
JavaGI in the Battlefield:
Practical Experience with Generalized Interfaces

Stefan Wehr
University of Freiburg, Germany
wehr@informatik.uni-freiburg.de

Peter Thiemann
University of Freiburg, Germany

thiemann@informatik.uni-freiburg.de

Abstract
Generalized interfaces are an extension of the interface concept
found in object-oriented languages such as Java or C#. The exten-
sion is inspired by Haskell’s type classes. It supports retroactive and
type-conditional interface implementations, binary methods, sym-
metric multimethods, interfaces over families of types, and static
interface methods.

This article reports practical experience with generalized inter-
faces as implemented in the JavaGI language. Several real-world
case studies demonstrate how generalized interfaces provide solu-
tions to extension and integration problems with components in bi-
nary form, how they make certain design patterns redundant, and
how they eliminate various run-time errors. In each case study, the
use of JavaGI results in elegant and highly readable code.

Furthermore, the article discusses the implementation of a com-
piler and a run-time system for JavaGI. Benchmarks show that our
implementation offers acceptable performance.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Classes and objects;
D.3.4 [Programming Languages]: Processors—Compilers.

General Terms Design, Experimentation, Languages.

Keywords JavaGI, retroactive interface implementation, external
methods, multimethods, case studies.

1. Introduction
Ideally, writing software is like doing jigsaw puzzles: engineers
should assemble a software product from pre-packaged compo-
nents. The real world, however, looks different. Software compo-
nents often do not fit together and component reuse is limited by
hardwired dependencies.

In object-oriented programming languages, interfaces play a
central role for component engineering because they specify the
provided and required services of a component. But interfaces are
rather inflexible: once a component is written and deployed, its
impossible to change the set of interfaces a components implements
without modifying the source code of the component.

In previous work [51], we presented generalized interfaces as
an extension of object-oriented style interfaces. The extension, in-
spired by Haskell’s type classes [40, 47], allows for retroactive
interface implementations; that is, a software component can be

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
This is the author’s version of the work. It is posted here by permission of ACM for
your personal use. Not for redistribution.
GPCE’09, October 4–5, 2009, Denver, Colorado, USA.
Copyright c© 2009 ACM 978-1-60558-494-2/09/10. . . $5.00

made to implement an interface without changing and without re-
compiling the component’s source code. Other features of general-
ized interfaces include type-conditional interface implementations,
binary methods, symmetric multimethods, interfaces over families
of types, and static interface methods.

The present paper examines the benefits of generalized inter-
faces in a real-world context. Using JavaGI, a conservative exten-
sion of Java 1.5 with generalized interfaces, we conduct several
case studies to demonstrate that generalized interfaces solve real-
world problems in an elegant and highly readable way.

Contributions

• We present several real-world case studies demonstrating how
generalized interfaces in JavaGI provide solutions to extension
and integration problems with components in binary form, how
they make certain design patterns redundant, and how they can
be used to eliminate certain run-time errors. The case studies in-
clude a framework for evaluating XPath expressions, a web ap-
plication, and a refactoring of the Java Collection Framework.

• We discuss the implementation of a compiler and a run-time
system for JavaGI.

• We show benchmark results indicating that our implementation
offers acceptable performance.

The implementation as well as the code for all case studies is
available online [50].

Overview Sec. 2 provides a brief overview of the JavaGI lan-
guage. Sec. 3 describes the case studies. Sec. 4 gives some details of
JavaGI’s implementation and lists some benchmark results. Sec. 5
discusses related work and Sec. 6 concludes.

2. Background
This section introduces generalized interfaces as provided by
JavaGI through a series of examples. As JavaGI is an extension
of Java, JavaGI code refers to common classes and interfaces from
the Java 1.5 API. The material presented in this section is based on
our previous article [51].

2.1 Retroactive Interface Implementation
The object-oriented approach to (say) providing a database access
framework begins with the specification of a suitable interface.

interface Connection { QueryResult exec(String command); }

For each database vendor, the framework provides a concrete im-
plementation of the Connection interface in terms of a suitable
class. For a PostgreSQL database, the code might look like this:

class PostgreSQLConnection implements Connection {
public QueryResult exec(String command) { ... }

}

This approach runs into difficulties as soon as an integration with
third-party code supporting another database vendor is desired, the
author of which was not aware of the Connection framework. For
example, here is a class providing MySQL connectivity:

class MySQLConnection {
QueryResult execCommand(String command) { ... }

}

To use this implementation with the Connection interface in a plain
Java program requires the introduction of an adapter class [17]) be-
cause Java cannot add an implementation for the interface retroac-
tively to a class without modifying its source code.

Inspired by Haskell’s separation between type class and in-
stance definitions, JavaGI supports retroactive interface implemen-
tation where the implementation of an interface may be separate
from the implementing class. To make MySQLConnection imple-
ment Connection it is sufficient to write an implementation defini-
tion (with the implementing type indicated in square brackets):

implementation Connection [MySQLConnection] {
QueryResult exec(String command) {
return this.execCommand(command);

}}

In the body of exec, this has static type MySQLConnection and
refers to the receiver of the method call. Thanks to the implemen-
tation definition, a MySQLConnection object can now serve as a
Connection object.

Programmers can load retroactive implementation definitions
dynamically, just like ordinary classes and interfaces.

2.2 Binary Methods, Subtyping, and Dynamic Dispatch
The definition of a binary method [5] in Java 1.5 requires recursive
type bounds (F-bounds) and possibly wildcards [3]. JavaGI directly
supports binary methods in interfaces, as shown here for equality:

interface EQ { boolean eq(This that); }

The argument type of eq is the type variable This, which is im-
plicitly bound by the interface and which denotes the type imple-
menting the interface. Unlike Java’s equals method, the eq method
of EQ prohibits comparing two objects whose static types are not
related by subtyping.

The following class uses the EQ interface to define a generic
function that searches for an element in a list:

class Lists {
static <X> X find(X x, List<X> list) where X implements EQ {
for (X y : list) if (x.eq(y)) return y;
return null;

}}

The constraint notation where X implements EQ, reminiscent of
.NET generics [55], generalizes Java’s type parameter bounds.
When type-checking an implementation, This is replaced with the
implementing type. Here is an implementation of EQ for Integer:

implementation EQ [Integer] {
boolean eq(Integer that) { return this.intValue() == that.intValue(); }

}

The interaction between subtyping and dynamic dispatch causes
some complications. For instance, consider an implementation of
EQ for Number, which is the (abstract) superclass of Integer.

implementation EQ [Number] {
boolean eq(Number that) { /∗ Convert to double and compare. ∗/ }

}

Suppose that x and y have static type Number, but dynamic type
Integer. Then the call x.eq(y) is valid at compile time, but at run

time JavaGI dynamically dispatches to the most specific implemen-
tation (for Integer) that fits all parameters of the implementing type
(as with to symmetric multimethods [10]). If the dynamic type of y
changes from Integer to Float, then the call x.eq(y) invokes the eq
implementation for Number because the one for Integer does not
match anymore.

In our previous paper [51], we demonstrated how dynamic dis-
patch for retroactively implemented methods renders the Visitor
pattern [17] obsolete.

2.3 Type Conditionals
If the elements of two lists are comparable, then the lists should
be comparable, too. JavaGI expresses this implication with a type
conditional interface implementation.

implementation<X> EQ [List<X>] where X implements EQ {
boolean eq(List<X> that) {
X thisX, thatX; /∗ The i−th elements of lists this and that ∗/
... if (thisX.eq(thatX)) ...

}

This implementation is parameterized over X, the type of list el-
ements. The constraint X implements EQ acts as a type condi-
tional [21]: it makes the eq operation available on objects of type
X and ensures that only lists with comparable elements implement
EQ. For example, List<Integer> implements EQ, but List<String>
does not (because String does not implement EQ).

Type conditionals are available for class, interface, and method
definitions. Moreover, they can be imposed on all type parameters
in scope. For instance, a type conditional can hide a method defi-
nition depending on the actual type parameters passed to the class
defining the method (see Sec. 3.3 for an example).

2.4 Abstract Implementations and Inheritance
For many interfaces, the Java API provides an abstract convenience
class with a default implementation of the interface. Implementers
of the interface may reuse methods by inheriting from the default
implementation. For example, the abstract class AbstractCollection
provides a partial default implementation of the Collection interface
(from the Java Collection Framework). Unfortunately, single inher-
itance prevents a subclass of AbstractCollection from having further
superclasses, so that a manual re-implementation may be required.

In contrast, JavaGI can provide default implementations with-
out restricting the inheritance hierarchy: abstract implementations
let programmers write (partial) default implementations, and im-
plementation inheritance allows reuse of these implementations.

As an example, consider an interface for read-only lists and its
partial default implementation:

interface ReadOnlyList<X> {
int size(); boolean isEmpty(); X elementAt(int i);

}
abstract implementation<X> ReadOnlyList<X> [ReadOnlyList<X>] {
boolean isEmpty() { return this.size() == 0; }

}

A full implementation of ReadOnlyList may then inherit from the
default implementation to reuse the code of isEmpty.

implementation ReadOnlyList<Character> [String]
extends ReadOnlyList<Character> [ReadOnlyList<Character>] {
int size() { return this.length(); }
Character elementAt(int i) { return this.charAt(i); }

}

2.5 Static Interface Members
It is a common task to construct instances of a class from an ex-
ternal representation such as XML or some other serialization for-
mat. However, the desired methods behave like class constructors

and thus cannot be specified in a Java 1.5 interface. To address this
need, JavaGI admits static methods in interfaces:

interface Parseable {
static This parse(String s) throws ParseException;
static String errormessage();

}

Again, the result type This refers to the implementing type. A
generic method to process a servlet request, using the method
String getParameter(String name) for accessing the value of request
parameter name, serves as an example:

<X> Field<X> defineField(ServletRequest r, String name, String type)
where X implements Parseable {

String parmstr = r.getParameter(name);
X parm = null; String message = "";
try { parm = Parseable[X].parse(parmstr); }
catch(Exception e) { message = Parseable[X].errormessage() + ": " + e; }
return new Field<X>(name, type, parmstr, parm, message);

}

The expression Parseable[X].parse(s) invokes the static method
parse of interface Parseable with X as the implementing type. The
method errormessage() yields the message displayed on a failed
parse. See Sec. 3.2 for an explanation of Field<X>.

In Java 1.5, we would implement the parsing functionality with
the Factory pattern [17]. The Java solution is more complicated
than the solution in JavaGI because an additional factory object
must be constructed and passed around explicitly.

2.6 Multi-Headed Interfaces
A multi-headed interface is JavaGI’s counterpart of a multi-
parameter type class in Haskell [41]. It relates multiple implement-
ing types and their methods. To distinguish between multi-headed
interfaces and interfaces with only one implementing type, we call
the latter single-headed.

Multi-headed interfaces can place mutual requirements on the
methods of all participating types as in the Observer pattern:1

interface ObserverPattern [Subject, Observer] {
receiver Subject {

void attach(Observer o);
void notify();

}
receiver Observer { void update(Subject s); }

}

With multiple implementing types, the interface names the im-
plementing types explicitly through type variables Subject and
Observer, and it groups methods by receiver type. Implementations
of multi-headed interfaces are defined analogously to implementa-
tions of single-headed interfaces.

The genericUpdate method of the following test class uses the
constraint S∗O implements ObserverPattern to specify that the
type parameters S and O must together implement ObserverPattern.2

class MultiheadedTest {
<S,O> void genericUpdate(S subject, O observer)
where S∗O implements ObserverPattern {
observer.update(subject);

}}

An extended version of this article [53] demonstrates how multi-
headed interfaces allow encodings of classic examples for multi-
methods [11] and family polymorphism [16].

1 Two parties participate in the Observer pattern: subject and observer.
Every observer attaches itself to one or more subjects. Whenever a subject
changes its state, it notifies its observers by sending itself for scrutiny.
2 Instead of S∗O implements ObserverPattern, the initial version of
JavaGI [51] used the syntax [S,O] implements ObserverPattern.

package org.jaxen;
interface Navigator {

/∗ Retrieve an Iterator matching the child XPath axis. ∗/
java.util.Iterator getChildAxisIterator(Object contextNode)

throws UnsupportedAxisException;
/∗ Retrieve the local name of the given element node. ∗/
String getElementName(Object element);
/∗ Loads a document from the given URI. ∗/
Object getDocument(String uri);
/∗ Returns a parsed form of the given XPath string. ∗/
XPath parseXPath(String xpath);
// 37 methods omitted

}

Figure 1. Jaxen’s Navigator interface (excerpt).

3. Case Studies
This section examines the benefits of generalized interfaces through
three real-world case studies. We performed these case studies
using our JavaGI implementation. The source code of all case
studies is available as part of the JavaGI distribution [50].

3.1 XPath Evaluation
In this case study, we implemented a framework for evaluating
XPath [54] expressions. The framework is not bound to a specific
XML implementation but can be used with and adapted to many
different object models, including object models unrelated to XML.
For plain Java, jaxen [24] already provides such a framework.
(Internally, our implementation relies on jaxen to actually evaluate
XPath expressions.) The goal of the case study was to compare the
JavaGI solution with the one provided by jaxen.

Jaxen specifies an interface Navigator, which contains all meth-
ods required by its XPath evaluation engine. The interface has
methods for accessing the names of element nodes and attribute
nodes, for retrieving the values of attribute and text nodes, for con-
structing iterators for the various XPath axis, and for other func-
tionality.3 To stay generic, the Navigator interface uniformly uses
Object as type for the different node kinds. Fig. 1 shows an excerpt
from this interface.

To use jaxen, a programmer has to implement the Navigator in-
terface for her own object model. To simplify this task, jaxen con-
tains an abstract class DefaultNavigator with default implementa-
tions for roughly half of the interface methods. Jaxen also provides
concrete Navigator implementations for various XML libraries such
as dom4j [13] and JDOM [22].

The JavaGI XPath evaluation framework specifies a model of
the XPath node hierarchy based on interfaces. These interfaces
provide the methods required by the internal evaluation engine.
Fig. 2 shows those parts of the node hierarchy that correspond to
the excerpt of the Navigator interface in Fig. 1.

A JavaGI programmer adapts existing object models to the
XPath node hierarchy with retroactive interface implementations.
Similar to the abstract DefaultNavigator class shipped with jaxen,
the JavaGI version provides an abstract implementation of the
XNode interface, which contains default implementations for 23
out of 26 methods. We now show how to adapt the XML libraries
dom4j [13] and JDOM [22] to our XNode hierarchy.

dom4j The dom4j library comes with its own node hierarchy,
which is rooted in the interface org.dom4j.Node. Fig. 3 illustrates
the adaptation to the XNode hierarchy.4 To avoid code duplication,

3 In the following, we ignore comment, namespace, and processing instruc-
tion nodes. It is straightforward to include these additional kinds of nodes.
4 We use UML notation [35] for displaying packages, classes, interfaces,
and inheritance. Dotted lines represent non-abstract retroactive interface
implementations, where the arrow points to the (single-headed) interface
being implemented.

package javagi.casestudies.xpath;
public interface XNode {

Iterator<XNode> getChildAxisIterator()
throws org.jaxen.UnsupportedAxisException;

// 24 methods omitted
}
public interface XElement extends XNode {

String getName();
// 3 methods omitted

}
public interface XDocument {
static This getDocument(String uri)
throws org.jaxen.FunctionCallException;

static org.jaxen.XPath parseXPath(String xpath)
throws org.jaxen.SAXPathException;

}

Figure 2. Node hierarchy for XPath evaluation (excerpt).

package org.dom4j

<<interface>>

package javagi.casestudies.xpath

XDocument
<<interface>> <<interface>>

XElementXAttribute

Attribute
<<interface>>

Branch
<<interface>>

CharacterData

Node
<<interface>>

<<interface>>

Text

XNode

Document
<<interface>>

Element
<<interface>> <<interface>>

CDATA Comment
<<interface>> <<interface>>

<<interface>>

Figure 3. Adaptation of the dom4j API to the node hierarchy for
XPath evaluation.

package javagi.casestudies.xpath.dom4j

package javagi.casestudies.xpath

XNode [Attribute]
<<implementation>>

XNode [Branch]
<<implementation>> <<implementation>>

XNode [CDATA] XNode [Text]
<<implementation>>

XNode [Node]
<<implementation>>

XNode [XNode]
<<abstract implementation>>

<<implementation>>

XNode [Document] XNode [Element]
<<implementation>>

Figure 4. Uses of implementation inheritance in the adaptation for
dom4j.

we also made use of implementation inheritance, as shown in
Fig. 4.5 Thereby, the implementation XNode [XNode] is the default
implementation of the XNode interface mentioned earlier.

JDOM Fig. 5 shows the adaptation of JDOM’s API to the XNode
hierarchy. JDOM uses its own set of classes and interfaces to rep-
resent the various XML node kinds. Unlike dom4j, the classes
and interfaces do not form a true hierarchy because they do not
have a designated root class (except Object). This non-hierarchic

5 Boxes with the stereotype «implementation» (or «abstract implementa-
tion») denote implementation definitions. Arrows between implementation
definitions denote inheritance links, the arrow pointing to the super imple-
mentation.

Attribute

package javagi.casestudies.xpath.jdom

package org.jdom

package javagi.casestudies.xpath

Document Element Text

CDATA

Content

XAttribute
<<interface>>

XDocument
<<interface>>

XElement
<<interface>>

<<interface>>
XNode

<<interface>>
JDomNode

Parent
<<interface>>

Figure 5. Adaptation of the JDOM API to the node hierarchy for
XPath evaluation.

package javagi.casestudies.xpath.jdom

package javagi.casestudies.xpath

<<implementation>> <<implementation>> <<implementation>>

<<abstract implementation>>

JDomNode [Element]
<<implementation>>

XNode [Element]
<<implementation>>

XNode [JDomNode]
<<implementation>>

JDomNode [Parent]
<<implementation>>

XNode [Attribute] XNode [Parent] XNode [Text]

XNode [XNode]

Figure 6. Uses of implementation inheritance in the adaptation for
JDOM.

API is problematic because it offers no place for putting im-
plementations of methods shared by several node kinds. (In the
dom4j example, we simply placed such methods in the imple-
mentation XNode [org.dom4j.Node]. This approach allowed, for
example, the reuse of several methods between org.dom4j.Attribute,
org.dom4j.CDATA, and org.dom4j.Text.)

Despite the non-hierarchic JDOM API, we managed to get by
without code duplication by introducing an interface JDomNode,
which serves as the (artificial) root of the JDOM API. Fig. 5 shows
JDomNode and the corresponding implementations at the bottom.
Thanks to the newly introduced root interface, code duplication was
avoided by implementation inheritance (see Fig. 6).

Assessment
The JavaGI-based XPath evaluation framework has several advan-
tages over the plain Java solution. The main advantage is that the
JavaGI-based approach requires significantly fewer cast operations
than the solution using jaxen.

Jaxen’s implementation of the Navigator interface for dom4j
requires 28 casts, the one for JDOM even 47 casts. Most of these
casts are caused by the use of Object as the type of nodes in the
Navigator interface. Here is a typical example for dom4j:

public String getElementName(Object obj) {
return ((org.dom4j.Element) obj).getName();

}

In contrast, the JavaGI solution, requires no casts at all to adapt
both dom4j and JDOM to the node hierarchy for XPath evaluation.

An approach to lower the number of casts required by the jaxen
solution would be to parameterize the Navigator interface by the

different node types and use these type parameters in method sig-
natures. While such a parameterization would lower the number
of casts significantly, it would also limit expressiveness. For in-
stance, in the dom4j Navigator both interfaces org.dom4j.CDATA
and org.dom4j.Text may serve as text nodes, however, their least
upper bound org.dom4j.CharacterData may not. Thus, there exists
no sensible instantiation for the text node type. Hence, a generic
version of the Navigator interface is not an option.

As another advantage, the JavaGI approach offers a simple and
clear specification of the requirements an object model has to fulfill
to support XPath-based navigation. The JavaGI solution specifies
six interfaces for the different node kinds. The interfaces have at
most three methods, except for the XNode interface, which has 26
methods. Using different interfaces for different node kinds results
in a clear separation of concerns. In contrast, the jaxen solution
requires clients to implement the 41 methods of the Navigator
interface.

3.2 JavaGI for the Web
WASH [44] is a domain specific language for server-side Web
scripting embedded in Haskell. It supports the generation of
HTML, guaranteeing well-formedness and adherence to a DTD
for all generated documents. Furthermore, there are operators for
defining typed input widgets and ways to extract the user inputs
from them without being exposed to the underlying string-based
protocol. A WASH program automatically redisplays a form until
the user has entered syntactically correct values in all input widgets.

The implementation of WASH relies heavily on Haskell’s type
classes. It enforces quasi-validity by providing type classes spec-
ifying the allowed parent-child relationships among elements, at-
tributes, and other kinds of HTML nodes. These type classes are
generated from a HTML DTD. Also, the type of an input widget
is parameterized by the expected type of the value. Again, a type
class provides type-specific parsers and error messages.

Much of the core functionality of WASH can be implemented
in JavaGI. Briefly put, plain Java interfaces are sufficient to support
generation of quasi-valid HTML documents, retroactive implemen-
tation is useful in many places, the implementation of typed input
widgets relies on static interface methods, and dynamic loading of
implementations is essential for working in a servlet environment.

To generate HTML documents, the implementation defines a
type hierarchy quite similar to that in Fig. 2 with a Node interface
on top, abstract classes Element and Attribute, and a class Text, all
implementing Node. In addition, there are element- and attribute-
specific subclasses and -interfaces: for each kind of attribute, there
is a subclass of Attribute; for each kind of element, there is a
subclass of Element and a subinterface of Node that characterizes
potential child nodes of this kind of element. For convenience, there
is a class GenHTML with static factory methods for creating all
kinds of nodes. Fig. 7 contains excerpts from these classes.

The implementation of typed input fields relies on the Parseable
interface explained in Sec. 2.5. An input field for a value of type X
is represented by an object of class Field<X>. The method

public <X> Field<X> defineField (String name, String type, X init)
where X implements Parseable;

is retroactively attached to javax.servlet.ServletRequest, which
contains the internal data of an HTML-form submission to a
servlet. The defineField method parses the submitted string, detects
errors, and creates a Field<X> instance. The latter has methods
INPUT getInput(), which constructs a HTML input element, and
X getValue(), which returns the field’s value.

Fig. 8 illustrates the coding pattern for a servlet.The servlet class
inherits from JavaGIServlet, which extends HTTPServlet to per-
form dynamic loading of implementation definitions. It first cre-
ates input fields using defineField. Next, the code applies method

class UL extends Element
implements ChildOfBODY, ChildOfLI /∗ rest omitted ∗/ {
public String getName() { return "ul"; }
public UL add(ChildOfUL... children) {
super.add(children);
return this;

}
}
interface ChildOfUL extends Node {}

class AttrCLASS extends Attribute
implements ChildOfUL, ChildOfLI /∗ rest omitted ∗/ {
public String getName() { return "class"; }
public AttrCLASS(String v) { super (v); }

}

class GenHTML {
public static UL ul(ChildOfUL... cs) { return new UL().add(cs); }
public static AttrCLASS attrCLASS(String v) { return new AttrCLASS(v); }
// remaining factory methods elided

}

Figure 7. Modeling HTML elements and attributes.

public class Register extends JavaGIServlet {
protected void doPost (HttpServletRequest req, HttpServletResponse res) {

Field<String> n = req.<String>defineField ("name", "text", "");
Field<Date> a = req.<Date>defineField ("arrival", "text", null);

if (req.fieldsOK ()) processRegistration (res, n.getValue (), a.getValue ());
else {

TABLE t = table ();
FORM f = form (attrMETHOD ("post"), attrACTION (""), t);
HTML page = html (head (title ("Workshop Registration")),

body (h1 ("Workshop Registration"), f));
t.addRow (cdata("Name: "), n.getInput ());
t.addRow (cdata("Arrival date: "), a.getInput ());
t.addRow (input (attrTYPE ("submit")));
try {

res.setContentType ("text/html; charset=UTF−8");
page.out (res.getWriter());
res.flushBuffer();

} catch (IOException e) {}
}

}
public void processRegistration (

HttpServletResponse res, String name, Date arrival) { ... }
}

Figure 8. Example servlet.

fieldsOK() to the ServletRequest object to check whether all re-
quired user entries are present and syntactically correct. If so,
the servlet proceeds to processing the user’s entry. Otherwise, the
servlet creates an object structure representing the HTML page.
This structure includes the input elements extracted from the fields
created in the first step. In case of a parse error, the elements contain
suitable error notifications. Finally, the code serializes the HTML
structure to the servlet response and terminates.

Assessment
The JavaGI solution yields the same guarantees as the WASH sys-
tem with respect to well-formedness and validity of the generated
HTML and with respect to automatic form validation.

WASH also provides a typed submit facility, where submit
buttons (cf. the input element with type "submit" in Fig. 8) are
created implicitly. The constructor for a submit button accepts a
list of typed fields and a callback function that accepts an argument
list typed according to the fields. On submission of the page, the
submit button invokes the callback function, provided the values of
all fields validate correctly. This facility is not incorporated in the

public interface List<E,M> extends Collection<E,M> {
E set(int index, E element) where M extends Modifiable;

void add(int index, E element) where M extends Resizable;
boolean add(E o) where M extends Resizable;
boolean addAll(Collection<? extends E,?> c)

where M extends Resizable;

E remove(int index) where M extends Shrinkable;
boolean remove(Object o) where M extends Shrinkable;
boolean removeAll(Collection<?,?> c) where M extends Shrinkable;
boolean retainAll(Collection<?,?> c) where M extends Shrinkable;
void clear() where M extends Shrinkable;

// omitted 16 read−only operations such as size(), isEmpty()
}
// Mode types:
public class Modifiable {}
public class Shrinkable extends Modifiable {}
public class Resizable extends Shrinkable {}

Figure 9. Refactoring of the Java Collection Framework.

JavaGI version because it seems to require higher-kind generics
[32]. We were, however, able to implement a less flexible approach
that requires the programmer to prepare designated classes for
storing the submitted information.

A Java implementation of WASH’s core functionality is possi-
ble but requires more work than our solution with JavaGI. Creating
class instances from parsed and validated input data would have
to be performed using the factory pattern, which would require
an extra parameter for many methods. Moreover, retroactive inter-
face implementations would have to be emulated either through the
adapter pattern or with static helper methods.

3.3 Java Collection Framework
The Java Collection Framework (JCF) provides interfaces for com-
mon data structures such as Collection, Set, List, and Map as well
as various implementations of these data structures. By default, all
collections are modifiable but programmers can explicitly mark
a collection as unmodifiable. However, unmodifiable collections
have the same interface as modifiable ones, so programmers may
call modifying operations on an unmodifiable collection, resulting
in a run-time error.

Huang, Zook, and Smaragdakis [21] demonstrate how to turn
such run-time errors into compile-time errors using type condition-
als as provided by their Java extension cJ. The basic idea is to pa-
rameterize a collection not only over the element type but also over
a “mode” type that specifies further attributes of a collection. The
type conditionals ensure that operations modifying the collection
are only available if the mode parameter indicates that the collec-
tion is indeed modifiable, etc. In a case study, Huang and collabo-
rators refactor the whole JCF using this idea.

While JavaGI’s type conditionals are slightly less powerful
than cJ’s, all features needed for refactoring the JCF are available.
Hence, porting the refactored JCF to JavaGI was straightforward.

As an example, Fig. 9 shows JavaGI’s version of the List inter-
face with type conditionals. The type parameter E is the type of
the list elements. The second type parameter M denotes the mode
of the collection, where the mode is one of the classes shown at
the bottom of the figure: Modifiable specifies that individual list el-
ements can be changed, but no elements can be added or removed;
Shrinkable specifies that elements can be removed from the list;
Resizable specifies that arbitrary modifications are allowed. Mode
Object indicates that the list cannot be modified at all.

For example, the set method may only be called if M is at
least Modifiable, whereas clear requires that M is (a subtype of)

Shrinkable. Thus, the following code fails at compile time instead
of throwing an UnsupportedOperationException.

List<String, Modifiable> list = ...;
list.clear(); /∗ fails at compile time because the constraint

"Modifiable extends Shrinkable" does not hold ∗/

Assessment
The main difference (besides syntactic ones) between the JavaGI
and the cJ version of the JCF refactoring is that cJ offers a grouping
mechanism for type conditionals. This grouping mechanism allows
programmers to specify a type conditional for a whole group of
methods. JavaGI requires restating the conditional for each method.

Furthermore, in cJ superclasses and fields are also subject to
type conditionals. However, these features were not needed for the
JCF case study, and the original cJ paper [21] does not contain real-
istic examples using them. Hence, we conjecture that most applica-
tions of type conditionals do not need this additional expressivity.

4. Implementation
The JavaGI compiler is an extension of the Eclipse Compiler for
Java [14] and generates bytecode that runs on a standard JVM [27].
This section explains how type checking of JavaGI programs works
(Sec. 4.1), demonstrates the translation of the JavaGI constructs
(Sec. 4.2), discusses aspects of the run-time system (Sec. 4.3), and
presents benchmark results (Sec. 4.4).

4.1 Type Checking
In this section, we informally discuss the most important aspects of
type checking JavaGI programs. There exists a technical report [49]
that formalizes a subset of JavaGI and proves type soundness,
determinacy of evaluation, and decidability of type checking.

4.1.1 Constraint Entailment and Subtyping
Constraint entailment is a notion not present in Java’s type system.
It establishes the validity of constraints. JavaGI distinguishes two
kinds of constraints: a constraint X extends T expresses that
type variable X has to be a subtype of T , whereas a constraint
T1 ∗ · · · ∗ Tn implements U requires that the types T1, . . . , Tn

together implement the interface U .
An implements constraint is stronger than the corresponding

extends constraint: validity of T implements U implies validity
of T extends U , but the reverse implication is not always true. The
distinction between the two constraint forms is necessary to rule
out illegal applications of binary methods.

JavaGI’s subtyping relation extends Java’s by considering more
types to be subtypes of each other than Java. To test whether T
is a subtype of U (written T ≤ U), JavaGI first checks whether
T ≤ U already holds in Java. Otherwise, T ≤ U can only hold
if U is an interface type and there exists a retroactive interface
implementation proving it. That is, there must be a superclass or
superinterface T ′ of T such that T ′ implements U holds.

4.1.2 Method Typing
JavaGI’s procedure for type checking a method invocation extends
Java’s procedure. If the rules of Java are sufficient to type check an
invocation, then it also type checks in JavaGI and the invocation is
marked as a “Java call-site”. Otherwise, the method to be invoked
must have been implemented retroactively, so JavaGI’s constraint
entailment kicks in and tries to prove a suitable implements con-
straint. If type checking succeeds this way, then the compiler marks
the invocation as a “JavaGI call-site”.

4.1.3 Backwards Compatibility and Type Soundness
JavaGI is fully backwards compatible with Java. The JavaGI com-
piler supports advanced Java 1.5 features such as varargs, enums,
inference of type arguments for method invocations, and wild-
cards [45].

The type soundness proof for a subset of JavaGI [49] does not
include these advanced features. Especially for wildcards, proving
type soundness is a tricky business [7]. Nevertheless, we believe
that type soundness holds for the full JavaGI language, including
wildcards, because JavaGI prevents implementing type variables
such as This from appearing nested inside generic types.

4.1.4 Well-formedness Criteria for JavaGI Programs
JavaGI’s type system imposes well-formedness criteria on the set
of implementation definitions to guarantee that run-time lookup of
retroactively implemented methods always finds a unique most spe-
cific implementation definition. Moreover, the criteria ensure that
dynamic method lookup need not perform constraint entailment
when searching for the most specific implementation. Constraint
entailment at run time is not feasible because JavaGI inherits its
type erasure semantics from Java [4], so type arguments are not
available when actually executing a program. Last but not least, the
criteria establish decidability of constraint entailment and subtyp-
ing, and they enable efficient method lookup. Here is the list of
well-formedness criteria:

No Overlap Any two non-abstract implementations of the same
interface must not overlap; that is, the erasures of the implementing
types must not be equal. Overlapping implementation definitions
lead to ambiguity in dynamic method lookup.

Unique Interface Instantiation and Non-Dispatch Types Any
two non-abstract implementations of the same interface and with
subtype-compatible implementing types must have identical inter-
face type arguments and identical non-dispatch types.6 This crite-
rion rules out ambiguities in dynamic method lookup.

Downward Closed Any two non-abstract implementations of the
same interface I must be downward closed. That is, if T1, . . . , Tn

and U1, . . . , Un are the implementing types of two implementa-
tions, and V1, . . . , Vn is a vector of types such that Vi is a maximal
element of the set of lower bounds of Ti and Ui, then an implemen-
tation of interface I with implementing types V1, . . . , Vn must ex-
ist. This criterion rules out ambiguities in dynamic method lookup.

Consistent Type Conditions Constraints on non-abstract imple-
mentations must be consistent with subtyping: If the implementing
types of a non-abstract implementation are pairwise subtypes of the
implementing types of another non-abstract implementation, then
the constraints of the former implementation must be implied by
the constraints of the latter. Without this criterion, JavaGI would
need run-time constraint entailment to rule out certain implemen-
tations when performing dynamic method lookup.

No Implementation Chains Retroactive implementations must
not form a chain by using the interface of a non-abstract implemen-
tation as the implementing type of some (other) non-abstract im-
plementation. For example, Sec. 2.1 retroactively implements the
Connection interface, so it is not possible to use Connection as an

6 The implementing types of two implementations are subtype-compatible
iff for each pair of types (Ti, Ui), where Ti is the i-th implementing type of
the first implementation and Ui is the i-th implementing type of the second
implementation, it holds that either Ti ≤ Ui or Ui ≤ Ti.
An implementing type X of some interface is a non-dispatch type if the
interface itself or some of its superinterfaces contains at least one method
such that X is neither the receiver type of the method nor does it appear
among its argument types. Otherwise, X is a dispatch type.

implementing type of any non-abstract implementation. Disallow-
ing implementation chains ensures decidability of constraint entail-
ment and subtyping [52]. Moreover, it allows for efficient run-time
lookup of retroactively implemented methods.

4.1.5 Checking the Criteria
The JavaGI compiler checks the well-formedness criteria just de-
scribed on all accessible implementations. At run time, however,
a different set of implementations may be available because of
subsequent edits or dynamically loaded implementations. Hence,
JavaGI’s run-time system re-checks the well-formedness criteria at
link time (i.e., every time it loads a new set of implementations).
Thus, the compiler can guarantee one important property: if a pro-
gram meets the well-formedness criteria at compile time and the
same set of classes, interfaces, and implementations is available at
compile time and run time, then the run-time checks never fail.

The original design of JavaGI [51] did not rely on link-time
checks. Instead, it imposed a rather drastic restriction on the place-
ment of retroactive implementation definitions, which forced an
implementation to be contained either in the same compilation unit
as its implementing types, or in the same compilation unit as any
implementation for the supertypes of its implementing types. This
restriction turned out to be too limiting in practice. For example, it
was impossible to support dynamic loading of implementation def-
initions, as required by the servlet case study in Sec. 3.2. By check-
ing the well-formedness criteria at link time, the current design of
JavaGI does not need to impose any restriction on the placement of
implementation definitions, so dynamic loading of implementation
definitions is possible. A similar evolution has lead from Multi-
Java [11] to Relaxed MultiJava [31].

4.2 Translation
Fig. 10 contains the translation of parts of the JavaGI code from
Sec. 2.2 transcribed to Java 1.4 source code.

4.2.1 Translation of Interfaces
The JavaGI compiler generates for each interface a dictionary inter-
face. For single-headed interfaces it also generates a wrapper class
and a Java 1.4 interface using Java’s erasure translation [19, 23]. For
example, the type variable This of interface EQ becomes Object.

The dictionary interface contains the same methods as the orig-
inal interface but makes the receiver of all non-static methods ex-
plicit by introducing a fresh argument of type Object (the this$ ar-
gument of eq in EQ$Dict).

Furthermore, the dictionary interface contains a dispatch vec-
tor for each non-static method of the original interface. The dis-
patch vector connects the interface’s implementing types with the
method’s receiver and argument types. JavaGI’s run-time system
relies on the dispatch vector to perform multi-dispatch. The dis-
patch vector is an int array where the value at index 2i denotes the
implementing type corresponding to the receiver or argument found
at index 2i + 1. For example, the receiver and the first argument of
eq both refer to the implementing type This of EQ, so the dispatch
vector is {0,0,0,1}.

An instance of a wrapper class serves as an adapter when a
class is used at an interface type that it implements retroactively.
Most aspects of wrapper classes are standard [1], but there are
some JavaGI-specific issues. First, the eq method of EQ$Wrapper
always throws an exception because JavaGI’s type system ensures
that such a binary method is never called on a wrapper object.

Second, the wrapper class provides a static dispatcher method
for every method of the original interface. These dispatcher meth-
ods simplify the translation of retroactive method invocations. The
dispatcher method for eq (named eq$Dispatcher) calls getMethods
from class javagi.runtime.RT, passing the class object for EQ’s dic-

import javagi.runtime.∗; /∗ (imports classes RT, Wrapper,
Dictionary, and ImplementationInfo) ∗/

// Translation of the EQ interface
interface EQ { boolean eq(Object that); }
public interface EQ$Dict {

public static final int[] eq$DispatchVector = new int[]{0,0,0,1};
public boolean eq(Object this$, Object that);

}
public class EQ$Wrapper extends Wrapper implements EQ {

public static boolean eq$Dispatcher(Object this$, Object that) {
Object dict = RT.getMethods(EQ$Dict.class,

EQ$Dict.eq$DispatchVector,
new Object[]{this$, that});

return ((EQ$Dict) dict).eq(this$, that);
}
public EQ$Wrapper(Object obj) { super(obj); }
public boolean eq(Object that) { throw new RuntimeException(); }
// Delegate hashCode and equals to this.wrapped

}
// Translation of class Lists
class Lists {

static Object find(Object x, List list) {
Iterator iter = list.iterator();
while (iter.hasNext()) {

Object y = iter.next(); if (EQ$Wrapper.eq$Dispatcher(x, y)) return y;
}
return null;

}
}
// Translation of EQ[Integer]
public class EQ$Dict$Integer implements EQ$Dict, Dictionary {

public boolean eq(Object this$, Object that) {
Integer i1 = (Integer) this$; Integer i2 = (Integer) that;
return i1.intValue() == i2.intValue();

}
}

Figure 10. Translation of the code from Sec. 2.2 (excerpt).

tionary, the dispatch vector for eq, and an array containing the ac-
tual arguments. Based on this information, the run-time system re-
turns a dictionary object (corresponding to some implementation
definition), through which the dispatcher method invokes the eq
method. For a non-binary method, the dispatcher would try to in-
voke the method directly on this$, provided this$ implemented the
method’s declaring interface directly.

4.2.2 Translation of Retroactive Implementation Definitions
The translation of a retroactive implementation definition results in
a dictionary class that implements the dictionary interface corre-
sponding to the implementation’s interface. For example, the dic-
tionary class EQ$Dict$Integer corresponds to the implementation
EQ [Integer] and implements the dictionary interface EQ$Dict.

To implement the methods of the dictionary interface, the meth-
ods of the original implementation need to be adapted: they have an
extra parameter this$ to make the receiver explicit and the types of
those arguments declared as implementing types are lifted to match
the corresponding argument types in the dictionary interface. For
example, the argument that of the eq method in the implementation
EQ [Integer] has type Integer, but the corresponding argument in
the original EQ interface is declared with implementing type This.
Hence, the JavaGI compiler lifts the type of that to Object, as re-
quired by the eq method of the EQ$Dict interface.

To recover from this loss of type information, the compiler
performs appropriate downcasts on these arguments. For example,
the eq method of class EQ$Dict$Integer casts the arguments this$
and that from Object to Integer, assigns the results to fresh local
variables i1 and i2, respectively, and uses these local variables
instead of this$ and that in the rest of the method body.

Figure 11. Performance of JavaGI with respect to Java.

4.2.3 Translation of Retroactive Method Invocations
The translation of an invocation of a retroactively defined method
just invokes the corresponding dispatcher method of the wrapper
class of the method’s defining interface. For example, to compare
two expressions for equality, the find method of class Lists calls
eq$Dispatcher defined in EQ$Wrapper.

4.3 Run-Time System
JavaGI’s run-time system maintains the available implementation
definitions, checks their well-formedness according to the crite-
ria in Sec. 4.1.4, loads new implementation definitions at run time,
performs dynamic dispatch on retroactively implemented methods,
and performs certain casts, instanceof tests, and identity compar-
isons (==) on wrappers [1].

The static initializer of the run-time system first searches all
available implementation definitions by reading the names of dic-
tionary classes from extra files generated by the compiler. It then
loads the dictionary classes and performs the well-formedness
checks. Finally, it groups the implementation definitions accord-
ing to the interface they implement. If several implementations
for the same interface exist, the run-time system orders them by
specificity to ensure correct method lookup.

4.4 Benchmarks
Several benchmarks were used to compare the performance of
JavaGI programs with their Java counterparts. The results show that
the JavaGI compiler generates code with acceptable performance.
Plain Java code compiled with the JavaGI compiler runs as fast as
the same code compiled with a regular Java compiler, but there is a
performance penalty for JavaGI-specific features.

All benchmarks were executed on a Thinkpad x60s with an Intel
Core Duo L2400 1.66 GHz CPU and 4GB of RAM, running Linux
2.6.24. The Java code was compiled with the Eclipse Compiler
for Java (version 0.883_R34x) [14], the baseline of the JavaGI
compiler. The raw benchmark data is available online [50].

Fig. 11 compares the performance of JavaGI with that of Java
using seven different workloads. Interpreter is an interpreter for a
language with arithmetic expressions, variables, conditionals, and
function calls, implemented once in plain Java and once in JavaGI
with retroactive interface implementations. Fig. 11 shows that the
JavaGI version is 2.39 times slower than the Java version. A large
number of calls to retroactively implemented methods in the JavaGI
version lead to this slowdown.

Dom4j-perf, dom4j-tests, jdom-perf, and jdom-tests are from the
jaxen [24] distribution (cf. Sec. 3.1). Dom4j-perf and jdom-perf are
performance tests for the adaptation of jaxen to dom4j [13] and
JDOM [22], dom4j-tests and jdom-tests are the corresponding unit-
test suites. The JavaGI versions use the XPath evaluation frame-
work described in Sec. 3.1, whereas the Java versions are based on
code from the jaxen distribution.

The JavaGI versions of the dom4j-tests and jdom-tests work-
loads are 1.08 and 1.57, respectively, times slower than the Java
versions. The domj4-perf and jdom-perf workloads for JavaGI are
3.59 and 5.73, respectively, times slower than their Java counter-
parts. Numerous invocations of retroactively implemented meth-
ods, the construction of many wrapper objects, and a large number
of cast operations are the main reason for this rather heavy slow-
down. (Some of the casts are inserted automatically by type erasure,
the remaining ones are part of the internal adaptation layer between
the public API of the JavaGI framework and the evaluation engine
provided by jaxen, on which the JavaGI framework builds.)

Micro benchmarks show that casts in JavaGI are in the average
case 10 times but in the worst case up to 830 (!) times slower than
in Java. This result is not too surprising because a cast in Java is
a single, highly optimized instruction, whereas a JavaGI cast is
inherently much more complex. In general, a JavaGI cast of the
form (J) x, where J is an interface, first has to remove a potential
wrapper around x. Then it searches for an implementation of J for
x’s run-time type and, if successful, installs a J-wrapper around x.

Other micro benchmarks show that calls of retroactively imple-
mented methods are 3.09 times slower than method calls using the
invokevirtual instruction of the JVM and 2.46 times slower than
calls using the invokeinterface instruction.

The workloads antlr and jython in Fig. 11 are from the DaCapo
benchmark suite (version 2006-10-MR2 [2]). The JavaGI and Java
versions of these two workloads use the same source code, once
compiled with the JavaGI and once with the Java compiler. The
results show no significant difference between JavaGI and Java.

5. Related Work
Generalized interfaces in the JavaGI language were first introduced
at ECOOP 2007 [51]. However, this preliminary design had several
shortcomings: subtyping and type checking were undecidable [52];
a dynamic semantics, a type soundness proof, and an implementa-
tion were missing; severe restrictions were imposed on the place-
ment of implementation definitions; dynamic loading of implemen-
tation definitions was not supported; there was no evidence for the
practical utility of the language in the form of case studies.

In contrast, the current version of JavaGI is fully implemented
and integrated with Java, it supports dynamic loading and imple-
mentation inheritance, and it places no restrictions on the locations
of implementation definitions. Although not covered in the present
article, there exists a formalization for JavaGI along with proofs for
type soundness, decidable subtyping and type checking, as well as
deterministic evaluation [49].

Type classes in the functional programming language Haskell
[40] are closely related to our work. Like a generalized interface, a
type class declares the types of its member functions, which depend
on one or more specified implementing types. Like our implemen-
tation definitions, type class instances are defined separately for
each instantiation of the implementing types. Implementing types
can also be parametric and subject to constraints.

Functional dependencies [25] are an extension of Haskell’s type
classes that express relations between implementing types. For ex-
ample, the functional dependency a→ b in a type class declaration
class C a b | a→ b ... specifies that in all instances of C the first
implementing type uniquely determines the second. Such depen-
dencies are also expressible in JavaGI because JavaGI’s type sys-
tem (as well as Java’s) requires that a program does not define two
implementations for different instantiations of the same interface.
Thus, we may encode the type class just shown as the interface
interface C [A] ... in JavaGI. More complex functional depen-
dencies such as a→ b, b→ a are not expressible in JavaGI.

Associated types [8, 9, 18, 33] present an alternative to func-
tional dependencies. JavaGI does not support them, but others in-
vestigated their integration with object-oriented interfaces [26].

Haskell also allows classes over type constructors (so called
“constructor classes”). In JavaGI, there is no corresponding mecha-
nism because JavaGI only supports first-order parametric polymor-
phism (as Java does). We conjecture that lifting this restriction [32]
would allow a mechanism similar to constructor class for JavaGI.

In comparison with object-oriented languages, Haskell has nei-
ther subtyping nor dynamic dispatch. Thus, evidence for type class
instances needed in a function body can either be constructed stat-
ically or from the evidence present at the call sites of the function.
This approach, on which the translation scheme of the ECOOP ver-
sion of JavaGI was based on, turned out to be too limiting. Thus,
one major contribution of JavaGI with respect to Haskell is the
type-safe integration of subtyping and dynamic dispatch.

Lämmel and Ostermann [29] demonstrate elegant type class-
based solutions for problems that have been used to illustrate limi-
tations of object-oriented languages. Their Haskell solutions to the
adapter problem [17], the tyranny of the dominant decomposition
problem [39], the expression problem [46] and the component inte-
gration problem [30] can be ported to JavaGI easily. Their Haskell
encodings of multiple dispatch and family polymorphism differ
from the JavaGI implementations (see the extended version [53]).

There is a wealth of other work connected to generalized in-
terfaces: multimethods [1, 10, 12, 42, 43], expanders [48], Scala’s
views [34], concepts for C++ [20], LOOJ [6], constraint-based
polymorphism [28], generalized constraints [15], and some more.
For reasons of space, we omit a detailed discussion and refer to our
ECOOP paper [51].

6. Conclusion
JavaGI’s generalized interface concept is inspired by Haskell’s type
classes and integrates it successfully with subtyping and dynamic
dispatch. Thereby it subsumes the features of a range of separate
language extensions including multimethods, binary methods, in-
terfaces over families of types, as well as retroactive and type-
conditional interface implementations.

The case studies presented in this paper show that JavaGI is
well suited for solving integration and adaptation problems with
components in binary form. They further show how JavaGI makes
certain design patterns obsolete and how JavaGI’s expressive type
system rules out certain classes of run-time errors. Finally, the case
studies demonstrate that JavaGI’s implementation is mature enough
to be used in real-world projects.

Acknowledgments
We thank the anonymous reviewers of OOPSLA and GPCE 2009.
Their numerous and detailed comments helped improve the presen-
tation significantly.

References
[1] G. Baumgartner, M. Jansche, and K. Läufer. Half & half: Multiple

dispatch and retroactive abstraction for Java. Technical Report OSU-
CISRC-5/01-TR08, Revised 3/02, Ohio State University, 2002.

[2] S. M. Blackburn et al. The DaCapo benchmarks: Java benchmarking
development and analysis. In OOPSLA’06 [37], pages 169–190.

[3] G. Bracha. Generics in the Java programming language. http://
java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf, 2004.

[4] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the
future safe for the past: Adding genericity to the Java programming
language. In OOPSLA’98 [38], pages 183–200.

[5] K. B. Bruce, L. Cardelli, G. Castagna, J. Eifrig, S. F. Smith, V. Tri-
fonov, G. T. Leavens, and B. C. Pierce. On binary methods. Theory
and Practice of Object Systems, 1(3):221–242, 1995.

[6] K. B. Bruce and J. N. Foster. LOOJ: Weaving LOOM into Java. In
M. Odersky, editor, 18th ECOOP, volume 3086 of LNCS, pages 389–
413, Oslo, Norway, 2004. Springer.

[7] N. Cameron, S. Drossopoulou, and E. Ernst. A model for Java with
wildcards. In J. Vitek, editor, 22nd ECOOP, volume 5142 of LNCS,
Paphos, Cyprus, 2008. Springer.

[8] M. M. T. Chakravarty, G. Keller, and S. Peyton Jones. Associated type
synonyms. In B. C. Pierce, editor, Proc. ICFP 2005, pages 241–253,
Tallinn, Estonia, 2005. ACM Press, New York.

[9] M. M. T. Chakravarty, G. Keller, S. Peyton Jones, and S. Marlow.
Associated types with class. In M. Abadi, editor, Proc. 32nd ACM
Symp. POPL, pages 1–13, Long Beach, CA, USA, 2005. ACM Press.

[10] C. Chambers. Object-oriented multi-methods in Cecil. In O. L.
Madsen, editor, 6th ECOOP, volume 615 of LNCS, pages 33–56.
Springer, 1992.

[11] C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein. MultiJava:
Modular open classes and symmetric multiple dispatch for Java. In
Proc. 15th ACM Conf. OOPSLA, pages 130–145, Minneapolis, MN,
USA, 2000. ACM Press, New York.

[12] C. Clifton, T. Millstein, G. T. Leavens, and C. Chambers. MultiJava:
Design rationale, compiler implementation, and applications. ACM
TOPLAS, 28(3):517–575, 2006.

[13] dom4j. http://www.dom4j.org/, 2008.
[14] Eclipse Foundation. Eclipse compiler for Java. http:

//download.eclipse.org/eclipse/downloads/drops/R-3.
4.1-200809111700/index.php, 2008.

[15] B. Emir, A. Kennedy, C. V. Russo, and D. Yu. Variance and gener-
alized constraints for C# generics. In 20th ECOOP, volume 4067 of
LNCS, pages 279–303, Nantes, France, 2006. Springer.

[16] E. Ernst. Family polymorphism. In J. L. Knudsen, editor, 15th
ECOOP, volume 2072 of LNCS, pages 303–326, Budapest, Hungary,
2001. Springer.

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[18] R. Garcia, J. Järvi, A. Lumsdaine, J. G. Siek, and J. Willcock. A
comparative study of language support for generic programming. In
OOPSLA’03 [36], pages 115–134.

[19] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language
Specification. Addison-Wesley, 3rd edition, 2005.

[20] D. Gregor, J. Järvi, J. Siek, B. Stroustrup, G. Dos Reis, and A. Lums-
daine. Concepts: Linguistic support for generic programming in C++.
In OOPSLA’06 [37], pages 291–310.

[21] S. S. Huang, D. Zook, and Y. Smaragdakis. cJ: Enhancing Java with
safe type conditions. In Proc. 6th AOSD, pages 185–198, Vancouver,
BC, Canada, 2006. ACM Press, New York.

[22] J. Hunter and B. McLaughlin. JDOM. http://www.jdom.org/,
2007.

[23] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: a minimal
core calculus for Java and GJ. ACM TOPLAS, 23(3):396–450, 2001.

[24] Jaxen. http://jaxen.codehaus.org/, 2008.
[25] M. P. Jones. Type classes with functional dependencies. In G. Smolka,

editor, Proc. 9th ESOP, volume 1782 of LNCS, pages 230–244, Berlin,
Germany, 2000. Springer.

[26] J. Järvi, J. Willcock, and A. Lumsdaine. Associated types and con-
straint propagation for mainstream object-oriented generics. In Proc.
20th ACM Conf. OOPSLA, pages 1–19, New York, NY, USA, 2005.
ACM Press.

[27] T. Lindholm and F. Yellin. The Java Virtual Machine Specification.
Addison-Wesley, second edition, 1999.

[28] V. Litvinov. Contraint-based polymorphism in Cecil: Towards a prac-
tical and static type system. In OOPSLA’98 [38], pages 388–411.

[29] R. Lämmel and K. Ostermann. Software extension and integration
with type classes. In GPCE ’06, pages 161–170, New York, NY, USA,
2006. ACM Press.

[30] M. Mezini and K. Ostermann. Integrating independent components
with on-demand remodularization. In Proc. 17th ACM Conf. OOP-
SLA, pages 52–67, Seattle, WA, USA, 2002. ACM Press, New York.

[31] T. Millstein, M. Reay, and C. Chambers. Relaxed MultiJava: Bal-
ancing extensibility and modular typechecking. In OOPSLA’03 [36],
pages 224–240.

[32] A. Moors, F. Piessens, and M. Odersky. Generics of a higher kind. In
G. E. Harris, editor, Proc. 23rd ACM Conf. OOPSLA, pages 423–438,
Nashville, TN, USA, 2008. ACM Press, New York.

[33] N. Myers. A new and useful template technique: “traits”. In S. B.
Lippman, editor, C++ gems, pages 451–457. SIGS Publications, Inc.,
New York, NY, USA, 1996.

[34] M. Odersky. The Scala language specification version 2.7,
2008. Draft, http://www.scala-lang.org/docu/files/
ScalaReference.pdf.

[35] OMG. Unified modelling language specification, version 1.5, 2003.
[36] Proc. 18th ACM Conf. OOPSLA, Anaheim, CA, USA, 2003. ACM

Press, New York.
[37] Proc. 21th ACM Conf. OOPSLA, Portland, OR, USA, 2006. ACM

Press, New York.
[38] Proc. 13th ACM Conf. OOPSLA, Vancouver, BC, Canada, 1998. ACM

Press, New York.
[39] H. Ossher and P. Tarr. Using subject-oriented programming to over-

come common problems in object-oriented software developmen-
t/evolution. In Proc. 21th ICSE, pages 687–688, Los Angeles, CA,
USA, 1999. ACM.

[40] S. Peyton Jones, editor. Haskell 98 Language and Libraries, The
Revised Report. Cambridge University Press, 2003.

[41] S. Peyton Jones, M. Jones, and E. Meijer. Type classes: An exploration
of the design space. In J. Launchbury, editor, Proc. of the Haskell
Workshop, Amsterdam, The Netherlands, 1997.

[42] A. Shalit. The Dylan Reference Manual: The Definitive Guide to
the New Object-Oriented Programming Language. Addison-Wesley,
Reading, MA, 1997.

[43] G. Steele. Common LISP: The Language. Digital Press, Bedford, MA,
2nd edition, 1990.

[44] P. Thiemann. An embedded domain-specific language for type-safe
server-side Web-scripting. ACM TOIT, 5(1):1–46, 2005.

[45] M. Torgersen, E. Ernst, C. P. Hansen, P. von der Ahé, G. Bracha,
and N. Gafter. Adding wildcards to the Java programming language.
Journal of Object Technology, 3(11):97–116, 2004.

[46] P. Wadler. The expression problem, 1998. Posted on Java Genericity
mailing list.

[47] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad-
hoc. In Proc. 16th ACM Symp. POPL, pages 60–76, Austin, Texas,
USA, 1989. ACM Press.

[48] A. Warth, M. Stanojevic, and T. Millstein. Statically scoped object
adaptation with expanders. In OOPSLA’06 [37], pages 37–56.

[49] S. Wehr. Formalizing CoreGI. Technical Report 248, Univer-
sität Freiburg, 2009. ftp://ftp.informatik.uni-freiburg.
de/documents/reports/report248/report00248.ps.gz.

[50] S. Wehr. Javagi homepage. http://www.informatik.
uni-freiburg.de/~wehr/javagi, 2009.

[51] S. Wehr, R. Lämmel, and P. Thiemann. JavaGI: Generalized interfaces
for Java. In E. Ernst, editor, 21st ECOOP, volume 4609 of LNCS,
pages 347–372, Berlin, Germany, 2007. Springer.

[52] S. Wehr and P. Thiemann. Subtyping existential types. In 10th
FTfJP, informal proceedings, 2008. http://www.informatik.
uni-freiburg.de/~wehr/publications/subex.pdf.

[53] S. Wehr and P. Thiemann. JavaGI in the battlefield: Prac-
tical experience with generalized interfaces (extended ver-
sion). Technical Report 247, Universität Freiburg, 2009.
ftp://ftp.informatik.uni-freiburg.de/documents/
reports/report247/report00247.ps.gz.

[54] XML path language (XPath) version 1.0. http://www.w3.org/TR/
xpath, 1999.

[55] D. Yu, A. Kennedy, and D. Syme. Formalization of generics for the
.NET common language runtime. In X. Leroy, editor, Proc. 31st ACM
Symp. POPL, pages 39–51, Venice, Italy, 2004. ACM Press.

