Θ̂ ` Φ follows by the weakening lemma 4.22 and Equation 35; the third
claim is trivial; the fourth claim follows by definition of Γ̂ ; the fifth claim follows
from Equation 38; the sixth claim follows from Equations 38 and 43; the seventh
claim holds by definition of Γ̂ ; and the eighth claim is obvious.

Proofs for Section 4.3.2 131

Proof of Theorem 4.38

The proof is by structural induction on prog.

CASE prog = structure X = s〈∃P .S〉; prog′: Follows directly from the induction
hypothesis and Lemma 4.36.

CASE prog = structure X = s〈∃P
′ .S ′〉 :> S〈ΛP .S〉; prog′: We get from the premises of

rules (progstr) and (strexpsealed):

C ` s : ∃P ′.S ′

C ` S . ΛP .S
S ′ <ϕ(S)

Dom(ϕ) = P
X /∈ Dom(C)

C , X 7→ S ` prog′

For pv′′ = XJstructure X? = s〈∃P
′ .S ′〉KΦ we get by Lemma 4.36 that

pv′ ⊕ pv′′ provides C ′ through Φ̃ at Θ̂, Γ̂
C ′ := C , X? 7→ S

Φ̃ := Φ ∪̇{α 7→ SX? .t TX? | α ∈ P ′, t = pick(S ′,α)}
∪̇{(X?, y) 7→ zX? .y (⊥ :: TX?) | y ∈ Dom(S ′)}

Θ̂ CX?
TX?

Θ̂ ` SX? .t TX?
(t ∈ Dom(S ′)) (48)

Θ̂ SX? .t TX?
= TuJS ′(t)KΦ̃ (t ∈ Dom(S ′)) (49)

For the rest of the proof of this case, we assume that Φ′, Φ′′, and ∀By.τy are defined
as in the relevant case of P. We get from Lemma 4.29

` class CX a where . . . : ∅; Γ̂ ′

Γ̂ ′ := {zX.y 7→ ∀By ∪ {a}.CX a ⇒ a → τy | y ∈ Dom(S)}

Clearly,

` instance CX TX where . . . : Θ̂′

Θ̂′ := {CX TX} ∪ {SX.t TX = SX? .t TX? | t ∈ Dom(S), S(t) /∈ P} ∪

{SX.t TX = TSX.t
TX | t ∈ Dom(S), S(t) ∈ P , t = pick(S , S(t)), TSX.t

fresh}
∪ {SX.t TX = SX.t′ TX | t ∈ Dom(S), S(t) ∈ P , t′ = pick(S , S(t)), t′ 6= t}

132 Appendix B. Long proofs

Let us define

Θ̂1 := Θ̂ ∪ Θ̂′

Γ̂1 := Γ̂ ∪̇ Γ̂ ′

We get from Θ̂ ` Φ that

Θ̂1 ∪ {C a} ` Φ′

hence

Θ̂1 ` class CX a where . . .

We now need to check that Θ̂1; Γ̂1 ` instance CX TX where . . . holds. Let us first
define

Θ̂2 := Θ̂1 ∪ {SX.t TX = SX? .t TX? | t ∈ Dom(S), S(t) ∈ P ,
t = pick(S , S(t))} (50)

pv′ ⊕ pv′′ provides C ′ through Φ̃ at Θ̂,Γ̂ , hence Θ̂; Γ̂ ≡Φ̃ C ′, so we get by the weak-
ening lemma 4.22 for all y ∈ Dom(S)

Θ̂2; Γ̂1 ` zX? .y (⊥ :: TX?
)︸ ︷︷ ︸

wy

: Tv JS ′(y)KΦ̃

We can conclude from S ′ <ϕ(S) that

ϕ = {α 7→ S ′(t) | α ∈ P , t = pick(S ,α)}

We get from Equation 49

Θ̂2 SX.t TX = TuJS ′(t)KΦ̃ (t ∈ Dom(S))

hence

Θ̂2 SX.t TX = TuJϕ(α)KΦ̃ (α ∈ P , t = pick(S ,α))

We get Θ̂2 ` Φ̃ from Equation 48, so we can use Lemma 4.31 to derive

Θ̂2; Γ̂1 ` wy : Tv JS(y)KΦ′

Hence

Θ̂2; Γ̂1 ` λ_.wy : [TX/a](∀By.a → τy)

This gives us

Θ̂2; Γ̂1
method
` zX.y = λ_.wy

Proofs for Section 4.3.2 133

Moreover, we get from Equation 48

Θ̂2; TX
tdef
` type SX.t TX = SX? .t TX?

Θ̂2; TX
tdef
` abstype SX.t TX = SX? .t TX?

and because (CX TX) ∈ Θ̂2

Θ̂2; TX
tdef
` type SX.t TX = SX.t′ TX

Now we can use rule (instcheck)+ to conclude that

Θ̂1; Γ̂1 ` instance CX TX where . . .

Finally, we define

pv′′′ := 〈data TX, class CX a where . . . , instance CX TX where . . .〉

It is easy to verify that pv′ ⊕ pv′′ ⊕ pv′′′ provides C , X 7→ S through Φ′, hence we
can apply to induction hypothesis to PJprog′KΦ′ to derive

` pv′ ⊕ pv

CASE prog = functor F〈∀Q .Sn→S〉(Xi : Si
i∈[n]) = ps〈S〉; prog′: Follows directly from

the induction hypothesis and Lemma 4.37.

CASE prog = functor F〈∀Q .Sn→∃P .S〉(Xi : Si
i∈[n]) = ps〈S

′〉 :> S〈ΛP .S〉; prog′: We get
from the premises of rules (progfun) and (strexpsealed):

C
funargs

` Xi : Si
i∈[n]

. ∀Q .Sn

C , Xi 7→ Si
i∈[n]︸ ︷︷ ︸

=:C ′

` ps : S ′

C ′ ` S . ΛP .S
S ′ <ϕ(S)

Dom(ϕ) = P

C , F 7→ ∀Q .Sn → ∃P .S︸ ︷︷ ︸
=:F

` prog′

In the following text we assume that Φ′, ∀Bx.τx, and z are defined as in the relevant
case of P. Additionally, we define

pv′′ = FJps〈S
′〉KF?〈∀Q .Sn→S ′〉XnFΦ

Φ′′ := Φ ∪̇ {α 7→ SF,i,t a | α ∈ Q , 〈i, t〉 = pick(S ,α)}

We obtain by Lemma 4.37 the following facts:

134 Appendix B. Long proofs

1. ` pv′ ⊕ pv : Θ̂; Γ̂

2. Θ̂ ` Φ

3. For all i ∈ [n], t ∈ Dom(Si): SF,i,t is an associated type synonym of type class
CF,arg

4. For all i ∈ [n], x ∈ Dom(Si): Γ̂ (zF,i,x) = ∀Bx,i ∪̇ {a}.CF,arg a ⇒ a → τx,i where
∀Bx,i.τx,i = Tv JSi(x)KΦ′′

5. (∀{a}.CF,arg a ⇒ CF?
TF?

a) ∈ Θ̂ where TF?
is an user-defined type construc-

tor of kind 0

6. For all t ∈ Dom(S ′): SF? ,t is an associated type synonym of type class CF?

and (∀{a}.SF? ,t TF?
a = TuJS ′(t)KΦ′′) ∈ Θ̂

7. For all x ∈ Dom(S ′): Γ̂ (zF? ,x) = ∀Bx,? ∪̇ {a, b}.CF?
b a ⇒ b → a → τx,?,

∀Bx,?.τx,? = Tv JS ′(x)KΦ′′

8. Sup(Θ̂, CF,arg a) = ∅, Sup(Θ̂, CF?
b a) = {CF,arg a}

We get with Lemma 4.29

` class CF,arg a ⇒ CF b a where . . . : Θ̂′; Γ̂ ′

Θ̂′ := {∀{a, b}.CF b a ⇒ CF,arg a}
Γ̂ ′ := {zF,x 7→ ∀Bx ∪ {a, b}.CF b a ⇒ b → a → τx | x ∈ Dom(S)}

Moreover,

` instance CF,arg a ⇒ CF TF a where . . . : Θ̂′′

Θ̂′′ := {∀{a}.CF,arg a ⇒ CF TF a} ∪
{∀{a}.SF,t TF a = SF? ,t TF?

a | t ∈ Dom(S), S(t) /∈ P} ∪

{∀{a}.SF,t TF a = TSF,t
TF a | t ∈ Dom(S), S(t) ∈ P , t = pick(S , S(t)), TSF,t

fresh} ∪
{∀{a}.SF,t TF a = SF,t′ TF a | t ∈ Dom(S), S(t) ∈ P , t′ = pick(S , S(t)), t′ 6= t}

Let us define

Θ̂1 := Θ̂ ∪ Θ̂′ ∪ Θ̂′′

Γ̂1 := Γ̂ ∪̇ Γ̂ ′

We get from Θ̂ ` Φ that

Θ1 ∪ {CF b a} ` Φ′

hence

Θ̂1 ` class CF,arg a ⇒ CF b a where . . .

Proofs for Section 4.3.2 135

We now need to check that Θ̂1; Γ̂1 ` instance CF,arg a ⇒ CF TF a where . . . holds.
Let us first define

Θ̂2 := Θ̂1 ∪ {CF,arg a} ∪
{∀{a}.SF,t TF a = SF? ,t TF?

a | t ∈ Dom(S), S(t) ∈ P , t = pick(S , S(t))}
Γ̂2 := Γ̂1, z 7→ a

Facts 5 and 7 obtained by Lemma 4.37 give us

Θ̂2; Γ̂2 ` zF? ,x (⊥ :: TF?
) z︸ ︷︷ ︸

=: wx

: Tv JS ′(x)KΦ′′

We get from fact 6 and by definition of Θ̂2

Θ̂2 SF,t TF a = TuJS ′(t)KΦ′′ (t ∈ Dom(S))

S ′ <ϕ(S) yields

ϕ = {α 7→ S ′(t) | α ∈ P , t = pick(S ,α)} (51)

hence

Θ̂2 SF,t TF a = TuJϕ(α)KΦ′′ (α ∈ P , t = pick(S ,α))

Clearly, Θ̂2 ` Φ′′, so we can now use Lemma 4.31 to conclude that

Θ̂2; Γ̂2 ` wx : TuJS(x)KΦ′′′

Φ′′′ := Φ′′ ∪̇ {α 7→ SF,t TF a | α ∈ P , t = pick(S ,α)}

We now get

Θ̂2; Γ̂1 ` λ_.λz.wx : [TF/b](∀Bx.b → a → τx)

This gives us

Θ̂2; Γ̂1
method
` zF,x = λ_.λz.wx

Furthermore, we get from fact 5 that

Θ̂2; TFa
tdef
` type SF,t TF a = SF? ,t TF?

a

Θ̂2; TFa
tdef
` abstype SF,t TF a = SF? ,t TF?

a

Moreover,

Θ̂2; TFa
tdef
` type SF,t TF a = SF,t′ TF a

136 Appendix B. Long proofs

Now we use rule (instcheck)+ to derive

Θ̂1; Γ̂1 ` instance CF,arg a ⇒ CF TF a where . . .

We now define

pv′′′ = 〈data TF, class CF,arg a ⇒ CF b a where . . . ,
instance CF,arg a ⇒ CF TF a where . . .〉

We get by Lemma 4.35

` pv′
−→⊕ pv′′

−→⊕ pv′′′ : Θ̂1; Γ̂1

From Θ̂ ⊆ Θ̂1 and Lemma 4.22 we get

Θ̂1 ` Φ

To prove that pv′⊕ pv′′⊕ pv′′′ provides C , F 7→ F through Φ at Θ̂1, Γ̂1, we still need
to show Θ̂1; Γ̂1 ≡Φ C , F 7→ F . But condition 1 of Definition 4.18 holds by Lemmata
4.3 and 4.15, conditions 2 and 3 hold trivially, conditions 4 – 6 hold by the weaken-
ing lemma 4.22, and condition 7 needs to be checked only for the newly introduced
F. Conditions 7.1 – 7.3, 7.5, and 7.6 are straightforward to check, the only difficulty
is verifying condition 7.4, namely that Θ̂1 [τ/a](SF,t TF a = TuJS(t)KΦ′′′) holds
for all t ∈ Dom(S) and all τ . We proceed by case analysis:

CASE S(t) ∈ P : If t = pick(S , S(t)), then TuJS(t)KΦ′′′ = SF,t TF a, so the
claim holds trivially. If t 6= pick(S , S(t)), then TuJS(t)KΦ′′′ = SF,t′ TF a with
t′ = pick(S , S(t)). The definition of Θ̂′′ ⊆ Θ̂1 gives us (∀{a}.SF,t TF a =
SF,t′ TF a) ∈ Θ̂1, so the claim follows now by rule (eqdefentail)+, TuJS(t′)KΦ′′′ =
SF,t′ TF a, and S(t′) = S(t).

CASE S(t) /∈ P : Let us define

Φ1 := Φ ∪̇ {α 7→ SF,i,t τ | α ∈ Q , 〈i, t〉 = pick(S ,α)}
Φ2 := Φ1 ∪̇ {α 7→ SF,t TF τ | α ∈ P , t = pick(S ,α)}

Because FVa(Φ) = ∅ we have

Φ1 = [τ/a]Φ′′

Φ2 = [τ/a]Φ′′′

By Equation 51 we have TuJϕ(α)KΦ2 = TuJS ′(t)KΦ2 for allα ∈ Dom(ϕ), hence
we get by Lemma 4.27

Θ̂1 TuJS(t)KΦ2 = TuJϕ(S(t))KΦ2︸ ︷︷ ︸
=TuJS ′(t)KΦ1

Proofs for Section 5.3.1 137

We have from fact 6 and the definition of Θ̂′′

(∀{a}.SF? ,t TF?
a = TuJS ′(t)KΦ′′) ∈ Θ̂1

(∀{a}.SF,t TF a = SF? ,t TF?
a) ∈ Θ̂1

Now the claim follows with rules (eqdefentail)+ and (eqtransentail)+. Note that
FV ‘a(S ′) = FV ‘a(S) = ∅.

Now we have proved that pv′ ⊕ pv′′ ⊕ pv′′′ provides C , F 7→ F through Φ, so we
can apply the induction hypothesis to derive

pv′
−→⊕ pv

Proofs for Section 5.3.1

Proof of Lemma 5.8

We proceed by induction on the derivation of Θ̂ π . Let π = C τ .

CASE (elementail): Trivial because Θ̂l ⊆ Dom(Θl).

CASE (instentail): We get from the premise of this rule

(∀A.Ci ai
i∈[r] ⇒ C τ ′) ∈ Θ̂i ⊆ Dom(Θi)

τ = ψ(τ ′)

Θ̂ Ci ψ(ai)

Θ is well-formed, hence

FVa(ψ(ai)) ⊆ FVa(ψ(τ ′)) = FVa(τ) ⊆ Dom(Σ)

We can now apply the induction hypothesis to derive

∆; Σ; Θ Ci ψ(ai) ei

Lemma 5.7 gives us

Σ ` τ u
Σ ` ψ(ai) ui

Σ ` ψ(b) ub

Now the claim follows by rule (instentail)t.

138 Appendix B. Long proofs

CASE (superentail): We get from the premise of this rule

(∀A.Csub a ⇒ Csup a) ∈ Θ̂s ⊆ Θs

By the induction hypothesis, we obtain

∆; Σ; Θ Csub τ e

FVa(τ) ⊆ Dom(Σ), so by Lemma 5.7

Σ ` τ u

Applying rule (superentail)t finishes this proof.

Proof of Lemma 5.11

We proof Lemma 5.11 by structural induction over w and make use of the syntax–
directed form of the typing rules.

CASE w = z: The last typing rule used in the derivation of Θ̂; Γ̂ ` z : τ must be
(var). The premise of this rule gives us

Γ(z) = Γ̂ (z) = ∀A.πn ⇒ τ ′

Θ̂ ψ(πi)

Γ is unambiguous, hence

FVa(ψ(πi)) ⊆ FVa(τ) ∪ FVa(Γ) ⊆ Dom(Σ)

Now by Lemma 5.8

∆; Σ; Θ ψ(πi) ei

Applying rule (var)t yields

∆; Σ; Θ; Γ ` w e : τ .

CASE w = m: This case is very similar to the first case. We use rules (method) and
(method)t instead of (var) and (var)t. Σ ` ψ(τb) u follows from Lemma 5.7.

CASE w = w1 w2: The last typing rule used must be (→E). From the premise we
get

Θ̂; Γ̂ ` w1 : τ ′ → τ

Θ̂; Γ̂ ` w2 : τ ′

We cannot apply the induction hypothesis directly because it might be that

A := FVa(τ ′) \Dom(Σ) 6= ∅

Proofs for Section 5.3.1 139

Therefore, we define a substitution

ψ =: [Int/a
a∈A

]

and then use the substitution lemma 5.9 to obtain

Θ̂; Γ̂ ` w1 : ψ(τ ′) → τ

Θ̂; Γ̂ ` w2 : ψ(τ ′)

Note that ψ does not affect Θ̂, Γ̂ , and τ because

FVa(τ) ∪ FVa(Γ) ∪ FVa(Θ) ⊆ Dom(Σ)

Now we can use the induction hypothesis and rule (→E)t to derive the desired
result.

CASE w = λz.w′: Follows directly from the induction hypothesis and rule (→I)t.

CASE w = (let z = w1 in w2): The last rule in the derivation must be (let). We get
from the premise of this rule

Θ̂′ = (Θ̂s, Θ̂i, {π})
Θ̂′; Γ̂ ` w1 : τ ′ (52)

σ = Ĝen(Θ̂′, Γ̂ , τ ′) unambiguous

Θ̂; Γ̂ , z 7→ σ ` w2 : τ (53)

Using constraint strengthening (Lemma 5.10), we can safely assume that

CS(π) ⊆ Dom(∆)

By definition of Σ′ in the premise of rule (let)t

FVa(π) ∪ FVa(τ ′) ⊆ Dom(Σ′)

Now we can apply the induction hypothesis to Equation 52 and get

∆; Σ′; (Θs, Θi, {ci 7→ πi
i∈[n]}); Γ ` w1 e1 : τ ′

Θ̂′ = Θ′ and Γ̂ = Γ , hence

Ĝen(Θ̂′, Γ̂ , τ ′) = Gen(Θ′, Γ , τ ′)

Clearly, FVa(σ) ⊆ Dom(Σ), so by Lemma 5.7

∆; Σ ` σ v

Applying the induction hypothesis to Equation 53 yields

∆; Σ; Θ; Γ , z 7→ σ ` w2 e2 : τ

Rule (let)t now gives the desired result.

140 Appendix B. Long proofs

Proof of Theorem 5.12

We know that ` pgm holds. The last premise of rule (prog)t, ∆; ∅; Θ; Γ ` w e :
Int, follows from Lemma 5.11 and the premise Θ̂; Γ̂ ` w : Int of rule (prog).

We can establish a similar correspondence for the other premises of rule (prog)t

even though the premises in the translation rules for instance and class definitions
are stronger than the premises in the original typing rules. The stronger premises
in the translation rules result from using the type translation judgments Σ ` τ u
and ∆; Σ ` σ v (in rules (instcheck)t, (instcheck-method)t, and (class)t), from access-
ing the class environment ∆ (in (instcheck)t and (class)t), and from accessing the
instance part of the constraint environment Θi (in (instcheck)t). However, these
additional premises are fulfilled whenever the remaining premises of a rule are
fulfilled:

• All usages of the type translation judgments are successful by definition of
the relevant type environment Σ and because FVa(Γ) = ∅ for all Γ produced
by rule (class)t.

• Every access to the class environment ∆ is well-defined because the well-
formedness of pgm implies that classes can be used only after their definition.

• The access to Θ̂i in rule (instcheck)t is well-defined because there is also an ap-
plication of rule (instcollect)t to the same instance definition in the derivation
of ` pgm prog.

Furthermore, the existence of an entailment or typing derivation in the translation
system given a derivation in the original system is guaranteed by Lemma 5.8 and
Lemma 5.11, respectively.

Proofs for Section 5.3.2

Proof of Lemma 5.20

We proof the lemma by induction over the structure of τ .

CASE τ = a: If a ∈ Dom(T), then T ∪̇ T ′ ` a T (a) =: ‘a . Because a ∈
Dom(ψ), and FVa(ψ) ⊆ T ′, we have T ′ ` ψ(a) φ(‘a) by definition of φ and
Corollary 5.18.

If a /∈ Dom(T), then a ∈ Dom(T ′) by Definition 5.16, thus T ∪̇ T ′ ` a
T ′(a). Furthermore, we haveψ(a) = a, andφ(T ′(a)) = T ′(a) because FV ‘a(T ′)∩
Dom(φ) = ∅. Hence T ′ ` ψ(a) φ(T ′(a)).

CASE τ = Tκ τκ: Directly from the induction hypothesis.

Proofs for Section 5.3.2 141

Proof of Lemma 5.34

We prove the lemma by rule induction.

CASE (entailElem)t: Obvious from the compatibility of C with Θ.

CASE (instentail)t: We have from the premise of the rule

Σ ` τ u
Σ ` ψ(ai) ui for i ∈ [r]

Σ ` ψ(b) ub for b ∈ B, where B is defined as in the premise

Let us define

sB := struct type tb = ub
b∈B

end

Firstly, we prove that the subexpression F(Xr, sB) of the result expression e in the
conclusion of the rule has type S∆(C, u) in an appropriate context. Lemma 5.14,
5.15, and the compatibility of C with Σ give us

C ` u . u (54)
C ` ui . ui (55)
C ` ub . ub (56)

We now define

C ′ := C , Xi 7→ S∆(Ci, ui)
i∈[r]

With Equation 56, Lemma 5.31, and the rules (strexpstruct)and (strbt), we get

C ′ ` sB : {tb 7→ ub | b ∈ B}︸ ︷︷ ︸
=: SB

C(F) = ∀P .S r+1 → S follows from the compatibility of C; P , S r+1
, and S are

supposed to be as in Definition 5.33. Our goal is to use rule (strexpfapp) to derive
C ′ ` F(Xr, sB) : S∆(C, u). We first have to show that C ′(Xi) <ϕ(Si) for i ∈ [r], and
that SB < ϕ(Sr+1), whereϕ is a substitution with Dom(ϕ) = P . We defineϕ as
follows:

ϕ := {Si(t) 7→ ui | i ∈ [r]} ∪̇ {Sr+1(tb) 7→ ub | b ∈ B}

Note that Si(t) = S j(t) implies ui = u j, and that Dom(ϕ) = P . This follows from
the compatibility of C. Now we have with Lemma 5.25

C ′(Xi) = S∆(Ci, ui) = S∆(Ci,ϕ(Si(t))) =ϕ(Si)

SB = {tb 7→ϕ(Sr+1(tb)) | b ∈ B} =ϕ(Sr+1)

142 Appendix B. Long proofs

and so we can use (strexpfapp) to conclude that

C ′ ` F(Xr, sB) :ϕ(S)

We still need to show thatϕ(S) = S∆(C, u). For

T := {ai 7→ Si(t) | i ∈ [r]} ∪̇ {b 7→ Sr+1(tb) | b ∈ B}
T ` τ ′ u ′

we get from Definition 5.33 and Lemma 5.25

ϕ(S) =ϕ(S∆(C, u ′)) = S∆(C,ϕ(u ′))

and so we only need to prove that u = ϕ(u ′). We now write Equations 54, 55, 56,
and the substitutionϕ in a slightly different way:

T ′ := {a 7→ ua | a ∈ Dom(Σ), Σ; C ` a ua}
T ′ ` ψ(τ ′) u
T ′ ` ψ(ai) ui

T ′ ` ψ(b) ub

ϕ = {α 7→ uα | α ∈ Img(T), T ′ ` ψ(T −1(α)) uα}

Now we can apply Lemma 5.22 to derive

T ′ ` ψ(τ ′) ϕ(u ′)

The uniqueness of direct semantic type translations (Corollary 5.18) gives us u =
ϕ(u ′), so that we have now proved

C ′ ` F(Xr, sB) : S∆(C, u) (57)

The second step is to show that C ′ ` epack : <S∆(C, u)> where we define epack as
follows:

epack := pack F(Xr, sB) as (∆(C) where type t = u)

Using Equation 54, Lemma 5.26 and 5.31, we get

C ′ ` ∆(C) where type t = u . S∆(C, u)

and so rule (exppack)+ and Equation 57 allow us to derive

C ′ ` epack : <S∆(C, u)> (58)

The last part of the proof for the case (instentail)t is easy: We just have to make
sure that typing the nested open subexpressions of the result open . . . in epack prop-
erly builds up the context C ′. For i ∈ [r], we have from the premise of the rule

∆; Σ; Θ Ci ψ(ai) ei

Proofs for Section 5.3.2 143

so that we can use the induction hypothesis, the weakening lemma 5.31, and
Lemma 5.26 to conclude that

C i ` ei : <S∆(Ci, ui)>

C i ` ∆(Ci) where type t = ui . S∆(Ci, ui)

where C i is defined as

C i := C , X j 7→ <S∆(C j, u j)>
j∈[i−1]

Now repeated applications of rule (expopen)+ and Equation 58 allow us to conclude
that C ` e : <S∆(C, u)>.

CASE (entailSuper)t: We get from the premise of the rule:

∆; Σ; Θ Csub τ e
Σ ` τ u

Using the induction hypothesis, we obtain

C ` e :

=:S︷ ︸︸ ︷
S∆(Csub, u)

C ` u . u

Now with Lemma 5.26

C ` ∆(Csub) where type t = u . S

Because of Lemma 5.27, we have

xCsup ∈ Dom(S)

S(xCsup
) = <S∆(Csup, u)>

The claim now follows with rules (expopen)+ and (expmod2).

Proof of Lemma 5.38

We proof the lemma by structural induction over w.

CASE w = z: We get from the premise of rule (var)t:

Γ(z) = ∀A.πn ⇒ τ ′

ψ̃ = [τa/a
a∈A

]

ψ̃(τ ′) = τ

∆; Σ; Θ ψ̃(πi) ei

144 Appendix B. Long proofs

We can safely assume that

A∩ FVa(ψ) = ∅ (59)
A∩Dom(ψ) = ∅ (60)

A∩ FVa(ψ̃) = ∅

Let us define

A′ := FVa(πn) ∩ A

ψ̃′ := [τa/a
a∈A′

]

Then we have

∆; Σ; Θ ψ̃′(πi) ei (61)

and with Lemma 5.37

FVa(ψ̃′(πi)) ⊆ Dom(Σ)

hence

FVa(πi) ⊆ Dom(Σ) ∪ A′ ⊆ Dom(Σ) ∪ A (62)

FVa(ψ̃′) ⊆ Dom(Σ)

FVa(ψ̃′) ∩Dom(ψ) = ∅

Using Equations 59, 60, 61, 62, we obtain

FVa(πi) ∩Dom(ψ) = ∅
ψ(πi) = πi

∆; Σ; Θ ψ̃′(ψ(πi)) ei

By defining

ψ̃′′ := ψ̃′ ∪̇ {a 7→ ψ(ψ̃(a)) | a ∈ A \ A′}

we get from the definition of A′

∆; Σ; Θ ψ̃′′(ψ(πi)) ei (63)

Because A∩ FVa(ψ) = ∅, we also have

ψ(Γ)(z) = ∀A.ψ(πi)
i∈[n] ⇒ ψ(τ ′)

Thus, by Equation 63 and rule (var)t, we obtain

∆; Σ; Θ;ψ(Γ) ` z cz e : ψ̃′′(ψ(τ ′))

To finish this part of the proof, we still need to show that ψ̃′′(ψ(τ ′)) = ψ(τ) =
ψ(ψ̃(τ ′)). We do this by induction over τ ′:

Proofs for Section 5.3.2 145

CASE τ ′ = a:
• Suppose a /∈ A.
ψ̃′′(ψ(a)) = ψ(a) (Dom(ψ̃′′) = A, A∩ FVa(ψ) = ∅)
ψ(ψ̃(a)) = ψ(a) (Dom(ψ̃) = A)

• Suppose a ∈ A, a ∈ A′.
ψ̃′′(ψ(a)) = ψ̃′′(a) = ψ̃′(a) (A∩Dom(ψ) = ∅)
ψ(ψ̃(a)) = ψ(ψ̃′(a)) = ψ̃′(a) (FVa(ψ̃′) ∩Dom(ψ) = ∅)

• Suppose a ∈ A, a /∈ A′.
ψ̃′′(ψ(a)) = ψ̃′′(a) = ψ(ψ̃(a)) (A∩Dom(ψ) = ∅)

CASE τ ′ = Tκ τκ: Immediate from the induction hypothesis.

CASE w = m: Analogously to case w = z. Note that Σ ` ψ̃(ψ(b)) ub follows from
ψ(b) = b.

CASE w = w1 w2: Follows directly with the induction hypothesis.

CASE w = λz.w′: Follows directly with the induction hypothesis.

CASE w = let z = w1 in w2: We get from the premise of rule (let)t:

Σ′ = Σ
−→∪ {a 7→ ‘aa | a ∈ A}

Θ′ = (Θs, Θi, {Ci τi 7→ ci
i∈[n]) (64)

∆; Σ′; Θ′; Γ ` w1 e1 : τ ′ (65)
Gen(Θ′, Γ , τ ′) = ∀A.ρ = σ

∆; Σ ` σ v (66)
∆; Σ; Θ; Γ , z 7→ σ ` w2 e2 : τ (67)

By definition of Gen and by Equation 64, we obtain

FVa(Θ′) ⊆ Dom(Σ′)

W.l.o.g., A∩ FVa(ψ), hence

FVa(ψ) ∩Dom(Σ′) = ∅

Now we can apply the induction hypothesis to Equation 65 and obtain

∆; Σ′; Θ′;ψ(Γ) ` w1 e1 : ψ(τ ′)

From Equation 66 and Lemma 5.35, we get FVa(σ) ⊆ Dom(Σ), hence FVa(σ) ∩
Dom(ψ) = ∅, and so

∆; Σ ` ψ(σ) v

Applying the induction hypothesis to Equation 67 yields

∆; Σ; Θ;ψ(Γ , z 7→ σ) ` w2 e2 : ψ(τ)

Now the proposition follows by rule (let)t.

146 Appendix B. Long proofs

Proof of Lemma 5.39

We prove the theorem by induction on the structure of w.

CASE w = z: The last rule in the derivation must be (var)t. We get from the premise
of this rule:

Γ(z) = ∀A.Ci τ
′
i
i∈[n] ⇒ τ ′

ψ = [τa/a
a∈A

]
ψ(τ ′) = τ

∆; Σ; Θ Cψ(τ ′i) e (68)

Without loss of generality,

A∩ FVa(ψ) = ∅

Because Γ(z) is unambiguous, we can also assume that

A ⊆ FVa(τ ′)

The assumption ∆; Σ; C ` σ C(cz) and Lemma 5.29 give us

C(cz) = ∀ {‘aa | a ∈ A}︸ ︷︷ ︸
=:B

.<S∆(Ci, u ′i)>
i∈[n] → u ′

Σ′; C ′ ` τ ′i u ′i (69)
Σ′; C ′ ` τ ′ u ′ (70)

Σ′ := Σ
−→∪ {a 7→ ‘aa | a ∈ A}

C ′ := C −→∪ {‘aa 7→ ‘aa | a ∈ A}

We now define

T := {a 7→ ‘aa | a ∈ A}
T ′ := {a 7→ ũ | a ∈ FVa(σ) ∪ FVa(ψ), Σ; C ` a ũ}

Using Equations 69 and 70, and Lemma 5.17, we get

T ∪̇ T ′ ` τ ′i u ′i
T ∪̇ T ′ ` τ ′ u ′

W.l.o.g., B = Img(T) ∩ FV ‘a(T ′) = ∅, and so with Lemma 5.20

T ′ ` ψ(τ ′i) φ(u ′i) (71)
T ′ ` ψ(τ ′) φ(u ′) (72)

Proofs for Section 5.3.2 147

for

φ = {‘aa 7→ ua | a ∈ A, T ′ ` ψ(a) ua}

From Equations 68 and 71, and Lemma 5.34, we get

C ` ei : <S∆(Ci,φ(u ′i))>

We also have

C(cz) � φ(<S∆(Ci, u ′i)>
i∈[n] → u ′) Lemma 5.25=

<S∆(Ci,φ(u ′i))>
i∈[n] → φ(u ′) (73)

Using rules (expid) and (expapp), we can derive that

C ` cz en : φ(u ′)

Equation 72 and Lemma 5.17 give us

Σ; C ` τ φ(u ′)

which finishes this case of the proof.

CASE w = m: The last rule in the derivation must be (method)t. We get from the
premise of this rule:

Γ(m) = ∀A.C b ⇒ τ ′

ψ = [τa/a
a∈A

]
ψ(τ ′) = τ

∆; Σ; Θ C τb e (74)
Σ ` τb ub

Γ is unambiguous and FVa(Γ(m)) = ∅, so we can safely assume that

FVa(τ ′) = A

FVa(τ) = FVa(ψ(τ ′)) = FVa(ψ)

From the assumptions we get FVa(τ) ⊆ Dom(Σ), so the following definition
makes sense:

T := {ã 7→ ũa | ã ∈ FVa(τ), Σ; C ` ã ũa}

Using Corollary 5.18, we can find unique u and ua for a ∈ A, such that

T ` τ u (75)
T ` τa ua

148 Appendix B. Long proofs

Lemma 5.34 and Equation 74 give us

C ` e : <S∆(C, ub)︸ ︷︷ ︸
=:S

>

and with Lemma 5.26, we get

C ` ∆(C) where type t = ub : S

Let us now define

C ′ := C , X 7→ S

If we can show that C ′ ` X.xm : u , then we can use rule (expopen)+to finish this case
of the proof.

In order to prove C ′ ` X.xm : u, we need to show S(xm) � u. ∆ is well-typed,
so

∆(C) = Λ{α}.S ′

S ′(xm) = ∀
=:B︷ ︸︸ ︷

{‘aa | a ∈ A \ {b}︸ ︷︷ ︸
=:A′

} .u ′

{b 7→ α} ∪̇ {a 7→ ‘aa | a ∈ A′}︸ ︷︷ ︸
=:T ′

` τ ′ u ′

By renaming bound variables, we can assume that

A′ ∩ FVa(τ) = ∅ (76)

FV ‘a(ua) ∩B = ∅ (77)

FV ‘a(ũa) ∩B = ∅ (78)

Equation 76 implies Dom(T) ∩Dom(T ′) = ∅, so

T ∪̇ T ′ ` [τb/b]τ ′ [ub/α]u ′

Equation 78 ensures that the requirements of Lemma 5.20 are met (the role of T
and T ′ are swapped in this lemma), so we can show that

T ` [τa/a
a∈A′

][τb/b]τ ′ [ua/‘aa]
a∈A′︸ ︷︷ ︸

=:ϕ

[ub/α]u ′

Because of FVa(τb) ∩ A′ = ∅, we have

[τa/a
a∈A′

][τb/b]τ ′ = ψ(τ ′) = τ

Proofs for Section 5.3.2 149

and so by Corollary 5.18 and Equation 75

u =ϕ([ub/α]u ′) (79)

We know that S = [ub/α]S ′, hence

S(xm) = [ub/α](∀B .u ′)

Using Equation 77, we get

S(xm) = ∀B .([ub/α]u ′)

Equation 79 and Dom(ϕ) = B now let us conclude that

S(xm) � u

CASE w = w1 w2: The last rule in the derivation must be (→E)t. We can safely
assume that FVa(τ ′) ⊆ Dom(Σ) because of the substitution lemma 5.38. Now the
proposition follows directly from the induction hypothesis, Lemma 5.30, and rule
(expapp).

CASE w = λz.w′: We have

∆; Σ; Θ; Γ , z 7→ τ ′ ` w′ e′ : τ (80)

from the premise of rule (→I)t. From the assumptions, FVa(τ ′) ⊆ Dom(Σ), so
with Lemmata 5.14 and 5.15

Σ; C ` τ ′ u ′ (81)

Let us define

C ′ := C , cz 7→ u ′

Now we can apply the induction hypothesis with C = C ′ to Equation 80 and get

C ′ ` e′ : u
Σ; C ′ ` τ u (82)

Rule (expabs) gives us

C ` λcz.e′ : u ′ → u

Using Equations 81 and 82, together with the strengthening lemma 5.32, we get

Σ; C ` τ ′ → τ u ′ → u

150 Appendix B. Long proofs

CASE w = let z = w1 in w2: We get from the premise of rule (let)t:

Σ′ = Σ
−→∪ {a 7→ ‘aa | a ∈ A}

Θ′ = (Θs, Θi, {Ci τi 7→ ci
i∈[n]), ci ∈ FreshCoreIds

∆; Σ′; Θ′; Γ ` w1 e1 : τ ′ (83)
Gen(Θ′, Γ , τ ′) = ∀A.ρ = σ

∆; Σ ` σ v (84)
∆; Σ; Θ; Γ , z 7→ σ ` w2 e2 : τ (85)

From the definition of Gen and A, we have

FVa(τ ′) ∪ FVa(τ) ⊆ A∪ FVa(Θ) ∪ FVa(Γ) ⊆ Dom(Σ′) (86)

Hence, there exists unique ui (Lemma 5.14, 5.15), such that

Σ′; C ′ ` τi ui

Let us now define

C ′ := C , ‘aa 7→ ‘aaa∈A

C ′′ := C ′, ci 7→ S∆(Ci, ui)
i∈[n]

We want to apply the induction hypothesis with C = C ′ to Equation 83. But first,
we have to make sure that all assumptions hold (we only mention the nontrivial
ones here):

• CS(Θ′) ⊆ Dom(∆) because {C} = CS(σ)
Lemma 5.36

⊆ Dom(∆)

• FVa(Θ′) ∪ FVa(τ ′) ⊆ Dom(Σ) because of Equation 86

• C” is compatible with ∆, Σ′, Θ′ because C ′′ ` ‘aa . ‘aa for all a ∈ A, C ′′ ` ci :
S∆(Ci, ui), and ci ∈ FreshCoreIds

Thus, the induction hypothesis can be applied and yields together with the strength-
ening lemma 5.32

C ′′ ` e1 : u ′

Σ′, C ′ ` τ ′ u ′

Using Equation 86, we get

FVaσ ⊆ Dom(Σ)

so there exists some unique v such that

C ` v . v (87)

Proofs for Section 5.3.2 151

We have σ = ∀A.ρ, and

ρ = Ci τi
i∈[n] ⇒ τ ′ (88)

from the definition of Gen, so with Lemma 5.29 and Equation 84

v = ∀{‘aa | a ∈ A}.S∆(Ci, ui)
i∈[n] → u ′ (89)

Hence, with rule (expabs)

C ′ ` λcn.e1 : S∆(Ci, ui)
i∈[n] → u ′ (90)

Now define

C ′′′ := C , cz 7→ v

Let us apply the induction hypothesis with C = C ′′′ to Equation 85. Note that,
for all (C′ τ ′, e′) ∈ Θl with C ` e′ : u ′, we also have C ′′′ ` e′ : u ′ (weakening
lemma 5.31 together with cz /∈ FreshCoreIds). The other assumptions hold trivially,
so we get

C ′′′ ` e2 : u (91)
Σ; C ′′′ ` τ u (92)

W.l.o.g., {‘aa | a ∈ A} ∩ FV ‘a(C) = ∅. The remaining premises of rule (explet′)+

follow from Equations 87, 90, and 91, so we can now derive

C ` let cz : v = e1 in e2 : u

Equation 92, together with the strengthening lemma 5.32, finally gives us Σ; C `
τ u.

Proof of Lemma 5.41

We get from ` inst Θ′

Θ′ = (∅, {θ 7→ F}, ∅)

Hence, we need to check only that ∅ ` rfun . C, and that condition 3 of Defini-
tion 5.33 (compatibility of Tiny-ML+ contexts) holds for C(F). We know by looking
at rule (instcheck)t that rfun and inst must be of the following form:

rfun = functor F(Xi : Si
i∈[r], Y :

=:SY︷ ︸︸ ︷
sig type tb

b∈B
end)

: ∆(C) where type t = u = . . .

inst = instance ∀A.Ci ai
i∈[r] ⇒ C τ︸ ︷︷ ︸
=:θ

where . . .

152 Appendix B. Long proofs

We get by definition of Si and u in the premise of this rule, by Lemma 5.26, and by
the well-definedness of ∆

∅
funargs

` Xi : Si
i∈[r], Y : SY . ∀P .S r+1

(93)
{Xi 7→ Si | i ∈ [r]} ∪̇ {Y 7→ Sr+1} ` ∆(C) where type t = u . S (94)

such that for ∀P .S r+1
and S the conditions 3.1 – 3.7 of Definition 5.33 hold. Now

by Equations 93 and 94, and by rule (rfunscollect)
+

∅ ` rfun . {F 7→ ∀P .S r+1 → S}︸ ︷︷ ︸
=:C

Hence, by Lemma 5.40

FVα(C(F)) = ∅

This gives us condition 3.8 of Definition 5.33, so C is compatible with ∆, Σ = ∅,
and Θ′.

Proof of Lemma 5.43

Propositions 1 and 2 follow from the premise of rule (instcheck-method)t, proposi-
tion 3 follows from FVa(Γ) = ∅, and proposition 4 can be fulfilled by renaming
bound type variables. We still need to prove propositions 5 and 6. We get from the
premise of rule (instcheck-method)t

Σ′ = {a 7→ ‘aa | a ∈ A \ {b}}
∆; Σ′; Θ; Γ ` w e : [τ/b]τ ′ (95)

We now want to apply Lemma 5.39 to Equation 95. Assumptions 1 – 4 and 7 of
this lemma hold trivially, assumption 5 follows with

FVa([τ/b]τ ′)
FVa(Γ)=∅
⊆ FVa(τ) ∪ A \ {b}

FVa(τ)⊆Σ

⊆ Dom(Σ′)

and assumption 6 follows by construction of C ′. Hence by Lemma 5.39

C ′ ` e : u ′′

Σ′; C ′ ` [τ/b]τ ′ u ′′ (96)

We get Σ; C ` τ u from the assumptions, so we can apply Lemma 5.42 to
Equation 96 and obtain with Lemma 5.14 and proposition 3 of this lemma that

u ′ = u ′′ (97)

This proves proposition 6 of this lemma. Proposition 5 follows by Equations 96
and 97 because we get Σ′ ` [τ/b]τ ′ u′ from the premise of rule (instcheck-method)t.

Proofs for Section 5.3.2 153

Proof of Lemma 5.44

We assume that all symbols for which no explicit definition is given here are de-
fined as in rule (instcheck)t. We first define

SY = sig type tb
b∈B

end

S = ∆(C) where type t = u

∅ ` rfun . {F 7→ C(F)} gives us

∅
funargs

` Xi : Si
i∈[r], Y : SY . ∀P .S r+1

Xi 7→ Si
i∈[r]

, Y 7→ Sr+1︸ ︷︷ ︸
=: C ′

` S . S

C is compatible with ∆, Σ = ∅, and Θ, hence

S = S∆(C, u)

{ai 7→ Si(t) | i ∈ [r]} ∪̇ {b 7→ Sr+1(tb) | b ∈ B} ` τ u
Si(t) = S j(t) iff ai = a j for all i, j ∈ [r]

Now by Lemma 5.17 and by definition of Σ in the premise of rule (instcheck)t

Σ; C ′ ` τ u

so that we also have

Σ; C ′′ ` τ u (98)
C ′′ := C ∪̇ C ′

For Γ(mi) = ∀A.C b ⇒ τi, we get by Lemma 5.28

S(xmi) = ∀{‘aa | a ∈ A \ {b}}.ui (99)
{b 7→ u} ∪̇ {a 7→ ‘aa | a ∈ A \ {b}} ` τi ui

We now want to apply Lemma 5.43 to the usages of the
method
` judgment in the

premise of rule (instcheck)t. ∆ is well-typed w.r.t. Θ′ and Γ because Sup(Θ, C) =
Sup(Θ′, C). C ′′ is compatible with ∆, Σ, and Θ′ because C ′′ ` pack X j as S j :
<S∆(C j, S j(t))> and Σ; C ′′ ` a j S j(t). The other assumptions of the lemma
hold trivially, so we get

C ′′′ := C ′′, {‘aa 7→ ‘aa | a ∈ A \ {b}}
C ′′′ ` ei : ui (100)
C ′′′ ` ui . ui (101)

vi = ∀{‘aa | a ∈ A \ {b}}.ui (102)

{‘aa | a ∈ A \ {b}} ∩ FV ‘a(C ′′) = ∅ (103)

154 Appendix B. Long proofs

For Csup ∈ Sup(Θ, C), we get by Lemma 5.27

S(xCsup
) = <S∆(Csup, u)> (104)

and by Lemma 5.34

C ′′ ` esup : <S∆(Csup, u)> (105)

By using Equation 98 with rule (strbt), Equations 99 – 103 with rule (strbv′)+,
and Equations 104, 105 with rule (strbv), we can eventually conclude that

C ′′ ` s : S

Proof of Lemma 5.45

Let us first define

Θ′′ := Θ ∪̇Θ′

Γ ′′ := Γ ∪̇ Γ ′

∆ is well-typed w.r.t. Θ′′ and Γ ′′ because C /∈ Dom(∆). Therefore, we need to check
the conditions of Definition 5.23 (well-typedness of class environments) only for
C (notice that Dom(∆′) = {C}). Conditions 1 and 2 hold by definition of S in the
premise of rule (class)t.

We need to check condition 3 only for m ∈ Dom(Γ ′) because there is no m ∈
Dom(Γ) of the form Γ(m) = ∀A.C b ⇒ ρ. Obviously, condition 3 holds for all
m ∈ Dom(Γ ′) by construction of the vi in the premise of rule (class)t.

Similarly, condition 4 needs to be checked only for C′ ∈ Sup(Θ′, C) because
Sup(Θ, C) = ∅. Now suppose C′ ∈ Sup(Θ′, C). Then there exists some i ∈ [r] such
that C′ = Ci. We have Ci ∈ Dom(∆) by the premise of rule (class)t. The other
requirements of condition 4 hold by definition of S, by Lemma 5.26, and by rule
(simtyppkg)+.

Condition 5 holds trivially by construction of S. This finishes the proof of the
lemma.

Proof of Theorem 5.46

We get from the premise of rule (prog)t:

∪̇ j∈[i−1]∆ j ` clsi ∆i; Θi; Γi (i ∈ [n]) (106)

` insti Θ′
i (i ∈ [m]) (107)

∆ = ∪̇i∈[n]∆i

Θ =
⋃̇

i∈[n]
Θi ∪̇

⋃̇
i∈[m]

Θ′
i

Γ =
⋃̇

i∈[n]
Γi

∆; Θ; Γ ` insti rfuni (i ∈ [m]) (108)
∆; ∅; Θ; Γ ` w e : Int

Proofs for Section 5.3.2 155

By Equation 106, Lemma 5.45, the well-formedness of pgm, and a straightforward
induction on n, we get that ∆ is well-formed w.r.t. ∪̇i∈[n]Θi and Γ . The Θ′

i do not
contribute to Sup(Θ, C), so we have also

∆ well-typed w.r.t. Θ, Γ (109)

By Lemma 5.41 and Equations 107, 108 we get for all i ∈ [m]

∅ ` rfuni . Ci

Ci compatible with ∆, Σ = ∅, Θ′
i

Now we have by rule (rfunscollect)
+

∅ ` rfun
m

.
⋃̇

i∈[m]
Ci︸ ︷︷ ︸

=: C

(110)

The Θi do not contribute to the instance part of Θ, hence

C compatible with ∆, Σ = ∅, Θ (111)

Now we can apply Lemma 5.44 to Equation 108 (assumptions 1, 6, and 7 follow
from Equations 109, 111, and 110, respectively; the remaining assumptions hold
trivially) and obtain with rule (rfunscheck)

+

C ` rfun
m (112)

Now by Lemma 5.39 (assumption 1 and 6 follow by Equations 109 and 111, re-
spectively; the remaining assumptions are easy to verify)

C ` e : int (113)

Finally, by rule (progstr) and Equation 113, and by rule (progrec)+ and Equations
110, 112, we get

∅ ` prog

This finishes the proof of the theorem.

156 Appendix B. Long proofs

Bibliography

[Car97] Luca Cardelli. Program fragments, linking, and modularization. In
ACM SIGPLAN–SIGACT Symposium on Principles of Programming Lan-
guages (POPL), Paris, France, pages 266–277, January 1997. 1

[CHP99] Karl Crary, Robert Harper, and Sidd Puri. What is a recursive mod-
ule? In ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), Atlanta, Georgia, pages 50–63, May 1999.
2.4, 5.4

[CKP05] Manuel M. T. Chakravarty, Gabriele Keller, and Simon Peyton Jones.
Associated type synonyms. In ACM SIGPLAN International Confer-
ence on Functional Programming (ICFP), Tallinn, Estonia, pages 241–253,
September 2005. 1, 1.3, 3.3, 3.3.4, 3.3.5, 3.3.5, 4.2.2, 4.4, 6.1.1, 6.1.1,
6.1.1, 6.2

[CKPM05] Manuel M. T. Chakravarty, Gabriele Keller, Simon Peyton Jones, and
Simon Marlow. Associated types with class. In ACM SIGPLAN–
SIGACT Symposium on Principles of Programming Languages (POPL),
Long Beach, California, pages 1–13, January 2005. 1, 3.4, 4.4, 6.1.1

[DCH03] Derek Dreyer, Karl Crary, and Robert Harper. A type system for
higher-order modules. In ACM SIGPLAN–SIGACT Symposium on
Principles of Programming Languages (POPL), New Orleans, Louisiana,
pages 236–249, January 2003. 1.2, 4.6

[DJH02] Iavor S. Diatchki, Mark P. Jones, and Thomas Hallgren. A formal spec-
ification of the Haskell 98 module system. In ACM Haskell Workshop,
Pittsburgh, Pennsylvania, pages 17–28, October 2002. 3.3.3

[DM82] Luis Damas and Robin Milner. Principal type schemes for functional
programs. In ACM Symposium on Principles of Programming Languages
(POPL), Albuquerque, New Mexico, pages 207–212, January 1982. 2.3.3,
3, 5.6

[Dre04] Derek Dreyer. A type system for well-founded recursion. In ACM
SIGPLAN–SIGACT Symposium on Principles of Programming Languages
(POPL), Venice, Italy, pages 293–305, January 2004. 2.5

157

158 BIBLIOGRAPHY

[Fax02] Karl-Filip Faxén. A static semantics for Haskell. Journal of Functional
Programming, 12(4&5):295–357, 2002. 3.2, 3.2.2, 3.2.2, 2, 5, 5.6

[ghc05] The Glasgow Haskell Compiler, 2005. http://www.haskell.org/
ghc/. 3.4

[Gil04] Stephen Gilmore. Programming in Standard ML ’97: An on-line tuto-
rial, 2004. http://www.dcs.ed.ac.uk/home/stg/NOTES/. 2.1

[Gir72] Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures
de l’arithmétique d’ordre supérieur. Thèse d’état, University of Paris VII,
1972. Summary in J. E. Fenstad, editor, Scandinavian Logic Symposium,
pages 63–92, North-Holland, 1971. 1.2, 2.3.1, 2.4.3, 4.6, 5.6

[HHPW96] Cordelia Hall, Kevin Hammond, Simon Peyton Jones, and Philip
Wadler. Type classes in Haskell. ACM Transactions on Programming
Languages and Systems, 18(2):109–138, March 1996. 2, 5, 5.6

[Hin69] J. Roger Hindley. The principal type-scheme of an object in combina-
tory logic. Transactions of the American Mathematical Society, 146:29–60,
1969. 3, 5.6

[HL94] Robert Harper and Mark Lillibridge. A type-theoretic approach to
higher-order modules with sharing. In ACM SIGPLAN–SIGACT Sym-
posium on Principles of Programming Languages (POPL), Portland, Ore-
gon, pages 123–137, January 1994. 2.1.4, 6.1.1

[HM93] Robert Harper and John C. Mitchell. On the type structure of Stan-
dard ML. ACM Transactions on Programming Languages and Systems,
15(2):211–252, April 1993. An earlier version appeared in ACM Sym-
posium on Principles of Programming Languages (POPL), San Diego, Cal-
ifornia, under the title “The Essence of ML” (Mitchell and Harper),
January 1988. 2.5

[HP04] Robert Harper and Benjamin C. Pierce. Design considerations for ML-
style module system. In Benjamin C. Pierce, editor, Advanced Topics in
Types and Programming Languages, chapter 8. MIT Press, 2004. 2.1, 1

[HPF00] Paul Hudak, John Peterson, and Joseph Fasel. A gentle introduction
to Haskell 98, 2000. http://haskell.org/tutorial/index.html. 3.1

[hug05] Hugs, 2005. http://www.haskell.org/hugs/. 3.4

[Jon94] Mark P. Jones. Qualified Types: Theory and Practice. Cambridge Univer-
sity Press, 1994. 3.2, 3.2.2, 5, 5.3.1, 5.6

[Jon95a] Mark P. Jones. A system of constructor classes: overloading and im-
plicit higher-order polymorphism. Journal of Functional Programming,
5(1):1–35, 1995. 3.2, 5.4

http://www.haskell.org/ghc/
http://www.haskell.org/ghc/
http://www.dcs.ed.ac.uk/home/stg/NOTES/
http://haskell.org/tutorial/index.html
http://www.haskell.org/hugs/

BIBLIOGRAPHY 159

[Jon95b] Mark P. Jones. Functional programming with overloading and higher-
order polymorphism. In Advanced Functional Programming, First Inter-
national Spring School on Advanced Functional Programming Techniques,
Båstad, Sweden, volume 925 of Lecture Notes in Computer Science, pages
97–136. Springer-Verlag, May 1995. 3.1

[Jon96] Mark P. Jones. Using parameterized signatures to express modu-
lar structure. In ACM SIGPLAN–SIGACT Symposium on Principles of
Programming Languages (POPL), St. Petersburg Beach, Florida, January
1996. 2.1, 4.6

[Jon00a] Mark P. Jones. Type classes with functional dependencies. In Euro-
pean Symposium on Programming (ESOP), Berlin, Germany, volume 1782
of Lecture Notes in Computer Science, pages 230–244. Springer-Verlag,
2000. 3.4

[Jon00b] Mark P. Jones. Typing Haskell in Haskell, November 2000. http:
//www.cse.ogi.edu/~mpj/thih/. 5.5

[JP99] Mark P. Jones and John Peterson. The Hugs 98 user manual, 1999.
Available from http://www.haskell.org/hugs/. 3.3.3

[Kae88] Stefan Kaes. Parametric overloading in polymorphic programming
languages. In European Symposium on Programming (ESOP), Nancy,
France, volume 300 of Lecture Notes in Computer Science, pages 131–
144. Springer-Verlag, 1988. 1, 3

[KCR98] Richard Kelsey, William Clinger, and Jonathan Rees. Revised5 report
on the algorithmic language Scheme. Higher-Order and Symbolic Com-
putation, 11(1):7–105, 1998. Also appears in ACM SIGPLAN Notices
33(9), September 1998. 2.5

[Kis04] Oleg Kiselyov. Applicative translucent functors in Haskell, August
2004. Post to the Haskell mailing list, http://www.haskell.org/
pipermail/haskell/2004-August/014463.html. 1.2, 4.6

[KLS04] Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. Strongly typed
heterogeneous collections. In ACM Haskell Workshop, Snowbird, Utah,
pages 96–107, September 2004. 3.1

[KS01] Wolfram Kahl and Jan Scheffczyk. Named instances for Haskell type
classes. In ACM Haskell Workshop, Firenze, Italy, informal proceedings,
September 2001. Technical Report UU-CS-2001-23, Institute of Infor-
mation and Computer Sciences, Utrecht University. 1, 1.2, 4.6

[KS04] Oleg Kiselyov and Chung-chieh Shan. Functional pearl: implicit
configurations–or, type classes reflect the values of types. In ACM
Haskell Workshop, Snowbird, Utah, pages 33–44, September 2004. 6.2

http://www.cse.ogi.edu/~mpj/thih/
http://www.cse.ogi.edu/~mpj/thih/
http://www.haskell.org/hugs/
http://www.haskell.org/pipermail/haskell/2004-August/014463.html
http://www.haskell.org/pipermail/haskell/2004-August/014463.html

160 BIBLIOGRAPHY

[Ler94] Xavier Leroy. Manifest types, modules and separate compilation. In
ACM SIGPLAN–SIGACT Symposium on Principles of Programming Lan-
guages (POPL), Portland, Oregon, pages 109–122, January 1994. 2.1.4,
6.1.1

[Ler95] Xavier Leroy. Applicative functors and fully transparent higher-order
modules. In ACM SIGPLAN–SIGACT Symposium on Principles of Pro-
gramming Languages (POPL), San Francisco, California, pages 142–153,
January 1995. 4.4, 4.4

[Ler00a] Xavier Leroy. A modular module system. Journal of Functional Pro-
gramming, 10(3):269–303, 2000. 2.1

[Ler00b] Xavier Leroy. The Objective Caml system: Documentation and user’s
manual, 2000. With Damien Doligez, Jacques Garrigue, Didier Rémy,
and Jérôme Vouillon. Available from http://caml.inria.fr. 1.2, 4.6

[Mac86] David MacQueen. Using dependent types to express modular struc-
ture. In ACM Symposium on Principles of Programming Languages
(POPL), St. Petersburg Beach, Florida, pages 277–286, January 1986. 2.5

[McB02] Conor McBride. Faking it: Simulating dependent types in Haskell.
Journal of Functional Programming, 12(4&5):375–392, 2002. 3.1

[Mil78] Robin Milner. A theory of type polymorphism in programming. Jour-
nal of Computer and System Sciences, 17:348–375, August 1978. 2.6, 3,
5.6

[MT94] David B. MacQueen and Mads Tofte. A semantics for higher-order
functors. In European Symposium on Programming (ESOP), Edinburgh,
Scotland, volume 788 of Lecture Notes in Computer Science. Springer-
Verlag, April 1994. 2.1.4, 4.4, 4.4

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
Definition of Standard ML, Revised edition. MIT Press, 1997. 1, 2, 2.3,
2.3.2, 2.5, 3, 5.6, 6.1.1

[Par72] David Parnas. The criteria to be used in decomposing systems into
modules. Communications of the ACM, 14(1):221–227, 1972. 2

[Pau96] Laurence C. Paulson. ML for the Working Programmer. Cambridge
University Press, second edition, 1996. 2.1

[Pey03] Simon Peyton Jones, editor. Haskell 98 Language and Libraries: the Re-
vised Report. Cambridge University Press, 2003. 1, 3, 3.1, 3.2, 6.1.1

[PJ93] John Peterson and Mark P. Jones. Implementing type classes. In ACM
SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI), Albuquerque, New Mexico, pages 227–236, June 1993. 5.5

http://caml.inria.fr

BIBLIOGRAPHY 161

[PJM97] Simon Peyton Jones, Mark Jones, and Erik Meijer. Type classes: An
exploration of the design space. In ACM Haskell Workshop, Amsterdam,
The Netherlands, informal proceedings, June 1997. 1.3, 3.3, 4.4

[PS04a] Simon Peyton Jones and Mark Shields. Lexically scoped type vari-
ables. http://research.microsoft.com/Users/simonpj/papers/
scoped-tyvars/, March 2004. 2.4.3

[PS04b] Simon Peyton Jones and Mark Shields. Practical type inference for
arbitrary-rank types. http://research.microsoft.com/~simonpj/
papers/putting/index.htm, April 2004. 1.2, 4.6

[Rey74] John C. Reynolds. Towards a theory of type structure. In Colloque sur
la Programmation, Paris, France, volume 19 of Lecture Notes in Computer
Science, pages 408–425. Springer-Verlag, 1974. 2.4.3, 5.6

[Ros05] Andreas Rossberg. Re: CTM Chapter 4, May 2005. Post to
the Alice-users mailing list, http://www.ps.uni-sb.de/pipermail/
alice-users/2005/000466.html. 1

[RRK+03] Sergei Romanenko, Claudio Russo, Niels Kokholm, Ken Friis Larsen,
and Peter Sestoft. Moscow ML homepage, 2003. http://www.dina.
dk/~sestoft/mosml.html. 2.4, 4.5, 5.5

[RS02] Andreas Rossberg and Martin Sulzmann. Beyond type classes. Tech-
nical report, Programming Systems Lab, Universität des Saarlandes,
Saarbrücken, Germany, 2002. http://www.ps.uni-sb.de/Papers/
paper_info.php?label=btclasses. 4.4

[Rus98] Claudio V. Russo. Types for Modules. PhD thesis, Edinburgh Univer-
sity, Edinburgh, Scotland, 1998. LFCS Thesis ECS–LFCS–98–389. 2.3,
2.6, 2.4.1, 2.5, 4.3.1, 4.3.1

[Rus99] Claudio V. Russo. Non-dependent types for Standard ML modules.
In ACM SIGPLAN International Conference on Principles and Practice of
Declarative Programming (PPDP), Paris, France, pages 80–97, Septem-
ber 1999. 2.5

[Rus00a] Claudio V. Russo. First-class structures for Standard ML. In Euro-
pean Symposium on Programming (ESOP), Berlin, Germany, volume 1782
of Lecture Notes in Computer Science, pages 336–350. Springer-Verlag,
2000. 1.3, 2.4, 2.4.1, 5.4, 6.1.2

[Rus00b] Claudio V. Russo. First-class structures for Standard ML. Nordic Jour-
nal of Computing, 7(4):348–374, 2000. 2.4.1

[Rus01] Claudio V. Russo. Recursive structures for Standard ML. In ACM
SIGPLAN International Conference on Functional Programming (ICFP),
Firenze, Italy, pages 50–61, September 2001. 1.3, 2.4, 2.4.2, 2.5, 6.1.2

http://research.microsoft.com/Users/simonpj/papers/scoped-tyvars/
http://research.microsoft.com/Users/simonpj/papers/scoped-tyvars/
http://research.microsoft.com/~simonpj/papers/putting/index.htm
http://research.microsoft.com/~simonpj/papers/putting/index.htm
http://www.ps.uni-sb.de/pipermail/alice-users/2005/000466.html
http://www.ps.uni-sb.de/pipermail/alice-users/2005/000466.html
http://www.dina.dk/~sestoft/mosml.html
http://www.dina.dk/~sestoft/mosml.html
http://www.ps.uni-sb.de/Papers/paper_info.php?label=btclasses
http://www.ps.uni-sb.de/Papers/paper_info.php?label=btclasses

162 BIBLIOGRAPHY

[Sch00] Gerhard Schneider. ML mit Typklassen, June 2000. Diplomarbeit.
Fachrichtung Informatik, Universität des Saarlandes. http://www.
ps.uni-sb.de/Papers/abstracts/Schneider2000.html. 1, 1.2, 5.6

[Sha99] Zhong Shao. Transparent modules with fully syntactic signatures.
In ACM SIGPLAN International Conference on Functional Programming
(ICFP), Paris, France, pages 220–232, September 1999. 2.1.4, 6.1.1, 6.1.1

[Sha04] Chung-chieh Shan. Higher-order modules in System Fω and Haskell.
http://www.eecs.harvard.edu/~ccshan/xlate/, July 2004. 1.2, 4.6

[SP02] Mark B. Shields and Simon Peyton Jones. First class modules for Has-
kell. In International Workshop on Foundations of Object-Oriented Lan-
guages (FOOL), Portland, Oregon, informal proceedings, pages 28–40,
January 2002. 4.6

[SW05] Martin Sulzmann and Jeremy Wazny. Chameleon, 2005. http://www.
comp.nus.edu.sg/~sulzmann/chameleon/. 4.4

[Tho99] Simon Thompson. Haskell: The Craft of Functional Programming. Addi-
son Wesley, 1999. 3.1

[WB89] Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism
less ad hoc. In ACM Symposium on Principles of Programming Languages
(POPL), Austin, Texas, pages 60–76, January 1989. 1, 3, 3.1, 5, 5.6

http://www.ps.uni-sb.de/Papers/abstracts/Schneider2000.html
http://www.ps.uni-sb.de/Papers/abstracts/Schneider2000.html
http://www.eecs.harvard.edu/~ccshan/xlate/
http://www.comp.nus.edu.sg/~sulzmann/chameleon/
http://www.comp.nus.edu.sg/~sulzmann/chameleon/

	Contents
	List of Figures
	Introduction
	Goals
	Related work
	Outline

	ML modules
	Introduction to ML modules
	Structures
	Signatures
	Functors
	Summary

	General conventions and definitions
	Tiny-ML
	Syntax
	Semantic objects
	Some definitions
	Typing judgments

	Tiny-ML+
	First-class structures
	Recursive functors
	Lexically scoped type variables
	Arbitrary functor arguments
	Signature expressions with type realizations

	Related work

	Haskell type classes
	Introduction to Haskell type classes
	Tiny-HS
	Syntax
	Typing judgments

	Tiny-HS+
	Multi-parameter type classes
	Associated type synonyms
	Abstract associated type synonyms
	Syntax
	Typing judgments

	Related work

	From modules to classes
	Example translation
	Formal translation
	Preparations
	The translation

	Formal properties
	Well-definedness
	Type correctness

	Restrictions on the source language Tiny-ML
	Implementation
	Related work

	From classes to modules
	Example translation
	Formal translation
	Preparations
	The translation

	Formal properties
	Soundness and completeness
	Type correctness

	Restrictions on the source language Tiny-HS
	Implementation
	Related work

	Discussion
	ML modules and Haskell type classes: a comparison
	Classes as modules
	Modules as classes

	Future work
	Summary and conclusions

	Code
	Long proofs
	Bibliography

