
JavaGI
A Language with Generalized Interfaces

Stefan Wehr

2010

Dissertation zur Erlangung des Doktorgrades der Technischen Fakultät der
Albert-Ludwigs-Universität Freiburg im Breisgau



Dekan der Technischen Fakultät: Prof. Dr. Hans Zappe

1. Gutachter: Prof. Dr. Peter Thiemann, Albert-Ludwigs-Universität Freiburg
2. Gutachter: Prof. Dr. Ralf Lämmel, Universität Koblenz-Landau

Tag der Disputation: 9. Juli 2010

ii



Abstract

Component-based software development in statically typed, object-oriented program-
ming languages has proven successful in reducing development costs and raising software
quality. However, this form of software development still poses many challenges and thus
requires better support on the programming language level.

The language JavaGI, a conservative extension of Java 1.5, offers generalized inter-
faces as an effective improvement. Generalized interfaces subsume retroactive and type-
conditional interface implementations, binary methods, symmetric multiple dispatch,
interfaces over families of types, and static interface methods. These features allow
non-invasive and in-place object adaptation, thus enabling solutions to several software
extension, adaptation, and integration problems with components in binary form. Fur-
ther, they make certain coding patterns redundant and increase the expressiveness of the
type system. The generalized interface mechanism offers a unifying conceptual view on
these seemingly disparate concerns, for which previously unrelated extensions have been
suggested.

This dissertation introduces the language JavaGI by explaining its features and mo-
tivating its design. Technical contributions of the dissertation are the formalization of
a core calculus for JavaGI and a proof of type soundness, determinacy of evaluation,
and decidability of subtyping and typechecking. The formalization also includes a type-
and behavior-preserving translation from a significant subset of the core calculus to a
slightly extended version of Featherweight Java. Moreover, the dissertation explores two
extensions of the type system, which both have undecidable subtyping relations but for
which several decidable fragments exist. The undecidability result for one of the exten-
sions sheds light on the decidability of subtyping in Scala and of subtyping with Java
wildcards.

On the practical side, the dissertation presents the implementation of a JavaGI compiler
and an accompanying run-time system. The compiler is based on an industrial-strength
Java compiler and offers mostly modular typechecking but fully modular code generation.
It defers certain well-formedness checks until load time to allow for greater flexibility and
to enable full support for dynamic loading. Benchmarks show that the code generated
by the compiler offers good performance. Several case studies demonstrate the practical
utility of the language and its implementation. The implementation also includes a
JavaGI plugin for the Eclipse IDE.

iii





Zusammenfassung

Komponentenbasierte Softwareentwicklung in objektorientierten, statisch getypten Pro-
grammiersprachen hat sich als erfolgreich erwiesen, um Entwicklungskosten zu senken
und die Qualität von Software zu erhöhen. Dennoch ergeben sich bei dieser Art der Soft-
wareentwicklung noch immer viele Herausforderung, so dass eine bessere Unterstützung
auf der Programmiersprachenebene gewünscht ist.

Die Sprache JavaGI, eine konservative Erweiterung von Java 1.5, bietet generalisierte
Interfaces als effektive Verbesserung an. Generalisierte Interfaces umfassen retroaktive
und typbedingte Interface–Implementierungen, binäre Methoden, symmetrischen Mehr-
fachdispatch, Interfaces über Typfamilien und statische Interface–Methoden. Diese Ei-
genschaften erlauben nichtinvasive und direkte Objektanpassung und ermöglichen da-
mit Problemlösungen im Bereich der Erweiterung, Anpassung und Integration von Soft-
ware mit Komponenten in binärer Form. Außerdem subsummieren die Eigenschaften
verschiedene Programmiermuster und erhöhen die Ausdrucksfähigkeit des Typsystems.
Der Generalisierungsmechanismus für Interfaces bietet einen einheitlichen Rahmen für
diese scheinbar ungleichen Belange, welche in der Vergangenheit mit verschiedenen, nicht
miteinander in Beziehung stehenden Erweiterungen angegangen wurden.

Die vorliegende Dissertation präsentiert die Sprache JavaGI, erklärt ihre Eigenschaf-
ten und motiviert das Sprachdesign. Technische Beiträge der Arbeit sind ein Kernkalkül
für JavaGI und ein Beweis der Typkorrektheit, Eindeutigkeit der Auswertung und Ent-
scheidbarkeit der Subtyprelation sowie der Typüberprüfung. Die Formalisierung beinhal-
tet auch eine typ- und verhaltenserhaltende Übersetzung einer signifikanten Teilmenge
des Kalküls in eine leicht erweiterte Fassung von Featherweight Java. Desweiteren wer-
den zwei Erweiterungen des Typsystems untersucht. Die Subtyprelation ist für beide
Erweiterungen unentscheidbar, allerdings existieren mehrere entscheidbare Fragmente.
Das Unentscheidbarkeitsresultat für eine der Erweiterungen wirft neues Licht auf die
Frage der Entscheidbarkeit der Subtyprelationen von Scala und von Java mit Wildcards.

Auf der praktischen Seite präsentiert die Dissertation die Implementierung eines Com-
pilers und eines entsprechenden Laufzeitsystems für JavaGI. Der Compiler basiert auf
einem industriell eingesetzten Java Compiler und unterstützt eine größtenteils modulare
Typüberprüfung sowie vollständig modulare Codeerzeugung. Bestimmte Wohlgeformt-
heitsüberprüfungen werden bis zur Linkzeit aufgeschoben, um größere Flexibilität und
volle Unterstützung für dynamisches Laden bieten zu können. Benchmarks zeigen, dass
der Compiler Code mit guter Performanz erzeugt. Mehrere Fallstudien demonstrieren die
praktische Anwendbarkeit der Sprache und ihrer Implementierung. Die Implementierung
beinhaltet auch ein JavaGI Plugin für die Entwicklungsumgebung Eclipse.

v





Acknowledgments

Peter Thiemann sparked my interest in programming languages and their underlying
theory. I have learned a lot from him and many of the contributions in this dissertation
benefited greatly from numerous discussions with him. Not only did he give me the
freedom to work on my own ideas but he also provided careful guidance to bring these
ideas into a polished and qualified form. Thank you, Peter!

Ralf Lämmel contributed valuable ideas to the initial design of JavaGI and raised
questions that I addressed in later versions of the language. I would like to thank him
for fruitful discussions and for co-reviewing my dissertation.

Matthias Neubauer, Markus Degen, Phillip Heidegger, Annette Bieniusa, and Konrad
Anton (in order of their appearance) were great colleagues during my time at the Uni-
versity of Freiburg. Matthias, Phillip, and Annette provided useful feedback on previous
versions of this dissertation, and Konrad’s diploma thesis explored the design of Wait-
omo, a predecessor of JavaGI. I am also grateful to Alina Swiderska for developing the
Eclipse plugin for JavaGI. David Leuschner gave helpful feedback on an earlier draft of
this dissertation and confronted me with reality by asking the “what is this good for in
practice” question.

Last not least, I would like to thank all my friends and my whole family for their
support and for showing me that computer science is not the most important thing in
life.

Stefan Wehr
December, 2009

vii





Contents

1 Introduction 1
1.1 Goals and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Road Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 A Tour of JavaGI 9
2.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Retroactive Interface Implementations . . . . . . . . . . . . . . . . . 9
2.1.2 Explicit Implementing Types . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Type Conditionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.4 Static Interface Methods . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.5 Implementation Inheritance . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.6 Dynamic Loading of Retroactive Interface Implementations . . . . . 17
2.1.7 Multi-Headed Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.8 Comparison with Java . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Design Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 An Informal Account of Typechecking and Execution . . . . . . . . . . . . 24

2.3.1 Constraint Entailment . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2 Subtyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.3 Method Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.4 Well-Formedness Criteria for Programs . . . . . . . . . . . . . . . . 26
2.3.5 Dynamic Method Lookup . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Formalization of CoreGI 31
3.1 Basic Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Constraint Entailment and Subtyping . . . . . . . . . . . . . . . . . . . . . 34
3.4 Dynamic Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 Method Lookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Static Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5.1 Expression Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5.2 Program Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5.3 Additional Well-Formedness Criteria . . . . . . . . . . . . . . . . . . 47

3.6 Meta-Theoretical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.6.1 Type Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

ix



Contents

3.6.2 Determinacy of Evaluation . . . . . . . . . . . . . . . . . . . . . . . 62

3.7 Typechecking Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.7.1 Deciding Constraint Entailment and Subtyping . . . . . . . . . . . . 62

3.7.2 Deciding Expression Typing . . . . . . . . . . . . . . . . . . . . . . 66

3.7.3 Deciding Program Typing . . . . . . . . . . . . . . . . . . . . . . . . 73

4 Translation 77
4.1 Source Language: CoreGI[ . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.1.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.1.2 Dynamic Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Target Language: iFJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.2 Dynamic Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.3 Static Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2.4 Type Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3 From CoreGI[ to iFJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4 Meta-Theoretical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4.1 Translation Preserves Static Semantics . . . . . . . . . . . . . . . . 99

4.4.2 Translation Preserves Dynamic Semantics . . . . . . . . . . . . . . . 99

4.5 Relating CoreGI[ and CoreGI . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5 Extensions 111
5.1 Interfaces as Implementing Types . . . . . . . . . . . . . . . . . . . . . . . 111

5.1.1 The Calculus IIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.1.2 Undecidability of Subtyping in IIT . . . . . . . . . . . . . . . . . . . 113

5.1.3 Decidable Fragments . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2 Bounded Existential Types with Lower and Upper Bounds . . . . . . . . . 116

5.2.1 The Calculus EXuplo . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2.2 Undecidability of Subtyping in EXuplo . . . . . . . . . . . . . . . . . 119

5.2.3 Decidable Fragments . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6 Implementation 125
6.1 Extending CoreGI to JavaGI . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.1.1 Imperative Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.1.2 Visibility Modifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.1.3 Type Erasure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.1.4 Wildcards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.1.5 Inference of Type Arguments . . . . . . . . . . . . . . . . . . . . . . 127

6.1.6 Interfaces as Implementing Types . . . . . . . . . . . . . . . . . . . 127

6.2 Translating JavaGI to Java Byte Code . . . . . . . . . . . . . . . . . . . . . 127

6.2.1 Translating Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2.2 Translating Invocations of Retroactively Implemented Methods . . . 129

6.2.3 Translating Retroactive Interface Implementations . . . . . . . . . . 130

6.3 Run-Time System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.4 JavaGI Eclipse Plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

x



Contents

7 Practical Experience 133
7.1 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.1.1 XPath Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.1.2 JavaGI for the Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.1.3 Java Collection Framework . . . . . . . . . . . . . . . . . . . . . . . 142

7.2 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8 Related Work 149
8.1 Type Classes in Haskell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8.2 Generic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8.3 Family Polymorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8.4 Software Extension, Adaptation, and Integration . . . . . . . . . . . . . . 154

8.5 External Methods and Multiple Dispatch . . . . . . . . . . . . . . . . . . . 160

8.6 Binary Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

8.7 Type Conditionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

8.8 Traits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

8.9 Advanced Subtyping Mechanisms . . . . . . . . . . . . . . . . . . . . . . . 164

8.10 Subtyping and Decidability . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

8.11 JavaGI’s Initial Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

9 Conclusion 169
9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

A Syntax of JavaGI 177

B Formal Details of Chapter 3 181
B.1 Equivalence of Declarative and Quasi-Algorithmic Entailment and Subtyping181

B.1.1 Proof of Theorem 3.11 . . . . . . . . . . . . . . . . . . . . . . . . . . 181

B.1.2 Proof of Theorem 3.12 . . . . . . . . . . . . . . . . . . . . . . . . . . 183

B.2 Type Soundness for CoreGI . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

B.2.1 Proof of Theorem 3.14 . . . . . . . . . . . . . . . . . . . . . . . . . . 202

B.2.2 Proof of Theorem 3.15 . . . . . . . . . . . . . . . . . . . . . . . . . . 214

B.2.3 Proof of Theorem 3.16 . . . . . . . . . . . . . . . . . . . . . . . . . . 233

B.3 Determinacy of Evaluation for CoreGI . . . . . . . . . . . . . . . . . . . . . 233

B.4 Deciding Constraint Entailment and Subtyping . . . . . . . . . . . . . . . 234

B.4.1 Proof of Theorem 3.24 . . . . . . . . . . . . . . . . . . . . . . . . . . 234

B.4.2 Proof of Theorem 3.25 . . . . . . . . . . . . . . . . . . . . . . . . . . 235

B.4.3 Proof of Theorem 3.26 . . . . . . . . . . . . . . . . . . . . . . . . . . 237

B.4.4 Proof of Theorem 3.27 . . . . . . . . . . . . . . . . . . . . . . . . . . 241

B.5 Deciding Expression Typing . . . . . . . . . . . . . . . . . . . . . . . . . . 250

B.5.1 Proof of Theorem 3.28 . . . . . . . . . . . . . . . . . . . . . . . . . . 250

B.5.2 Proof of Theorem 3.29 . . . . . . . . . . . . . . . . . . . . . . . . . . 252

B.5.3 Proof of Theorem 3.31 . . . . . . . . . . . . . . . . . . . . . . . . . . 253

B.5.4 Proof of Theorem 3.32 . . . . . . . . . . . . . . . . . . . . . . . . . . 255

xi



Contents

B.5.5 Proof of Theorem 3.35 . . . . . . . . . . . . . . . . . . . . . . . . . . 275
B.5.6 Proof of Theorem 3.36 . . . . . . . . . . . . . . . . . . . . . . . . . . 285
B.5.7 Proof of Theorem 3.37 . . . . . . . . . . . . . . . . . . . . . . . . . . 287

B.6 Deciding Program Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
B.6.1 Proof of Theorem 3.39 . . . . . . . . . . . . . . . . . . . . . . . . . . 288
B.6.2 Proof of Theorem 3.40 . . . . . . . . . . . . . . . . . . . . . . . . . . 290

B.7 Syntactic Characterization of Finitary Closure . . . . . . . . . . . . . . . . 290

C Formal Details of Chapter 4 295
C.1 Type Soundness for iFJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

C.1.1 Proof of Theorem 4.6 . . . . . . . . . . . . . . . . . . . . . . . . . . 295
C.1.2 Proof of Theorem 4.9 . . . . . . . . . . . . . . . . . . . . . . . . . . 302

C.2 Translation Preserves Static Semantics . . . . . . . . . . . . . . . . . . . . 304
C.2.1 Proof of Theorem 4.11 . . . . . . . . . . . . . . . . . . . . . . . . . . 304
C.2.2 Proof of Theorem 4.12 . . . . . . . . . . . . . . . . . . . . . . . . . . 307

C.3 Translation Preserves Dynamic Semantics . . . . . . . . . . . . . . . . . . 312
C.3.1 Proof of Theorem 4.14 . . . . . . . . . . . . . . . . . . . . . . . . . . 313
C.3.2 Proof of Theorem 4.15 . . . . . . . . . . . . . . . . . . . . . . . . . . 319
C.3.3 Proof of Theorem 4.16 . . . . . . . . . . . . . . . . . . . . . . . . . . 320
C.3.4 Proof of Theorem 4.18 . . . . . . . . . . . . . . . . . . . . . . . . . . 330
C.3.5 Proof of Theorem 4.19 . . . . . . . . . . . . . . . . . . . . . . . . . . 330
C.3.6 Proof of Theorem 4.20 . . . . . . . . . . . . . . . . . . . . . . . . . . 356

C.4 Relating CoreGI[ and CoreGI . . . . . . . . . . . . . . . . . . . . . . . . . . 357
C.4.1 Proof of Theorem 4.24 . . . . . . . . . . . . . . . . . . . . . . . . . . 357
C.4.2 Proof of Theorem 4.25 . . . . . . . . . . . . . . . . . . . . . . . . . . 357
C.4.3 Proof of Theorem 4.26 . . . . . . . . . . . . . . . . . . . . . . . . . . 358
C.4.4 Proof of Theorem 4.27 . . . . . . . . . . . . . . . . . . . . . . . . . . 359

D Formal Details of Chapter 5 361
D.1 Interfaces as Implementing Types . . . . . . . . . . . . . . . . . . . . . . . 361

D.1.1 Proof of Theorem 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . 361
D.1.2 Proof of Theorem 5.6 . . . . . . . . . . . . . . . . . . . . . . . . . . 364
D.1.3 Proof of Theorem 5.8 . . . . . . . . . . . . . . . . . . . . . . . . . . 365

D.2 Bounded Existential Types with Lower and Upper Bounds . . . . . . . . . 365
D.2.1 Proof of Theorem 5.17 . . . . . . . . . . . . . . . . . . . . . . . . . . 365
D.2.2 Proof of Theorem 5.19 . . . . . . . . . . . . . . . . . . . . . . . . . . 374
D.2.3 Proof of Theorem 5.21 . . . . . . . . . . . . . . . . . . . . . . . . . . 375

xii



List of Figures

1.1 Incompatibility between two components . . . . . . . . . . . . . . . . . . . 3

2.1 Expression hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Adapter classes for pretty printing in plain Java . . . . . . . . . . . . . . . 20
2.3 Binary methods in plain Java . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Restrictions on interfaces and implementing types . . . . . . . . . . . . . 35
3.3 Constraint entailment and subtyping . . . . . . . . . . . . . . . . . . . . . 36
3.4 Auxiliaries for dynamic method lookup . . . . . . . . . . . . . . . . . . . . 38
3.5 Dynamic method lookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.6 Dynamic semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.7 Well-formedness of types and constraints . . . . . . . . . . . . . . . . . . . 42
3.8 Method typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.9 Expression typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.10 Auxiliaries for well-formedness of definitions . . . . . . . . . . . . . . . . . 45
3.11 Well-formedness of definitions and programs . . . . . . . . . . . . . . . . . 46
3.12 Illegal CoreGI program (implementing type nested in result position) . . . 48
3.13 Illegal CoreGI program (implementing type in method constraint) . . . . . 49
3.14 Illegal CoreGI program (misses an implementation of I for C) . . . . . . . 49
3.15 Quasi-algorithmic constraint entailment . . . . . . . . . . . . . . . . . . . 51
3.16 Inheritance and quasi-algorithmic subtyping . . . . . . . . . . . . . . . . . 52
3.17 Dispatch types and positions . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.18 Greatest lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.19 Illegal CoreGI program (violates well-formedness criterion wf-prog-7) . . 56
3.20 Closure of a set of types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.21 CoreGI program demonstrating necessity of criterion wf-tenv-5 . . . . . . 59
3.22 CoreGI program demonstrating necessity of criterion wf-tenv-6(1) . . . . 59
3.23 Program exhibiting nontermination of quasi-algorithmic entailment . . . . 62
3.24 Failed attempt to construct a derivation of ∅ q D implements I . . . . . 62
3.25 Algorithmic constraint entailment and subtyping . . . . . . . . . . . . . . 63
3.26 Transformation of unification modulo kernel subtyping problems . . . . . 65
3.27 Entailment for constraints with optional types . . . . . . . . . . . . . . . . 68
3.28 Auxiliaries for algorithmic method typing . . . . . . . . . . . . . . . . . . 69
3.29 Algorithmic method typing . . . . . . . . . . . . . . . . . . . . . . . . . . 70

xiii



List of Figures

3.30 Algorithmic expression typing . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1 Syntax of CoreGI[ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Class and interface inheritance for CoreGI[ . . . . . . . . . . . . . . . . . . 79

4.3 Dynamic method lookup for CoreGI[ . . . . . . . . . . . . . . . . . . . . . 80

4.4 Subtyping for CoreGI[ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5 Dynamic semantics of CoreGI[ . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.6 Syntax of iFJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.7 Subtyping for iFJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.8 Auxiliaries for iFJ’s dynamic semantics . . . . . . . . . . . . . . . . . . . . 85

4.9 Dynamic semantics of iFJ . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.10 Method types for iFJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.11 Expression typing for iFJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.12 Program typing for iFJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.13 Additional well-formedness criteria for iFJ . . . . . . . . . . . . . . . . . . 90

4.14 Well-formedness of CoreGI[ types . . . . . . . . . . . . . . . . . . . . . . . 91

4.15 Method types for CoreGI[ . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.16 Typing and translating CoreGI[ expressions . . . . . . . . . . . . . . . . . 93

4.17 Sample translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.18 Auxiliaries for typing and translating CoreGI[ programs . . . . . . . . . . 96

4.19 Typing and translating CoreGI[ programs . . . . . . . . . . . . . . . . . . 97

4.20 Additional well-formedness criteria for CoreGI[ . . . . . . . . . . . . . . . 98

4.21 Potentially commuting diagram . . . . . . . . . . . . . . . . . . . . . . . . 99

4.22 CoreGI[ definitions used to illustrate non-commutativity . . . . . . . . . . 100

4.23 Auxiliaries for type-directed equivalence modulo wrappers . . . . . . . . . 101

4.24 Type-directed equivalence modulo wrappers . . . . . . . . . . . . . . . . . 102

4.25 Visualization of Theorem 4.16 . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.26 Visualization of Theorem 4.19 . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.27 Visualization of Theorem 4.20 . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.28 Proof sketch for Theorem 4.20 . . . . . . . . . . . . . . . . . . . . . . . . 106

4.29 Restricted syntax of CoreGI . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.30 Bijections between CoreGI[ and the restricted variant of CoreGI . . . . . . 108

5.1 Syntax and subtyping for IIT . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2 Algorithmic subtyping for IIT . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.3 Syntax, constraint entailment, and subtyping for EXuplo . . . . . . . . . . 118

5.4 Syntax and subtyping for FD≤ . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.5 Reduction from FD≤ to EXuplo . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.6 Subtyping for EXuplo without transitivity rule . . . . . . . . . . . . . . . . 122

6.1 Translation of interface EQ and class Lists from Section 2.1.2 . . . . . . . 128

6.2 Translation of retroactive implementations from Sections 2.1.2 and 2.1.3 . 131

7.1 Jaxen’s Navigator interface (excerpt) . . . . . . . . . . . . . . . . . . . . 134

7.2 Jaxen’s implementation of the Navigator interface for dom4j (excerpt) . . 135

xiv



List of Figures

7.3 XPath node hierarchy (excerpt) . . . . . . . . . . . . . . . . . . . . . . . . 136
7.4 Adaptation of the dom4j API to the XPath node hierarchy . . . . . . . . 137
7.5 Uses of implementation inheritance in the adaptation for dom4j . . . . . . 137
7.6 Sample code from the dom4j adaptation . . . . . . . . . . . . . . . . . . . 138
7.7 Adaptation of the JDOM API to the XPath node hierarchy . . . . . . . . 139
7.8 Uses of implementation inheritance in the adaptation for JDOM . . . . . 139
7.9 Modeling HTML elements and attributes . . . . . . . . . . . . . . . . . . 141
7.10 Sample code from the workshop registration application . . . . . . . . . . 143
7.11 Sample page of the workshop registration application . . . . . . . . . . . . 144
7.12 Refactoring of the Java Collection Framework . . . . . . . . . . . . . . . . 145
7.13 Micro benchmarks for different kinds of method call instructions . . . . . 146
7.14 Micro benchmarks for casts, instanceof tests, and identity comparisons . 146
7.15 Performance of JavaGI with respect to Java . . . . . . . . . . . . . . . . . 146

8.1 Type classes in Haskell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
8.2 Concepts in C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
8.3 Ernst’s graph example encoded in JavaGI . . . . . . . . . . . . . . . . . . 155
8.4 Multiple dispatch in JavaGI . . . . . . . . . . . . . . . . . . . . . . . . . . 161

A.1 Syntax of JavaGI (1/2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
A.2 Syntax of JavaGI (2/2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

B.1 Transitive and reflexive-transitive containment in type environments . . . 184
B.2 Generalization of sup to subtype constraints . . . . . . . . . . . . . . . . . 186
B.3 Constraint entailment algorithm . . . . . . . . . . . . . . . . . . . . . . . 242
B.4 Subtyping algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
B.5 Entailment candidates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

C.1 Algorithmic subtyping for iFJ . . . . . . . . . . . . . . . . . . . . . . . . . 296
C.2 Interface implementation through methods . . . . . . . . . . . . . . . . . 308

D.1 Subtyping for IIT without transitivity rule . . . . . . . . . . . . . . . . . . 364
D.2 Constraint specificity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372

xv





1
Introduction

Developing and maintaining large and complex software systems is expensive, both in
terms of time and money [56, 158]. Furthermore, software defects are not only the source
of frequent annoyance but may also inflict serious damage [123, 160, 106]. Thus, it is
highly beneficial to devise methods and techniques for controlling the inherent complexity
of software, for reducing the number of defects in software, and for lowering the costs of
developing and maintaining software.

In fact, industry and academia proposed numerous such methods and techniques.
The proposals include (but are not limited to) processes and methodologies for orga-
nizing the development cycle of software [191, 231, 19, 11], various approaches to testing
software [155, 17], formal verification of software [88, 190, 28], and new programming
paradigms and languages [92, 142, 222].

A proposal by McIlroy [159], brought up at the famous 1968 NATO conference on
software engineering, envisions the idea of software components [220]. The concept behind
software components is simple: developers should not write applications from scratch
but assemble them from pre-packaged, largely independent components. This approach
reduces the complexity of software systems because each component can be analyzed,
programmed, and tested in isolation. Moreover, it saves development costs if the same
component is reused in different projects [9]. Last not least, components can increase
software quality because defect fixes for components accumulate through reuse, and the
fixes must be applied in only one place [124].

Static type systems [176], having their roots in mathematical logic of the early 1900s,
are a lightweight formal method to reject certain potentially erroneous programs stat-
ically; that is, at compile time and not when the program is run. Thus, static type
systems prevent a whole class of software defects right from the start. Further, type
declarations may serve as lightweight documentation, which makes software easier to
understand and maintain. Static type systems blend well with the idea of software com-
ponents because types enable an abstract description of the functionality offered and
required by a component.

Nowadays, the object-oriented programming paradigm is a popular choice for software

1



1 Introduction

development in industry and academia. Introduced with the programming language Sim-
ula 67 [54], this paradigm features code reuse through inheritance and information hiding
through encapsulation [142, 5]. As already explained, code reuse may lead to reduced
development costs and enhanced software quality. The same holds for the principle of
information hiding because it enables developers to write one part of a software system
with only little knowledge about the internals of the other parts, and it allows changing
the implementation of one part without affecting the rest of the system. Furthermore,
information hiding is important for component-based systems to minimize dependencies
between components.

Object-oriented programming languages with static type systems often serve as im-
plementation languages for software components and component-based systems. In fact,
according to Szyperski, “object technology, if harnessed carefully, is probably one of the
best ways to realize component technology” [220, page 15]. Industry seems to agree
with this statement, as demonstrated through several component standards such as the
Common Object Request Broker Architecture (CORBA [164]), Sun’s Java Beans [216]
and Enterprise Java Beans (EJB [213]) technologies, and Microsoft’s Component Object
Model (COM [145]). Moreover, one factor of success of languages such as Java [82] or
C# [64], two prominent object-oriented languages with static type systems, is the large
number of libraries available for these languages. Libraries may also be regarded as
components [99, 195].

Despite these success stories, there are still many unsolved problems in the realm of
component-based software development. For instance, components written in Java or
C# typically abstract over their required services by means of interfaces. (Interfaces are
a built-in language mechanism that specifies a set of method signatures without com-
mitting to a particular implementation.) Other components fulfill these requirements by
providing implementations of the corresponding interfaces. However, this approach has
several disadvantages. First, it leads to difficulties in fulfilling the requirements of a com-
ponent C1 by an independently developed component C2 because C2 is typically not aware
of the exact interfaces required by C1. Second, the approach creates hardwired depen-
dencies between components, thus impeding further reuse because components fulfilling
certain dependencies cannot be replaced by other components easily.

Figure 1.1 depicts an example. The component Accounting requires a printer service,
which has to implement the interface Printer. The independently developed component
FileStorage offers such a service by the class FilePrinter. Although the methods
of Printer and FilePrinter are slightly incompatible, it is straightforward to im-
plement the Printer interface by using the methods of class FilePrinter. However,
FilePrinter does not implement Printer formally. Now suppose a developer wants to
use the FileStorage component to satisfy the printer service required by the Accounting
component. Unfortunately, neither Java nor C# offer the possibility to implement the
Printer interface retroactively for class FilePrinter. Thus, assuming that the source
code of the two components is not accessible (the default with component-based soft-
ware), the developer must circumvent the problem by using the Adapter pattern [73]
to make FilePrinter compatible with Printer. That is, the developer needs to cre-
ate an adapter class PrinterAdapter that implements Printer by delegating method
calls to an instance of FilePrinter. Further, the developer has to insert extra code at

2



1.1 Goals and Contributions

Figure 1.1 Incompatibility between two components.
The diagram uses UML 2 [165] syntax. Provided services are represented by circles, required services by
half-circles.

<<interface>>

Printer

printString(s: String)

printNewlines(n: int)

printText(s: String)

printNewline()

FilePrinter

<<component>>Printer FilePrinter<<component>>

Accounting FileStorage

the right places to convert between FilePrinter and PrinterAdapter objects. Obvi-
ously, this pattern is tedious to implement. Moreover, it often behaves fragile in prac-
tice [89, 198, 93].

This example and numerous proposals in the research literature [86, 115, 235, 143,
227, 168, 50, 237] substantiate the claim that the features of standard object-oriented
languages such as Java or C# do not suffice for solving various extension, adaptation,
and integration problems in the context of component-based software. (See Chapter 8 for
a detailed discussion on related work.) Furthermore, there are many situations in which
a Java or C# developer reaches the limits of the type system and has to resort to tedious
coding patterns, unsafe cast operations, run-time exceptions, or code duplication, all of
which may easily lead to an increase in development time and potentially more software
defects. This introductory chapter refrains from discussing these examples in more detail;
for further information see Chapter 2. Instead, it continues by establishing the goals and
summarizing the contributions of this dissertation.

1.1 Goals and Contributions

Lämmel and Ostermann [119] demonstrated that type classes [107, 236, 104, 85], a struc-
turing mechanism related to object-oriented–style interfaces but introduced by the func-
tional programming language Haskell [173], provide clean solutions to a number of soft-
ware extension, adaptation and integration problems. Their findings raise the question
whether object-oriented–style interfaces could give rise to similar solutions if extended
and generalized in the direction of type classes. A related question is whether such
an extension could raise the expressiveness of the type system to prevent the program-
ming problems described earlier. After all, many examples demonstrate that Haskell’s
type system provides powerful abstractions and strong static guarantees through type
classes [117, 103, 174, 118].

3



1 Introduction

The main goal of this dissertation is to answer these questions by designing, formaliz-
ing, and implementing the programming language JavaGI. This new language conserva-
tively extends Java1 with generalized interfaces, a mechanism extending and generalizing
object-oriented–style interfaces with features from Haskell type classes. The generaliza-
tion of interfaces is the unifying notion of JavaGI’s design: it subsumes different concerns
under a single concept. More specifically, JavaGI generalizes Java’s interfaces in the
following dimensions:

Retroactive Interface Implementations. The implementation of an interface may be
retroactive; that is, separate from the definition of the interface and of the im-
plementing class.

Explicit Implementing Types. An interface may explicitly reference its implementing
type, thus allowing the specification of binary methods.

Multi-Headed Interfaces. An interface may be multi-headed; that is, it may span mul-
tiple types to specify mutual dependencies.

Symmetric Multiple Dispatch. Interface methods depending on implementing types in
argument positions (binary methods and certain methods in multi-headed inter-
faces) are subject to symmetric multiple dispatch.

Implementation Constraints. An interface may not only be used as a type but also in
a constraint to restrict a type or a family of types.

Type Conditionals. Methods and retroactive interface implementations may depend on
type constraints, thus enabling type-conditional methods and interface implemen-
tations.

Static Interface Methods. An interface may contain static methods.

These features make certain coding patterns redundant and increase the expressive-
ness of the language to avoid unsafe cast operations, run-time exceptions, and code
duplication. Moreover, the features allow solutions to extension, adaptation, and inte-
gration problems with components in binary form for which unrelated extensions had
been suggested before. Compared with other work, retroactive interface implementa-
tions allow non-invasive and in-place object adaption [237], supersede the Adapter and
Visitor patterns [73], and enable a solution to (a restricted version of) the expression
problem [235, 227]; explicit implementing types are related to work on MyType and
ThisType [32, 30] and supersede certain instances of F-bounded polymorphism [39];
multi-headed interfaces provide a restricted form of family polymorphism [68]; sym-
metric multiple dispatch supersedes the double dispatch pattern [98]; implementation
constraints avoid certain cast operations; type conditionals avoid code duplication or
run-time errors [91]; and static interface methods supersede uses of the Factory pat-
tern [73].

1Throughout this dissertation, the term “Java” always refers to version 1.5 of the Java programming
language [82].

4



1.2 Road Map

JavaGI is unique in that it avoids a patchwork of unrelated features but offers a unifying
conceptual view on these seemingly disparate concerns. We believe that the resulting
design is coherent, elegant, and does not impose undue burden on the programmer.

Contributions

This dissertation makes the following contributions:

� It introduces the features of JavaGI and highlights the underlying design principles.

� It formalizes a core calculus of JavaGI in the style of Featherweight Generic Java [96]
and proves type soundness, determinacy of evaluation, and decidability of subtyping
and typechecking.

� It defines a translation from a significant subset of the core calculus to a slightly ex-
tended version of Featherweight Java [96] and proves that the translation preserves
the static and the dynamic semantics of the source language.

� It explores two extensions of JavaGI’s type system, proves that both extensions
render subtyping undecidable, and identifies decidable fragments of the extensions.
The undecidability result for one of the extensions also sheds light on the decid-
ability of subtyping in Scala [166] and of subtyping for Java wildcards [229, 37].

� It reports on an implementation of a compiler for JavaGI and an accompanying run-
time system. The implementation is based on the Eclipse Compiler for Java [62] and
supports mostly modular typechecking, fully modular compilation, and dynamic
loading of retroactive interface implementations. Besides the compiler and the
run-time system, the implementation also provides a plugin for the Eclipse [60]
IDE to facilitate the development of JavaGI applications.

� It summarizes the outcome of a number of case studies and describes the results
of several performance benchmarks to demonstrate the practical utility of JavaGI
and its implementation.

� It puts JavaGI in perspective by providing a comprehensive survey and discussion
of related work.

The homepage of the JavaGI project [239] makes the source code of the compiler, the run-
time system, the Eclipse plugin, the case studies, and the benchmarks available under
the terms of the Eclipse Public License [61].

1.2 Road Map

The dissertation is organized as follows:

A Tour of JavaGI. Chapter 2 introduces the features of JavaGI through a series of ex-
amples, which also demonstrate how JavaGI solves the aforementioned program-
ming problems. The chapter further explains the design principles of JavaGI and

5



1 Introduction

informally investigates the JavaGI-specific extensions of Java’s type system and
execution model.

Formalization of CoreGI. Chapter 3 formalizes CoreGI, a core calculus of JavaGI in the
spirit of Featherweight Generic Java. The chapter proves that CoreGI’s type system
is sound and that its evaluation relation is deterministic. Further, it presents a
typechecking algorithm for CoreGI and proves that the algorithm is equivalent to
the original type system.

Translation. Chapter 4 specifies a translation from a language with generalized interfaces
into a language without. The chapter first introduces the source language CoreGI[, a
simplified version of CoreGI. Then it defines the target language iFJ as an extension
of Featherweight Java. Next, it presents a type-directed translation from CoreGI[ to
iFJ and proves that the translation preserves the static and the dynamic semantics
of CoreGI[. Finally, the chapter verifies that CoreGI[ is a subset of CoreGI.

Extensions. Chapter 5 tests the boundaries of the design space for JavaGI by defining
two extensions of JavaGI’s type system and proving that the subtyping relations
of both extensions are undecidable. The chapter also presents several decidable
fragments of the extensions.

Implementation. Chapter 6 describes the implementation of a compiler and an accom-
panying run-time system for JavaGI. The chapter also explains how to extend the
formalization given in Chapter 3, the translation defined in Chapter 4, and a decid-
able fragment of one of the extensions from Chapter 5 to the full JavaGI language.

Practical Experience. Chapter 7 reports on practical experience with JavaGI. It presents
three case studies conducted with the JavaGI implementation and evaluates the
performance of the implementation through various benchmarks.

Related Work. Chapter 8 reviews a broad range of research related to JavaGI.

Conclusion. Chapter 9 summarizes the dissertation and outlines possible directions for
future work.

Part A of the appendix defines the syntax of JavaGI, expressed as an extension to the
syntax of Java as defined in the first 17 chapters of The Java Language Specification [82].
Parts B, C, and D of the appendix contain the formal details of Chapters 3, 4, and 5,
respectively, including the proofs of all theorems postulated in these chapters. The
dissertation ends with a bibliography and an index of important terms, symbols, and
notations.

Some of the material presented in the next chapters is based on previous publications
by the author of this dissertation and others:

� A paper in the proceedings of ECOOP 2007 (joint work with Ralf Lämmel and
Peter Thiemann [240]) proposed the initial design of JavaGI. (Section 8.11 contains
a more detailed comparison with the ECOOP paper.)

6



1.2 Road Map

� A paper in the proceedings of GPCE 2009 (joint work with Peter Thiemann [242])
reported on JavaGI’s implementation and on practical experience through bench-
marks and case studies (see Chapter 7).

� A paper in the proceedings of APLAS 2009 (joint work with Peter Thiemann [243])
established the undecidability results for two extensions of JavaGI’s type system
(see Chapter 5). An earlier version of the APLAS paper was presented at the
FTfJP 2008 workshop [241].

7





2
A Tour of JavaGI

JavaGI is a new programming language that conservatively extends Java with generalized
interfaces. This chapter provides a gentle introduction to JavaGI.

Chapter Outline. The chapter contains three sections.

� Section 2.1 presents and motivates the features of JavaGI through a series of ex-
amples, which also demonstrate how JavaGI solves the programming problems put
forward in Chapter 1. The section closes by comparing the solutions in JavaGI with
corresponding solutions in plain Java.

� Section 2.2 takes a step back and explains the design principles behind JavaGI.

� Section 2.3 informally investigates the JavaGI-specific extensions of Java’s type
system and execution model.

2.1 Features

The examples used to introduce the features of JavaGI are all based on the simple ex-
pression hierarchy shown in Figure 2.1. We assume that it is not possible to modify the
source code of the expression hierarchy. As JavaGI is an extension of Java, JavaGI code
(and Java code where appropriate) refers to common classes and interfaces from the Java
API [212].1

2.1.1 Retroactive Interface Implementations

The expression hierarchy in Figure 2.1 supports only evaluation of expressions. Now
suppose that we also want to produce nicely formatted string output from expression
instances. To implement this functionality, we would like to use a library such as The

1The code uses classes and interfaces from the packages java.lang, java.util, and java.io without
further qualification.

9



2 A Tour of JavaGI

Figure 2.1 Expression hierarchy.

abstract class Expr {
abstract int eval();

}
class IntLit extends Expr {

int value;
IntLit(int value) {

this.value = value;
}
int eval() {

return this.value;
}

}
class PlusExpr extends Expr {

Expr left;
Expr right;
PlusExpr(Expr left, Expr right) {

this.left = left;
this.right = right;

}
int eval() {

return this.left.eval() + this.right.eval();
}

}

Java Pretty Printer Library [78]. This library provides an interface that classes with
pretty-printing support must implement:2

interface PrettyPrintable {
String prettyPrint();

}

A Java programmer cannot add an implementation for the PrettyPrintable interface
to the classes of the expression hierarchy because we assumed earlier that the source code
of these classes is unmodifiable. Instead, a Java programmer would presumably use the
Adapter pattern [73] and create a parallel hierarchy of expression adapters complying to
the PrettyPrintable interface (see Section 2.1.8).

In JavaGI, we do not need the Adapter pattern because JavaGI supports retroac-
tive interface implementations where the implementation of an interface may be sep-
arate from the implementing class. Here are three implementation definitions for the
PrettyPrintable interface with the classes Expr, IntLit, and PlusExpr acting as the
implementing types (enclosed in square brackets ‘[...]’):

implementation PrettyPrintable [Expr] {
abstract String prettyPrint();

}

2We slightly modified the interface for the purpose of presentation.

10



2.1 Features

implementation PrettyPrintable [IntLit] {
String prettyPrint() { return String.valueOf(this.value); }

}
implementation PrettyPrintable [PlusExpr] {
String prettyPrint() {

return "(" + this.left.prettyPrint() + " + "
+ this.right.prettyPrint() + ")";

}
}

The prettyPrint method for the abstract base class Expr remains abstract because
there is no sensible default implementation. JavaGI guarantees that the implementa-
tion of prettyPrint is nevertheless complete: there exists a non-abstract definition of
prettyPrint for each concrete subclass of Expr.

In the body of the two other prettyPrint methods, the static type of this is the
implementing type of the surrounding implementation definition. That is, in the imple-
mentation for IntLit, this has static type IntLit, so the field access this.value is
type correct. Similarly, in the implementation for PlusExpr, this has type PlusExpr,
so the fields accesses this.left and this.right are valid. We can invoke prettyPrint
recursively on these fields because there is an implementation of PrettyPrintable for
Expr.

Methods of retroactive interface implementations are subject to dynamic dispatch,
just as ordinary interface and class methods.3 For instance, the recursive invocation
this.left.prettyPrint() in the implementation for PlusExpr selects the method to
execute based on the dynamic type of the receiver this.left. Hence, the call

new PlusExpr(new IntLit(1), new IntLit(2)).prettyPrint()

correctly returns "(1 + 2)".

The implementations of PrettyPrintable for Expr, IntLit, and PlusExpr not only
add the prettyPrint method to these classes but also make them compatible with the
interface type PrettyPrintable. For example, we may pass an object of type PlusExpr
to a method expecting an object of type PrettyPrintable:

class SomePrinter {
void print(PrettyPrintable pp) {

String s = pp.prettyPrint();
System.out.println(s);

}
void usePrint() {

PlusExpr expr = new PlusExpr(new IntLit(1), new IntLit(2));
// use a ”PlusExpr” instance at type ”PrettyPrintable ”
print(expr);

}
}

Retroactive implementation definitions can be placed in arbitrary compilation units.
For example, it is possible to place the three implementations shown earlier in three

3In contrast, extension methods in C# 3.0 [64] are subject to static dispatch.

11



2 A Tour of JavaGI

different compilation units, all of which may be different from the compilation units of
the expression hierarchy and the PrettyPrintable interface.

This flexibility together with dynamic dispatch on retroactively implemented methods
implies extensibility in the operation dimension and thus eliminates the need for the
Visitor pattern [73]: to add a new operation, simply define an interface for the operation
and provide suitable implementation definitions. Extensibility in the data dimension is
also straightforward: add a new subclass of Expr and provide interface implementations
for existing operations, unless the default for the base class suffices. Hence, JavaGI allows
for a simple and elegant solution to (a restricted version of) the expression problem [235,
227] (see Section 8.4).

JavaGI does not require explicit import statements for retroactive implementation def-
initions. Instead, all retroactive implementations presented to the JavaGI compiler are
automatically in scope. Imposing stricter visibility rules at compile time is not necessary
because JavaGI’s run-time system puts all implementation definitions into a global pool
anyway (see Section 6.3).

2.1.2 Explicit Implementing Types

A binary method [29] is a method requiring the receiver type and some of the argument
types to coincide. According to Bracha [24], the definition of a binary method in Java re-
quires F-bounded polymorphism [39] and possibly wildcards [229] (see also Section 2.1.8).
In contrast, JavaGI directly supports binary methods in interfaces through explicit im-
plementing types. The following interface defines an equality operation that allows only
objects with compatible types to be compared for equality.

interface EQ {
boolean eq(This that);

}

The argument type of eq is the type variable This, which is implicitly bound by the
interface and which denotes the type implementing the interface. Hence, eq qualifies as
a binary method. The next example uses eq to define a generic function that searches
for a specific element in a list.

class Lists {
static <X implements EQ> X find(X x, List<X> list) {

for (X y : list) {
if (x.eq(y)) return y;

}
return null;

}
}

We specify that X has to implement the EQ interface through the implementation con-
straint X implements EQ. This requirement on X is stronger than a regular Java bound
X extends EQ because binary methods such as eq are only applicable to values of type
X if the constraint X implements EQ holds (see Section 2.3.1).

When typechecking an implementation of EQ, the JavaGI compiler replaces the type
variable This with the concrete implementing type. Here are EQ implementations for the

12



2.1 Features

classes of the expression hierarchy from Figure 2.1:

implementation EQ [Expr] {
boolean eq(Expr that) {

return false;
}

}
implementation EQ [IntLit] {

boolean eq(IntLit that) {
return this.value == that.value;

}
}
implementation EQ [PlusExpr] {

boolean eq(PlusExpr that) {
return this.left.eq(that.left) && this.right.eq(that.right);

}
}

Given variables le, e, li, and i with static types List<Expr>, Expr, List<IntLit>,
and IntLit, respectively, the following invocations of Lists.find now typecheck suc-
cessfully:

Lists.find(e, le);
Lists.find(i, le);
Lists.find(i, li);

The run-time behavior of methods mentioning explicit implementing types in their
signatures is similar to that of multimethods [43]: JavaGI selects the most specific imple-
mentation dynamically, thereby extending dynamic dispatch to all parameters declared
as implementing types (symmetric multiple dispatch, discussed in Section 8.5). Hence,
invocations of eq dispatch on both the receiver and the first argument of the call.

Let us explain this behavior by considering the following variable declarations:

Expr plus1 = new PlusExpr(new IntLit(1), new IntLit(2));
Expr plus2 = new PlusExpr(new IntLit(1), new IntLit(2));
Expr intLit = new IntLit(42);

All three variables have static type Expr. Nevertheless, the call plus1.eq(plus2)
invokes the eq method of the implementation for PlusExpr because both the receiver
plus1 and the argument plus2 have dynamic type PlusExpr. On the other hand, the
call plus1.eq(intLit) invokes the eq method as implemented for the base class Expr be-
cause dynamic dispatch on the argument intLit rules out eq for PlusExpr and dynamic
dispatch on the receiver plus1 rules out eq for IntLit.

2.1.3 Type Conditionals

If the elements of two lists are comparable, then the lists should be comparable, too.
JavaGI can express this implication with a type-conditional interface implementation [91,
66, 111, 131].

implementation<X> EQ [List<X>] where X implements EQ {
boolean eq(List<X> that) {

13



2 A Tour of JavaGI

Iterator<X> thisIt = this.iterator();
Iterator<X> thatIt = that.iterator();
while (thisIt.hasNext() && thatIt.hasNext()) {

X thisX = thisIt.next();
X thatX = thatIt.next();
if (!thisX.eq(thatX)) return false;

}
return !(thisIt.hasNext() || thatIt.hasNext());

}
}

The implementation of EQ for List<X> is parameterized over X, the type of list elements.
The constraint X implements EQ makes the eq operation available on objects of type X
and ensures that only lists with comparable elements implement EQ. For example, if
l1 and l2 have type List<Expr> and l3 has type List<List<Expr>>, then both calls
l1.eq(l2) and Lists.find(l1, l3) are valid.

The notation where ..., reminiscent of .NET generics [112, 245], is not only available
for constraints on interface implementations, but also for constraints on ordinary classes
and interfaces. It may even be used to constrain type parameters of a class or interface
on the basis of individual methods, as the next example shows.

class Box<X> {
X x;
boolean containedBy(List<X> list) where X implements EQ {
return Lists.find(this.x, list) != null;

}
}

The class Box itself places no constraint on its type parameter X. Thus, it may be
instantiated with arbitrary types. However, method containedBy is only available if the
actual type argument implements EQ; in other words, containedBy is a type-conditional
method. For instance, an invocation of containedBy on a value of type Box<Expr> is
valid, whereas an invocation on a value of type Box<String> is rejected by the compiler
(unless we add an implementation of EQ for String).

2.1.4 Static Interface Methods

We not only want to evaluate and print expressions, but we also want to parse them from
a string representation. Obviously, there are other situations (e.g., XML deserialization,
parsing of XPath expressions, etc.) where we need to create an object from an external
string representation. Ideally, we would like to abstract over these different situations.

As an example, consider a generic line processor: a method that loops over the lines
of a given input stream, parses them, and then passes the result to some consumer. To
reuse the code of looping over the input stream, we need to abstract over the parser and
the consumer. Abstracting over the consumer is easily done using a plain Java interface:

// Consumes values of type X
interface Consumer<X> {

void consume(X x);
}

14



2.1 Features

However, a similar solution does not work for parsing because a parser acts like an ad-
ditional class constructor: it creates an object from a string representation, so the parse
method cannot be an instance method of the object being parsed. In this situation, Java
programmers routinely use the Factory pattern [73] (see Section 2.1.8). In JavaGI, how-
ever, programmers may abstract over “constructor-like” methods through static interface
methods:

// Parses a string and returns a value of the implementing type
interface Parseable {

static This parse(String s);
}

(Again, the result type This refers to the implementing type.) Now it is easy to implement
the line processor:

class LineProcessor {
static <X> void process(InputStream in, Consumer<X> c)

throws IOException where X implements Parseable {
BufferedReader br = new BufferedReader(new InputStreamReader(in));
String line;
while ((line = br.readLine()) != null) {
X x = Parseable[X].parse(line); // parse the l ine . . .
c.consume(x); // . . . and consume i t

}
}

}

The expression Parseable[X].parse(s) invokes the parse method of Parseable with
X as the implementing type. The invocation is well-typed because we require the con-
straint X implements Parseable (see Section 2.3.1). It returns an object of type X which
we pass to the consume method.

Given an implementation of Parseable for Expr

implementation Parseable [Expr] {
static Expr parse(String s) { ... }

}

we now can use the line processor the implement a simple Read-Evaluate-Print-Loop:

class REPL {
public static void main(String... args) throws IOException {

LineProcessor.process(System.in, new Consumer<Expr>() {
public void consume(Expr e) {

System.out.println(e.prettyPrint() + " => " + e.eval());
}

});
}

}

2.1.5 Implementation Inheritance

Suppose we would like to have a richer set of operations available for the expression
hierarchy, as expressed by the following interface:

15



2 A Tour of JavaGI

interface RichExpr {
int depth(); // Computes the depth of the expression
int size(); // Computes the size of the expression
List<RichExpr> subExprs(); // Returns a l l direct sub−expressions

}

Providing direct implementations of depth and size for Expr and its subclasses would
duplicate work because both can be implemented in terms of the subExprs method. A
Java programmer has to avoid this sort of code duplication proactively: he or she would
write an abstract class, say AbstractRichExpr, that implements RichExpr partially by
only providing the methods depth and size. Then, Expr would become a subclass of
AbstractRichExpr and would only need to provide an implementation for subExprs to
comply to the RichExpr interface. However, inserting such an abstract class restricts
the inheritance hierarchy by ruling out other superclasses of Expr. Moreover, the source
code of Expr is needed.

JavaGI’s retroactive interface implementations offer a more flexible way for writing (par-
tial) default implementations: simply provide an abstract implementation of RichExpr
with RichExpr as the implementing type. This reflects the intention of implementing
some methods of RichExpr in terms of other methods of RichExpr. Here is the code for
the partial default implementation of RichExpr:4

abstract implementation RichExpr [RichExpr] {
int depth() {

int i = 0;
for (RichExpr e : subExprs()) { i = Math.max(i, e.depth()); }
return i+1;

}
int size() {

int i = 1;
for (RichExpr e : subExprs()) { i += e.size(); }
return i;

}
}

Other implementations of RichExpr may then inherit from this abstract implementa-
tion:

implementation RichExpr [Expr] extends RichExpr [RichExpr] {
List<RichExpr> subExprs() {

return new LinkedList<RichExpr>();
}

}

We use the syntax “extends RichExpr [RichExpr]” to specify the super implemen-
tation. The effect of the extends clause is that the RichExpr [Expr] inherits the defi-

4Abstract implementation definitions and implementation definitions with abstract methods (which are
not necessarily abstract as a whole) are two different things. The former do not introduce a new
subtyping relationship between the implementing type and the interface, whereas the latter do. Hence,
JavaGI’s type system treats abstract implementations more liberal and imposes fewer restrictions on
them (see Section 2.3.4).

16



2.1 Features

nitions of depth and size from RichExpr [RichExpr].5

To complete the example, we also need an implementation for PlusExpr:

implementation RichExpr [PlusExpr] extends RichExpr [Expr] {
// extends RichExpr [RichExpr ] possible too

List<RichExpr> subExprs() {
List<RichExpr> list = new LinkedList<RichExpr>();
list.add(this.left);
list.add(this.right);
return list;

}
}

In the examples just shown, we referred to a super implementation by explicitly stating
the interface and the implementing type. Alternatively, we may provide explicit names
for implementations and then use these names in the extends clause. In this case, the
three implementations of RichExpr would look as follows:

abstract implementation RichExpr [RichExpr] as DefaultImpl {...}
implementation RichExpr [Expr] as ExprImpl extends DefaultImpl {...}
implementation RichExpr [PlusExpr] extends ExprImpl {...}

2.1.6 Dynamic Loading of Retroactive Interface Implementations

JavaGI’s retroactive interface implementations integrate nicely with the dynamic loading
capabilities of Java. Here is code that loads an (imaginary) subclass MultExpr of Expr
together with its retroactive implementation of the PrettyPrintable interface. The code
then constructs a new instance of MultExpr (we expect the class to have a constructor
taking two Expr arguments) and invokes the prettyPrint method on the new instance.

Class<?> clazz = javagi.runtime.RT.classForName("MultExpr",
PrettyPrintable.class);

Expr e = (Expr) clazz.getDeclaredConstructor(Expr.class, Expr.class)
.newInstance(new IntLit(2), new IntLit(21));

String s = e.prettyPrint();
System.out.println(s);

The method classForName(String name, Class<?>... ifaces), provided by the
run-time system of JavaGI, simultaneously loads a class and its implementations of all
interfaces given. In the example just shown, it is not possible to load MultExpr first
and the PrettyPrintable implementation at some later point. This approach would
allow to invoke the prettyPrint method on a MultExpr object without loading the
PrettyPrintable implementation at all. Such an invocation would lead to a run-time
error because the only applicable prettyPrintable method would be the abstract ver-
sion in the implementation of PrettyPrintable for Expr. Consequently, JavaGI’s com-
pleteness check for abstract methods would prevent MultExpr from being loaded in the
first place. Loading MultExpr and its PrettyPrintable implementation simultaneously
avoids the problem.

5The notation “I [T]” denotes the retroactive implementation of interface I for type T.

17



2 A Tour of JavaGI

2.1.7 Multi-Headed Interfaces

So far, we only considered interfaces with exactly one implementing type. However,
we can easily generalize the interface concept to include multi-headed interfaces. Such
interfaces relate multiple implementing types and their methods and thus can place
mutual requirements on the methods of all participating types. For instance, here is a
multi-headed interface for the well-known Observer pattern [73]:6

interface ObserverPattern [Subject, Observer] {
receiver Subject {
void register(Observer o);
void notifyObservers();

}
receiver Observer {

void update(Subject s);
}

}

A multi-headed interface names the implementing types (Subject and Observer in this
case) explicitly through type variables enclosed in square brackets ‘[...]’. Moreover,
it groups methods by receiver type. In the example, the ObserverPattern interface
demands that the Subject part provides the methods register and notifyObservers,
whereas the Observer part has to provide an update method.

Implementations of multi-headed interfaces are defined analogously to implementations
of single-headed interfaces.7 Assume that there are classes ExprPool, which maintains
a pool of expressions scheduled for evaluation, and ResultDisplay, which displays the
result of evaluating an expression on the screen.

class ExprPool {
...
void register(ResultDisplay d) { ... }
void notifyObservers() { ... }

}
class ResultDisplay { ... }

Class ResultDisplay is an observer for ExprPool: whenever ExprPool evaluates an
expression, it notifies ResultDisplay to update the screen. We can make this relationship
explicit by providing an implementation of the ObserverPattern interface:

implementation ObserverPattern [ExprPool, ResultDisplay] {
/* No need to specify methods for receiver ExprPool because

this class already contains the required methods . */
receiver ResultDisplay {
void update(ExprPool m) { ... }

}
}

6Two parties participate in the Observer pattern: subject and observer. Every observer registers itself
with one or more subjects. Whenever a subject changes its state, it notifies its observers by sending
itself for scrutiny.

7Single-headed interfaces are interfaces with exactly one implementing type. In general, we use the term
“n-headed interface” to refer to an interface with n implementing types.

18



2.1 Features

In conjunction with multi-headed interfaces, JavaGI’s constraint notation is particu-
larly useful because it allows to constrain multiple types. The following example uses
this mechanism to demand that the type variables S and O together implement the
ObserverPattern interface:8

<S,O> void genericUpdate(S sub, O obs) where S*O implements ObserverPattern {
obs.update(sub);

}

Because ExprPool and ResultDisplay implement the ObserverPattern interface, the
invocation genericUpdate(new ExprPool(), new ResultDisplay()) is type correct.

Methods of multi-headed interfaces also preserve dynamic dispatch. As with binary
methods, JavaGI takes an approach similar to multimethods and dispatches on the re-
ceiver as well as on all parameters declared as implementing types (symmetric multiple
dispatch). Section 8.5 demonstrates this behavior by encoding a classic examples for
multimethods [49] in JavaGI.

We end the discussion of multi-headed interfaces by remarking that the notation for
single-headed interfaces used so far is just syntactic sugar. Internally, a single-headed
interface is represented in the same way as a multi-headed interface. For example, the
EQ interface from Section 2.1.2 is fully spelled out as:

interface EQ [This] {
receiver This { boolean eq(This that); }

}

2.1.8 Comparison with Java

The preceding sections introduced the main features of JavaGI and demonstrated how
these features solve several important programming problems. In the following, we com-
pare the JavaGI solutions with corresponding solutions in plain Java.

Retroactive Interface Implementations

As already noted in Section 2.1.1, Java does not offer the possibility of implementing inter-
faces such as PrettyPrintable without changing the classes of the expression hierarchy
in Figure 2.1. As a workaround, Java programmers often use the Adapter pattern [73, 93].
Applying this design pattern to the problem in Section 2.1.1 requires adapter classes for
each concrete subclass of Expr and a factory class that adapts expressions according to
their run-time type. See Figure 2.2 for the corresponding Java code.

Assessment. The Adapter pattern has several disadvantages with respect to JavaGI’s
retroactive implementations:

� It requires explicit conversion between the original and the adapted object, as
demonstrated by the explicit adapter invocations PPFactory.adapt(...) in the
body of prettyPrint in class PPPlusExpr (see Figure 2.2).

8The first version of JavaGI [240] used the notation [S,O] implements ObserverPattern instead of
S*O implements ObserverPattern.

19



2 A Tour of JavaGI

Figure 2.2 Adapter classes for pretty printing in plain Java.

// Java
class PPIntLit implements PrettyPrintable {

IntLit adaptee;
PPIntLit(IntLit expr) { this.adaptee = expr; }
public String prettyPrint() { return String.valueOf(this.adaptee.value); }

}
class PPPlusExpr implements PrettyPrintable {

PlusExpr adaptee;
PPPlusExpr(PlusExpr expr) { this.adaptee = expr; }
public String prettyPrint() {

return "(" + PPFactory.adapt(this.adaptee.left).prettyPrint() +
" + " + PPFactory.adapt(this.adaptee.right).prettyPrint() + ")";

}
}
class PPFactory {

static PrettyPrintable adapt(Expr expr) {
if (expr instanceof IntLit) return new PPIntLit((IntLit) expr);
else if (expr instanceof PlusExpr) return new PPPlusExpr((PlusExpr) expr);
else throw new RuntimeException("Unexpected expression form");

}
}

� It causes object schizophrenia [198, 89]. For example, a plus-expression e and
its adapted form new PPPlusExpr(e) are no longer identical (i.e., the comparison
e == new PPPlusExpr(e) evaluates to false).

� It hides the original interface of the object being adapted. Gamma and cowork-
ers [73] suggest two-way adapters as a potential solution to this problem.

� It requires a factory class (e.g., PPFactory in Figure 2.2) for constructing adapter
objects. Adding new expression forms requires changes to this factory class.

� It has the tendency to “infect” large areas of a program. For example, treating
a list of expressions as a list of pretty-printable objects requires an adapter for
the list [89]. (The list adapter adapts the individual elements whenever they are
retrieved from the list.)

Explicit Implementing Types

Section 2.1.2 demonstrated that JavaGI specifies signatures for binary methods through
explicit implementing types. The section also argued that the specification of a binary
method signature in Java requires F-bounded polymorphism and possibly wildcards.
Figure 2.3 re-implements the example from Section 2.1.2 in Java to substantiate this
claim. Bracha [24] gives a different example for the same purpose.

20



2.1 Features

Figure 2.3 Binary methods in plain Java.
The code avoids the problem of implementing EQ retroactively for Expr and its subclasses by defining a
variant of the expression hierarchy from Figure 2.1 that directly implements Java’s version of EQ.

// Java
interface EQ<X> {

boolean eq(X that);
}
class Lists {

static <X extends EQ<X>> X find(X x, List<X> list) {
for (X y : list) {

if (x.eq(y)) return y;
}
return null;

}
}
abstract class EQExpr implements EQ<EQExpr> {

// eval removed for simplicity
public boolean eq(EQExpr that) { return false; }

}
class EQIntLit extends EQExpr {

int value;
EQIntLit(int value) { this.value = value; }
public boolean eq(EQExpr that) {

// simulate multiple dispatch
if (that instanceof EQIntLit) return this.value == ((EQIntLit) that).value;
else return super.eq(that);

}
}
class EQPlusExpr extends EQExpr { /* code omitted for brevity */ }

Given variables le, e, and i with static types List<EQExpr>, EQExpr, and EQIntLit,
respectively, the two invocations Lists.find(e, le) and Lists.find(i, le) type-
check. However, in contrast to the JavaGI solution in Section 2.1.2, the invocation
Lists.find(i, li) does not typecheck for a variable li with static type List<EQIntLit>,
because it causes the type parameter X to be instantiated with EQIntLit but EQIntLit
is not a subtype of EQ<EQIntLit> (but of EQ<EQExpr>).

Allowing for this kind of flexibility in Java requires an improved version of find’s
signature with wildcards:

// Java
static <X extends EQ<? super X>> X betterFind(X x, List<X> l) { /* as before */ }

The bound EQ<? super X> states that X does not need to be a subtype of EQ<X>; instead,
it only has to be a subtype of EQ<T> where T is some arbitrary supertype of X. With
the improved version of find, the invocation betterFind(i, li) typechecks successfully
because EQIntLit is a subtype of EQ<EQExpr> and EQExpr is a supertype of EQIntLit.
(The invocations betterFind(e, le) and betterFind(i, le) typecheck too).

21



2 A Tour of JavaGI

Assessment. Comparing the JavaGI version with its Java counterpart reveals that ex-
plicit implementing types are syntactically much simpler than F-bounds and wildcards.
Moreover, JavaGI provides symmetric multiple dispatch on explicit implementing types,
something that the Java approach has to simulate by hand (e.g., by instanceof tests as
in Figure 2.3, class EQIntLit, method eq).

On the other hand, the solution in JavaGI only works in combination with interfaces
whereas Java’s solution also works in a setting without interfaces. Further, Java’s ap-
proach is somewhat more flexible; for example, a class C may implement EQ<T> for some
arbitrary type T, which may be totally unrelated to C. However, it is unclear whether
this greater flexibility is really needed in practice.

Type Conditionals

Java neither supports type-conditional interface implementations nor type conditions on
methods restricting type parameters other than that of the method itself. A common
approach to simulate these features is checking the type conditions not statically but
dynamically through run-time casts. A different approach omits the type-conditional
parts from the base class but creates a new subclass which then places the type conditions
on its generic arguments.

Both approaches have disadvantages compared with the JavaGI solution presented
in Section 2.1.3: the first approach may lead to unexpected run-time errors, whereas
the second approach requires boilerplate code to be written and does not offer much
flexibility because the type-conditional parts are not available for the base class even if
its type parameters meet the type conditions. Even worse, the boilerplate code grows
exponentially in the number of independent type conditions because each combination
of type conditions demands a new subclass.

Static Interface Methods

In JavaGI, programmers abstract over constructor-like methods through static interface
methods. Java programmers use the Factory pattern [73] instead. Implementing the line
processor from Section 2.1.4 with the Factory pattern requires an interface

interface Parser<X> {
X parse(String s);

}

and the following modified signature of method process in class LineProcessor:

static <X> void process(InputStream in, Consumer<X> c, Parser<X> p)
throws IOException

The additional parameter p simulates the constraint X implements Parseable of the
corresponding JavaGI signature in Section 2.1.4. However, JavaGI implicitly passes evi-
dence for this constraint, whereas a Java programmer has to supply the extra parameter
explicitly. For the tiny example from Section 2.1.4, the extra parameter does not make a
big difference, but explicitly maintaining it over a long sequence of method calls quickly
becomes a burden.

22



2.2 Design Principles

Multi-Headed Interfaces

JavaGI’s multi-headed interfaces specify mutual dependencies between several types.
In the literature, this phenomenon is known as family polymorphism [68]. It is well
known [68] that object-oriented languages such as Java do not support family polymor-
phism in a statically safe and flexible way. JavaGI, however, provides a type-safe and
sufficiently expressive form of family polymorphism, as demonstrated by the example in
Section 2.1.7. (Section 8.3 evaluates support for family polymorphism in JavaGI accord-
ing to the criteria established by Ernst.) In addition to family polymorphism, JavaGI’s
multi-headed interfaces in combination with explicit implementing types also support
symmetric multiple dispatch, a feature not present in Java either.

2.2 Design Principles

The design of JavaGI rests on six principles.

Conservativeness. JavaGI is a conservative extension of Java. That is, a program that
works in Java works the same way in JavaGI. The JavaGI compiler translates all
input programs to standard Java byte code [125], retaining the semantics and the
performance characteristics of Java programs even in the presence of retroactive
implementations. Conservativeness enables easy migration from Java to JavaGI
and ensures full compatibility with existing Java APIs.

Extensibility. JavaGI imposes no restrictions on the placement of retroactive interface
implementations. That is, implementation definitions can be placed in arbitrary
compilation units and arbitrary libraries. Extensibility maximizes flexibility and
allows for a high degree of interworking between Java and JavaGI code.

Dynamicity. JavaGI fully supports dynamic loading. That is, not only classes and inter-
faces but also retroactive implementation definitions can be loaded dynamically at
any time. Dynamicity ensures compatibility with existing Java libraries and frame-
works. For example, dynamic loading is required to run JavaGI programs inside a
servlet container [215].

Type Safety. JavaGI favors static type safety over unsafe dynamic checks. That is, the
language provides an expressive type system and checks as many properties as
possible at compile time. It resorts to dynamic checks only if required to support
extensibility or dynamicity. Static type safety prevents a whole class of software
defects right from the start.

Modularity. JavaGI features fully modular compilation and mostly modular typecheck-
ing. That is, compilation and typechecking of a compilation unit does not need
access to internals of other compilation units, and code generation processes each
compilation unit in isolation. To allow for extensibility, dynamicity, and type safety
at the same time, the JavaGI compiler abandons completely modular typechecking

23



2 A Tour of JavaGI

and performs certain global checks on the set of types and implementation defini-
tions available. However, the compiler never assumes that it knows all implementa-
tion definitions (open-world assumption), so new implementations can be added at
any time provided they do not conflict with existing ones. Modularity is important
for building large software projects. Further, the open-world assumption facilitates
the extension of JavaGI libraries with new implementations without recompiling
the libraries.

Transparency. JavaGI provides retroactive interface implementations in a transparent
way. That is, the run-time behavior of a retroactive implementation cannot be
distinguished from that of a Java-style interface implementation. Furthermore,
the compile-time characteristics of a retroactive and a Java-style implementation
are very similar. Transparency enables programmers to reason about retroactive
implementations in almost the same way as they reason about Java-style imple-
mentations.

2.3 An Informal Account of Typechecking and Execution

This section informally investigates the JavaGI-specific extensions of Java’s type system
and execution model. It explains constraint entailment, subtyping, and method typing.
Further, it defines global well-formedness criteria for programs and describes dynamic
method lookup.

2.3.1 Constraint Entailment

Constraint entailment is a notion not present in Java’s type system. It establishes the
validity of constraints. JavaGI distinguishes two kinds of constraints, subtype constraints
and implementation constraints.

� Subtype constraints generalize Java’s type parameter bounds. A subtype constraint
has the form T extends U, where T and U are both types.9 Such a constraint is
valid if T is a subtype of U (see Section 2.3.2).

� Implementation constraints have the form T1*...*Tn implements K where T1, . . . ,
Tn are types and K is a n-headed interface. For simplicity, this informal discussion
only considers the case where n = 1. Such a constraint T implements K is valid in
any of the following cases (see Section 3.3 for the complete list).

1. T implements interface K in the Java sense: T is a class and T itself or a
superclass of T has an explicit implements clause for K.

2. T is a type variable declared to implement K or some of its subinterfaces.

9Constraint declarations are restricted to the form X extends U, where X is a type variable. A Java
type parameter bound X extends T1&...&Tn is represented by multiple constraints X extends T1,
. . . , X extends Tn.

24



2.3 An Informal Account of Typechecking and Execution

3. A non-abstract retroactive implementation matches K and T (or some super-
type of T unless K contains methods with the implementing type in result
position). If the implementation is type conditional (see Section 2.1.3), then
the constraints of the implementation must also be satisfied.

Suppose a program contains the EQ implementations for Expr and List from Sec-
tions 2.1.2 and 2.1.3. The constraint LinkedList<Expr> implements EQ is valid by the
third case:

� The implementing type of EQ does not appear in result position, so it is possible to
lift LinkedList<Expr> to the supertype List<Expr>.

� There exists an implementation EQ [List<X>] (parameterized over X) that matches
EQ and List<Expr> by instantiating X to Expr.

� The implementation’s constraint after instantiation is Expr implements EQ, which
is valid because of the implementation EQ [Expr].

In contrast, LinkedList<String> implements EQ cannot by derived from the set of im-
plementations defined in Sections 2.1.2 and 2.1.3 because String implements EQ does
not hold.

An implementation constraint is stronger than an subtype constraint: validity of
T implements K implies validity of T extends K, but the reverse implication is not al-
ways true. To demonstrate this fact, continue the example code from Section 2.1.2 and
Section 2.1.3 as follows:

EQ e1 = new IntLit(42); // ok
EQ e2 = new LinkedList<Expr>(); // ok
if (e1.eq(e2)) ... // type error

While e1 and e2 can both be subsumed to the interface type EQ (see Section 2.3.2)
and EQ extends EQ is clearly valid, the binary method call with e1 and e2 does not
make sense as it would compare an integer with a list. For this reason, JavaGI requires
EQ implements EQ to typecheck the call e1.eq(e2). But EQ implements EQ does not
hold, so the JavaGI compiler correctly rejects the call.

Besides being stronger, implementation constraints may be used to constrain a group of
types with a multi-headed interface, as demonstrated in Section 2.1.7 by the constraint
S*O implements ObserverPattern. In contrast, a subtype constraint relates exactly
two types. Furthermore, each invocation of a retroactively implemented or static interface
method must eventually be sanctioned by a corresponding implementation constraint to
ensure type soundness.

2.3.2 Subtyping

The subtyping relation, written T <: U for types T and U, indicates that an object of type
T can also be used with type U. JavaGI’s subtyping relation extends Java’s: it considers
more types to be subtypes of each other than Java.

To test whether T <: U holds, JavaGI first checks whether T <: U already holds in
Java. Otherwise, T <: U can only hold if U is an interface type and T implements U.

25



2 A Tour of JavaGI

That is, there must be a supertype V of T (possibly T itself) such that the constraint
V implements U holds.

2.3.3 Method Typing

JavaGI’s algorithm for typechecking method invocations extends the corresponding algo-
rithm employed by Java. If the rules of Java are sufficient to typecheck an invocation,
then it also typechecks in JavaGI and the invocation is marked as a “Java call-site”. Oth-
erwise, JavaGI’s constraint entailment tries to prove a suitable implementation constraint
for the invocation.

In particular, assume that the method invocation not typeable according to Java’s rule
has the form e0.m(e1,...,en) for expressions e0, e1, . . . , en with static types T0, T1, . . . , Tn.
To typecheck the invocation, the JavaGI compiler first searches all interfaces accessible
from the current compilation unit under their unqualified name for methods matching
name m, receiver type T0 and argument types T1, . . . , Tn. This process is very similar
to the method typing algorithm described in sections 15.12.2 and 15.12.3 of The Java
Language Specification [82]. It includes inference of type arguments and it instantiates
the implementing types of the current interface according to the signature of the method
being examined and according to the types T0, . . . , Tn. If the compiler does not find any
matching methods, typechecking fails.

Next, the compiler shrinks the resulting set of candidate methods by removing meth-
ods that are less specific than other candidate methods. If this process results in one
candidate, typechecking succeeds and the compiler marks the invocation as a “JavaGI
call-site”. Otherwise, it rejects the method invocation as ambiguous.

There is a mechanism for resolving ambiguities by explicitly specifying which interface
to search for candidate methods. For example, suppose that interface PrettyPrintable
from Section 2.1.1 and another interface J are in scope. Assume further that J defines a
method prettyPrint() and that Expr implements J. Then the call e.prettyPrint(),
where e is a variable with static type Expr, is ambiguous. But JavaGI also provides
the syntax e.prettyPrint::PrettyPrintable() to invoke the prettyPrint method of
interface PrettyPrintable explicitly.

A static interface method invocation is always explicit. It includes the interface name
and all implementing types to avoid potential ambiguities from the start.

2.3.4 Well-Formedness Criteria for Programs

JavaGI’s type system imposes certain global well-formedness criteria on the set of im-
plementation definitions to guarantee that run-time lookup of retroactively implemented
methods always finds a unique and most specific implementation definition that contains
a non-abstract version of the method in question. Moreover, the criteria ensure that
dynamic method lookup need not perform constraint entailment when searching for the
most specific implementation. Constraint entailment at run time is not feasible because
JavaGI inherits its type-erasure semantics from Java [26], so type arguments are not
available when actually executing a program. Last but not least, the criteria establish

26



2.3 An Informal Account of Typechecking and Execution

decidability of constraint entailment and subtyping, and they enable efficient method
lookup.

Criterion: No Overlap

Any two non-abstract implementations of the same interface must not overlap; that is,
the erasures of the implementing types must not be equal. Overlapping implementation
definitions lead to ambiguity in dynamic method lookup.

For example, a program must not contain the PrettyPrintable implementation for
IntLit from Section 2.1.1 along with some other PrettyPrintable implementation for
IntLit. Otherwise, both implementations would be candidates for an invocation like
new IntLit(42).prettyPrint(), but neither implementation is more specific than the
other. The “no overlap” criterion rejects such a program.

Criterion: Unique Interface Instantiation and Non-Dispatch Types

Any two non-abstract implementations of the same interface and with subtype com-
patible implementing types must have identical interface type arguments and identical
non-dispatch types. Thereby, the implementing types T1, . . . , Tn and U1, . . . , Un of two
retroactive implementations are subtype compatible if, and only if, for all i ∈ {1, . . . , n}
either Ti <: Ui or Ui <: Ti holds. Furthermore, an implementing type X of some interface
is a non-dispatch type if the interface itself or some of its superinterfaces contains at least
one non-static method such that X is neither the receiver type of the method nor does it
appear among its argument types. Otherwise, X is a dispatch type.

The restriction on identical interface type arguments is necessary to avoid ambiguity in
dynamic method lookup because JavaGI’s type erasure semantics maps different instan-
tiations of an interface to the same run-time representation. Moreover, Java disallows
multiple instantiation inheritance for interfaces [82, § 8.1.5].

A program containing two implementations of the same interface and with subtype-
compatible implementing types but different non-dispatch types may also exhibit am-
biguous method lookup at run time. For example, suppose that a program contains the
ObserverPattern implementation for ExprPool and ResultDisplay from Section 2.1.7,
as well as an ObserverPattern implementation for ExprPool and some class MyObserver.
Then the call new ExprPool().notify() cannot be resolved unambiguously at run
time because the two implementations differ only in the second implementing type
(ResultDisplay and MyObserver), but it is not possible to determine this implementing
type from the call new ExprPool().notify(). However, the second implementing type
of ObserverPattern is a non-dispatch type (it is neither the receiver nor an argument of
notify), so the two ObserverPattern implementations considered violate the “unique
non-dispatch types” criterion.

Criterion: Downward Closed

Any two non-abstract implementations of the same interface I must be downward closed.
That is, if T1, . . . , Tn and U1, . . . , Un are the implementing types of the two implementa-
tions given, and V1, . . . , Vn is a vector of types such that each Vi is a maximal element

27



2 A Tour of JavaGI

of the set of lower bounds of Ti and Ui, then an implementation of interface I with
implementing types V1, . . . , Vn must exist.

This criterion rules out ambiguity of dynamic method lookup in cases like the following,
where the chooseIntLit method is to return the IntLit instance among its arguments:

interface ChooseIntLit [Expr1, Expr2] {
receiver Expr1 {
IntLit chooseIntLit(Expr2 that);

}
}
implementation ChooseIntLit [Expr, IntLit] {

receiver Expr {
IntLit chooseIntLit(IntLit that) { return that; }

}
}
implementation ChooseIntLit [IntLit, Expr] {
receiver IntLit {

IntLit chooseIntLit(Expr that) { return this; }
}

}

The call new IntLit(42).chooseIntLit(new IntLit(3)) is ambiguous with these
definitions because both implementations are applicable but none is more specific than
the other. JavaGI rules out such programs because the two implementations are not
downward closed. To make the program well-formed requires a third implementation
that is more specific than the two implementations of ChooseIntLit already shown:

implementation ChooseIntLit [IntLit, IntLit] {
receiver IntLit {

IntLit chooseIntLit(IntLit i) { return this; }
}

}

Another situation that exhibits ambiguous method lookup is the following:

interface J { ... }
interface K { ... }
class C implements J, K { ... }
implementation PrettyPrintable [J] {
String prettyPrint() { return "J"; }

}
implementation PrettyPrintable [K] {

String prettyPrint() { return "K"; }
}

The call new C().prettyPrint() may return either "J" or "K" because the imple-
mentations for J and K both match but none is more specific than the other. However,
the two implementations are not downward closed, so JavaGI rejects the program. To
successfully compile the program requires an implementation of PrettyPrintable for
class C.

28



2.3 An Informal Account of Typechecking and Execution

Criterion: Consistent Type Conditions

Constraints on non-abstract implementations must be consistent with subtyping: if the
implementing types of a non-abstract implementation I1 are pairwise subtypes of the
implementing types of another non-abstract implementation I2, then the constraints of
I2 must imply the constraints of I1.

Without this criterion, JavaGI would need run-time constraint entailment to rule out
certain implementations when performing dynamic method lookup. For example, con-
sider the following extension of code from Section 2.1.3:

// repeated for c lar i ty
implementation<X> EQ [List<X>] where X implements EQ { ... }
// new implementation
implementation<X> EQ [LinkedList<X>] where X extends Number { ... }

Now consider the call list1.eq(list2), where both list1 and list2 have (dynamic)
type LinkedList<Expr>. The implementation for List<X> may be used to resolve this
call but the one for LinkedList<X> may not because the constraint Expr extends Number
does not hold. However, JavaGI’s run-time system is unable to detect this mismatch
because it cannot perform constraint entailment at run time (in particular, the type
argument Expr is not available because of type erasure [26]).

Thus, JavaGI rejects the program statically because LinkedList<X> is a subtype of
List<X> but the constraint X implements EQ of the List<X> implementation does not
imply the constraint X extends Number of the LinkedList<X> implementation.

Criterion: No Implementation Chains

Retroactive implementations must not form a chain by using the interface of a non-
abstract implementation as the implementing type of some (other) non-abstract imple-
mentation. For example, Section 2.1.2 implements the EQ interface retroactively, so it is
not possible to use EQ as an implementing type of any non-abstract implementation.

Disallowing implementation chains ensures decidability of constraint entailment and
subtyping (see Section 5.1 for details). Moreover, it allows for efficient run-time lookup
of retroactively implemented methods.

Criterion: Completeness

The implementation of an interface method must be complete, even if there exist retroac-
tive implementations with abstract definitions for the method. That is, if a retroactive
implementation of interface I contains an abstract definition of method m with T1, . . . , Tn
being the dispatch-relevant argument types (i.e., the receiver type and those argument
types declared as implementing types in I), then the following must hold: for each
sequence of non-abstract types U1, . . . , Un with Ui <: Ti for all i ∈ {1, . . . , n}, there
exists a retroactive implementation of I containing a non-abstract definition of m with
V1, . . . , Vn being the dispatch-relevant argument types such that Ui <: Vi and Vi <: Ti
for all i ∈ {1, . . . , n}. The completeness criterion ensures that dynamic method lookup
never encounters an abstract definition of some interface method.

For example, consider the following extension of the code from Section 2.1.1:

29



2 A Tour of JavaGI

class MultExpr extends Expr { ... }

Dynamic dispatch for an invocation new MultExpr(...).prettyPrint() would find the
abstract definition of prettyPrint in the PrettyPrintable implementation for Expr;
consequently, a “message not understood” error would occur at run time. Fortunately,
the completeness criterion prevents the definition of MultExpr without an additional
implementation of PrettyPrintable for MultExpr.

Checking the Criteria

The JavaGI compiler checks the well-formedness criteria just described on all accessible
types and implementations. At run time, however, a different set of types and implemen-
tations may be available because of subsequent edits or dynamic loading. Hence, JavaGI’s
run-time system re-checks the well-formedness criteria every time it loads a new type or
a new set of implementations. Nevertheless, the compiler can guarantee one important
property: if a program meets the well-formedness criteria at compile time and the same
set of types and implementations is available at run time, then the run-time checks never
fail.

2.3.5 Dynamic Method Lookup

At program start, JavaGI’s run-time system loads all accessible implementations, checks
the well-formedness criteria just explained, and installs the implementations loaded as
the current pool of implementations. A dynamically loaded implementation extends this
pool after checking that the well-formedness criteria still hold.

For Java call-sites (see Section 2.3.3), dynamic method lookup is the same as for plain
Java. For JavaGI call-sites, which the compiler also marks with the interface defining the
method and the argument positions of the implementing types, dynamic method lookup
searches the pool of implementations for one that matches

1. the interface in which the method is defined,

2. the dynamic receiver type, and

3. the dynamic types of those arguments declared as implementing types in the inter-
face method signature.

Static typing and the well-formedness criteria guarantee that this search always returns
a unique most specific implementation.

The static distinction between Java call-sites and JavaGI call-sites requires that meth-
ods in retroactive implementations do not override methods defined in classes. However,
the conservativeness principle postulated in Section 2.2 prevents such retroactive method
overrides anyway: allowing them means that the behavior of an existing Java program
could be modified by adding an appropriate implementation that overrides an internal
method of some class.

30



3
Formalization of CoreGI

This chapter takes a more formal route than the preceding one: it distills the core features
of JavaGI into a small calculus called CoreGI and provides a rigorous formalization of it.
The definition of CoreGI is based on that of Featherweight Generic Java (FGJ [96]).

To keep the formalization within reasonable size and complexity limits, CoreGI omits
many details of the full language. It includes, however, the essential aspects of JavaGI’s
generalized interface concept and allows to express the common programming idioms of
JavaGI. One exception of this rule is the lack of support for interfaces as implementing
types of retroactive implementations. CoreGI does not deal with this aspect of JavaGI
and defers it until Chapter 5.

Chapter Outline. The chapter consists of seven sections.

� Section 3.1 introduces some basic notations.

� Section 3.2 defines the syntax of CoreGI.

� Section 3.3 formalizes constraint entailment and subtyping for CoreGI.

� Section 3.4 specifies CoreGI’s dynamic semantics (i.e., its run-time behavior).

� Section 3.5 presents CoreGI’s static semantics (i.e., its type system).

� Section 3.6 proves that the type system of CoreGI is sound and that its evaluation
relation is deterministic.

� Section 3.7 defines algorithms for deciding constraint entailment, subtyping, ex-
pression typing, and program typing in CoreGI.

3.1 Basic Notations

This section introduces some basic notations used throughout the rest of the dissertation.
In the following, ξ denotes some arbitrary syntactic construct.

31



3 Formalization of CoreGI

Figure 3.1 Syntax.

prog ::= def e
def ::= cdef | idef | impl

cdef ::= class C<X> extends N where P {T f m : mdef }
idef ::= interface I <X> [Y whereR ] where P {m : staticmsig rcsig }
impl ::= implementation<X> K [N ] where P { staticmdef rcdef }
rcsig ::= receiver {m : msig}
rcdef ::= receiver {mdef }
msig ::= <X>T x→ T where P
mdef ::= msig {e}
M,N ::= C<T> | Object
G,H ::= X | N
K,L ::= I <T>

T,U, V,W ::= G | K
R,S ::= G implementsK

R, S ::= T implementsK
P,Q ::= R | X extendsT
P,Q ::= R | T extendsT

d, e ::= x | e.f | e.m<T>(e) | K[T ].m<T>(e) | newN (e) | (T ) e

X, Y, Z ∈ TvarName C,D ∈ ClassName I, J ∈ IfaceName
m ∈ MethodName f, g ∈ FieldName x, y, z ∈ VarName

Definition 3.1. Overbar notation ξ
n

(or ξ for short) denotes the sequence ξ1 . . . ξn where
in some places commas separate the sequence items. The symbol • denotes the empty
sequence. Using index variables i, j, k to subscript items from a sequence assumes that
the index variables range over the length of the sequence. Furthermore, if the same
index variable subscripts items from different sequences, then all sequences involved are
assumed to be of the same length. An index variable under an overbar marks the parts
that vary from sequence item to sequence item; for example, ξ′ ξi abbreviates ξ′ ξ1 . . . ξ

′ ξn.
At some points, the sequence ξ stands for the set {ξ1, . . . , ξn}.

Definition 3.2. The notation ξ? denotes an optional construct; that is, ξ? is either a
regular ξ or the special symbol nil.

Definition 3.3. The notation [n] denotes the set {1, . . . , n} for some n ∈ N. If n = 0
then [n] = ∅.

3.2 Syntax

Figure 3.1 defines the abstract syntax of CoreGI. The various kinds of identifiers are
drawn from pairwise disjoint and countably infinite sets of type variables (ranged over
by X,Y, Z), class names (ranged over by C,D), interface names (ranged over by I, J),

32



3.2 Syntax

method names (ranged over by m), field names (ranged over by f, g), and expression
variables (ranged over by x, y, z).

A CoreGI program prog consists of a sequence of definitions def followed by a “main”
expression e. A definition is either a class, interface, or implementation definition.

The type parameters X of classes, interfaces, implementations, and methods do not
carry explicit bounds; instead, CoreGI exclusively uses constraint clauses of the form
“where P”. For readability, code fragments omit empty type parameter lists “< • >” and
empty constraint clauses “where •”.

Each class C has an explicit superclass N , where N is a class type (either an instanti-
ated class or Object). If the superclass is Object , we sometimes omit the extends clause
completely. The predefined class Object does not have a superclass and it does not de-
fine any fields or methods. The body of an ordinary class contains a sequence of field
definitions T f , where T is a type and f the name of the field, followed by a sequence
of method definitions m : mdef , where m is the method name and mdef specifies the
signature msig and the body expression e of the method. The signature of a method
consists of type parameters X, value parameters x together with their types T , a result
type T , and constraints P .

An interface I is not only parameterized over regular type parameters X but also over
type parameters Y , standing for the interface’s implementing types. The implementation
constraints R (explained shortly) attached to the implementing type parameters specify
the superinterfaces of I. These superinterface constraints naturally generalize Java’s
extends clause for interfaces, which are not expressive enough in the presence of multi-
headed interfaces.

The body of an interface contains method signatures m : msig for static methods and
receiver signatures rcsig holding the signatures of non-static methods. Unlike in full
JavaGI, receivers are matched by position, not by name; that is, the ith receiver corre-
sponds to the ith implementing type. Furthermore, CoreGI does not support interface
methods to be implemented directly in classes. With respect to naming of interface
methods, the following conventions apply:

Convention 3.4 (Disjoint namespaces for class and interface methods). The namespaces
for class and interface methods are disjoint. At some points, mc or mi explicitly denotes
the name of a class or interface method, respectively.

Convention 3.5 (Globally unique names of interface methods). The names of interface
methods are globally unique; that is, if some interface defines a method m then no other
interface defines a method with the same name m.

An implementation definition specifies a retroactive implementation of interface K
for implementing types N , where N is a sequence of class types. (Full JavaGI also
allows single-headed interfaces to be implemented by an interface type, see Section 6.1.6.)
The body of an implementation contains static methods and receiver definitions. Static
methods are anonymous because they are matched by position against the static methods
of the interface being implemented. Similar to interfaces, receiver definitions are matched
by position, so the ith receiver definition corresponds to the ith implementing type.
Moreover, methods inside receiver definitions are anonymous because they are matched
by position against the methods in the corresponding receiver signature of the interface

33



3 Formalization of CoreGI

being implemented. For example, in an implementation of interface I, the jth method
of the ith receiver definition corresponds to the jth method of the ith receiver signature
of I.

Metavariables M,N range over class types, whereas G,H denote either a type variable
or a class type N . Metavariables K,L range over interface types. Full types (denoted
by T,U, V,W ) are either G-types or interface types. By convention, code fragments omit
empty type argument lists “< • >”.

Constraints come in four forms:

� R,S denote implementation constraints that constrain only G-types;

� P,Q denote either subtype constraints on type variables or R-constraints;

� R, S denote unrestricted implementation constraints that may constrain arbitrary
types;

� P,Q denote unrestricted P -constraints.

With single-headed interfaces, R-constraints on class types (i.e., constraints of the form
N implementsK) are merely obfuscated syntax for trivial constraints that are uncondi-
tionally true or false. With multi-headed interfaces, however, they allow the specification
of dependencies between class types and type variables. The constraint forms R and P

do not occur in source programs but only as the result of applying a type substitution
to some R- or P -constraint.

Expressions d, e include variables, field accesses, method calls, object allocations, and
casts. A method call of the form e.m<T>(e) invokes method m on receiver e with type ar-
guments T and expression arguments e. (Full JavaGI supports inference of type arguments
much as Java does.) Calling a static interface method takes the form K[T ].m<U>(e),
where K is the interface defining method m, T are the relevant implementing types, and
U and e are the type and expression arguments, respectively.

Convention 3.6. Syntactic constructs that differ only in the names of bound type and
expression variables are interchangeable in all contexts [176].

3.3 Constraint Entailment and Subtyping

Constraint entailment (entailment for short) and subtyping play important roles in both
the dynamic and the static semantics of CoreGI: in the dynamic semantics, method
dispatch and evaluation of cast operations rely on subtyping; in the static semantics,
expression typing and many other definitions depend on entailment and subtyping. This
section presents a declarative specification of constraint entailment and subtyping; we
defer an algorithmic formulation until Section 3.7.

The auxiliary predicate non-static(I), defined in Figure 3.2, asserts that neither inter-
face I nor any of its superinterfaces defines a static method. The polarity of the ith
implementing type of interface I is positive (or negative) in I, written i ∈ pol+(I) (or
i ∈ pol−(I)), if it does not occur in contravariant (or covariant) positions. We let π range
over + and −. The notation ftv(ξ) denotes the set of type variables free in ξ.

34



3.3 Constraint Entailment and Subtyping

Figure 3.2 Restrictions on interfaces and implementing types.

non-static(I)

non-static-iface
interface I <X> [Y whereR ] where P {m : staticmsig

n
. . . }

n = 0 (∀i) if Ri = Z implements J<T> then non-static(J)

non-static(I)

j ∈ polπ(I) X ∈ polπ(rcsig) X ∈ polπ(P ) X ∈ polπ(msig)

pol-iface
interface I <X> [Y whereR ] where P {m : staticmsig rcsig }

(∀i) Yj ∈ polπ(msig i) (∀i) Yj ∈ polπ(rcsig i) (∀i) Yj ∈ polπ(Ri) Yj /∈ ftv(P )

j ∈ polπ(I)

pol-recv
(∀i) X ∈ polπ(msig i)

X ∈ polπ(receiver {m : msig})

pol-constr
(∀i) if X = Gi then i ∈ polπ(I)

X ∈ polπ(G implements I <U>)

pol-msig-plus
Y /∈ ftv(T ) \X

Y ∈ pol+(<X>T x→ U where P )

pol-msig-minus
Y /∈ ftv(U) \X

Y ∈ pol−(<X>T x→ U where P )

The definition of j ∈ polπ(I) by rule pol-iface in Figure 3.2 relies on the polarity of
an implementing type variable X in receiver signatures (X ∈ polπ(rcsig)), constraints
(X ∈ polπ(P )), and method signatures (X ∈ polπ(msig)). The definition of the latter
by rules pol-msig-plus and pol-msig-minus depends on a restriction stating that an
implementing type variable may appear in a method signature only at the top level of
the result type and at the top level of the argument types. Section 3.5.3 formalizes this
restriction as well-formedness criterion wf-iface-3.

Definition 3.7 (Type environment). A type environment ∆ is a finite set of type variables
X and constraints P . The domain of a type environment ∆, written dom(∆), is the set of
type variables contained in ∆. The notation ∆, P abbreviates ∆∪ {P} and ∆, X stands
for ∆ ∪ {X} assuming X /∈ dom(∆).

Constraint entailment, written ∆  P, asserts that constraint P holds under type en-
vironment ∆. The notation ∆  P abbreviates (∀i) ∆  Pi. The definition of constraint
entailment is interweaved with the definition of the subtyping relation ∆ ` T ≤ U , which
holds if, and only if, T is a subtype of U under type environment ∆. At some points,
∆ ` T ≤ U abbreviates (∀i) ∆ ` Ti ≤ Ui. Figure 3.3 defines entailment and subtyping.

Rule ent-extends solves subtype constraints by invoking the subtyping relation, and
rule ent-env specifies that a constraint from the type environment is always considered

35



3 Formalization of CoreGI

Figure 3.3 Constraint entailment and subtyping.

∆  P

ent-extends
∆ ` T ≤ U

∆  T extendsU

ent-env
P ∈ ∆

∆  P

ent-super
interface I <X> [Y whereR] . . . ∆  U implements I <T>

∆  [T/X,U/Y ]Ri

ent-impl

implementation<X> I <T> [N ] where P . . . ∆  [U/X]P

∆  [U/X](N implements I <T>)

ent-up
∆ ` U ≤ U ′ ∆  T U ′ V implements I <W> n ∈ pol−(I)

∆  T
n−1

U V implements I <W>

ent-iface
1 ∈ pol+(I) non-static(I)

∆  I <T> implements I <T>

∆ ` T ≤ U

sub-refl

∆ ` T ≤ T
sub-object

∆ ` T ≤ Object

sub-trans
∆ ` T ≤ U ∆ ` U ≤ V

∆ ` T ≤ V

sub-var
X extendsT ∈ ∆

∆ ` X ≤ T

sub-class
class C<X> extends N . . .

∆ ` C<T> ≤ [T/X]N

sub-iface
interface I <X> [Y whereR] . . . Ri = Y implementsK

∆ ` I <T> ≤ [T/X]K

sub-impl
∆  T implementsK

∆ ` T ≤ K

36



3.4 Dynamic Semantics

valid. Rule ent-super states that a constraint implies all superinterface constraints
of its corresponding interface. The notation [T/X] denotes the capture-avoiding type
substitution that replaces type variables Xi with types Ti. Metavariables ϕ and ψ range
over type substitutions.

Rule ent-impl defines how an implementation definition establishes validity of a con-
straint. Rule ent-up allows to promote a type on the left-hand side of an implementation
constraint to a supertype, provided the corresponding implementing type does not occur
in covariant positions of the interface (premise n ∈ pol−(I)). Rule ent-iface is a kind
of reflexivity rule. However, the rule only fires for interfaces without binary methods
(premise 1 ∈ pol+(I)) to ensure type soundness.

The subtyping relation is reflexive and transitive, and it allows Object as a supertype of
every other type. A type variable X is a subtype of T if the type environment contains the
constraint X extendsT . Moreover, a class type is a subtype of its direct superclass. Rule
sub-iface formulates subtyping on interface types in terms of superinterface constraints.
The rule is only applicable to single-headed interfaces because only these interfaces may
serve as types. Finally, rule sub-impl integrates constraint entailment into the subtyping
relation by deriving ∆ ` T ≤ K from ∆  T implementsK.

3.4 Dynamic Semantics

This section presents a structural operational semantics [179] defining the run-time be-
havior of CoreGI programs.

3.4.1 Method Lookup

Figure 3.5 formalizes dynamic method lookup, relying on auxiliaries defined in Figure 3.4.
The relation getmdefc(m,N) performs dynamic lookup of class method m on a receiver
with run-time type N . If possible, it returns the definition of m directly contained in N
(rule dyn-mdef-class-base). Otherwise, it continues the search in N ’s superclass (rule
dyn-mdef-class-super). The search stops when it reaches Object because there is no
matching rule.

For non-static interface methods, getmdef i(m,N,N) performs lookup of a retroactively
implemented method m on receiver type N and actual parameter types N . For static
interface methods, getsmdef(m,K,U) searches for method m in an implementation defi-
nition matching interface K and implementing types U . The definitions of getmdef i and
getsmdef require several auxiliaries from Figure 3.4:

� N1 tN2 = M computes the least upper bound M of class types N1 and N2.

�

⊔
N = N computes the least upper bound N of a set N of class types. If N is

not empty, then the least upper bound is unique and always exists.

� resolveX(T ,N) = N? resolves implementing type X with respect to formal param-
eter types T and run-time parameter types N as the optional class type N?.

The definition of resolve constructs a set N containing those run-time parameter
types Ni such that the ith formal parameter dispatches on X (i.e., Ti = X). If

37



3 Formalization of CoreGI

Figure 3.4 Auxiliaries for dynamic method lookup.

least-impl{(ϕ, impl)} = (ϕ, impl) resolveX(T ,N) = M?

least-impl

impl i = implementation<Xi> I <Vi> [Ni
l
] . . .

n ≥ 1 (∀i ∈ [n]) ∅ ` ϕkNk ≤ ϕiNi

least-impl{(ϕ1, impl1), . . . , (ϕn, impln)} = (ϕk, implk)

resolve-non-empty

N = {Ni | i ∈ [n], Ti = X} 6= ∅
⊔

N = M

resolveX(T
n
, N

n
) = M

resolve-empty
{Ni | i ∈ [n], Ti = X} = ∅

resolveX(T
n
, N

n
) = nil

N1 tN2 = M
⊔

N = N

lub-right
∅ ` N ≤M
N tM = M

lub-left
∅ `M ≤ N
N tM = N

lub-super
not ∅ ` C<T> ≤ N not ∅ ` N ≤ C<T>

class C<X> extends N ′ . . . [T/X]N ′ tN = M

C<T> tN = M

lub-set-single⊔
{N} = N

lub-set-multi

N 6= ∅
⊔

N = M ′ M ′ tN = M⊔
(N ∪̇ {N}) = M

the set N is not empty (rule resolve-non-empty), the resolution of X is the least
upper bound

⊔
N . Otherwise (rule resolve-empty), X does not occur in the

formal parameter types T , so resolve returns nil. There is a restriction ensuring
that the implementing type X does not occur nested inside one of the formal
parameter types Ti (see well-formedness criterion wf-iface-3 in Section 3.5.3).

� least-implM computes the least element of a set M containing pairs of substitu-
tions and implementations. The pair (ϕ, impl) is considered smaller than the pair
(ϕ′, impl ′) if, and only if, the implementing types of impl under substitution ϕ are
pointwise subtypes of the implementing types of impl ′ under substitution ϕ′.

There are several well-formedness criteria ensuring that least-impl always finds a
unique solution when invoked by getmdef i or getsmdef. Section 2.3.4 already dis-
cussed these criteria (“no overlap”, “unique interface instantiation and non-dispatch
types”, “downward closed”) informally; Section 3.5.3 defines them formally as well-
formedness criteria wf-prog-1, wf-prog-2, and wf-prog-3.

With these auxiliaries in place, rule dyn-mdef-iface in Figure 3.5 defines the relation
getmdef i(m,N,N) as follows:

38



3.4 Dynamic Semantics

Figure 3.5 Dynamic method lookup.

getmdefc(m,N) = <X>T x→ T where P {e}

dyn-mdef-class-base
class C<X> extends N where P {T f m : mdef }

getmdefc(mj ,C<U>) = [U/X]mdef j

dyn-mdef-class-super
class C<X> extends N where P {T f m : mdef }

m /∈ m getmdefc(m, [U/X]N) = <X>V x→ V where P {e}
getmdefc(m,C<U>) = <X>V x→ V where P {e}

getmdef i(m,N,N) = <X>T x→ T where P {e}

dyn-mdef-iface

interface I <Z ′> [Z
l
whereR ] where P { . . . rcsig }

rcsigj = receiver {m : msig} msigk = <Y >T x→ T where Q

(∀i ∈ [l], i 6= j) resolveZi(T ,N) = M?
i resolveZj (ZjT ,NN) = M?

j

least-impl{([V/X], implementation<X> I <U> [M ′ ] . . .)

| (∀i) M?
i = nil or ∅ `M?

i ≤ [V/X]M ′i}
= (ϕ, implementation<X> I <U> [M ′ ] where P ′ { . . . rcdef })

rcdef j = receiver {mdef }
getmdef i(mk, N,N

n
) = ϕmdef k

getsmdef(m,K,U) = <X>T x→ T where P {e}

dyn-mdef-static
interface I <Z ′> [ZwhereR ] where Q {m : staticmsig . . . }

least-impl{([V/X], implementation<X> I <W> [N
l
] . . . )

| (∀i ∈ [l]) ∅ ` Ui ≤ [V/X]Ni}
= (ϕ, implementation<X> I <W> [N

l
] where P { staticmdef . . . })

getsmdef(mk, I <T>, U
l
) = ϕmdef k

39



3 Formalization of CoreGI

� First, getmdef i retrieves the interface I and the receiver rcsigj defining method m.

� Then, it uses resolve to compute, for each implementing type variable Zi, an optional
least upper bound M?

i of all argument types contributing to the resolution of the
ith implementing type.

� Next, it collects all implementations of I whose implementing types are pointwise
supertypes of the M?

i s. (If M?
i is nil, then every type is considered a supertype of

M?
i because the ith implementing type does not occur in m’s signature.)

� Finally, getmdef i selects among all these implementations the one with least imple-
menting types.

The definition of getsmdef(m,K,U) in rule dyn-mdef-static is similar to that of
getmdef i but simpler: getsmdef does not need to resolve the implementing types but
gets them explicitly through the types U . Thus, getsmdef just uses least-impl to choose
the least implementation among all implementation definitions matching K and U .

3.4.2 Evaluation

The definition of CoreGI’s dynamic semantics is now straightforward and given in Fig-
ure 3.6. Values (ranged over by v, w) and call-by-value evaluation contexts (denoted by
E) are defined in the obvious way. Unlike FGJ, CoreGI uses a call-by-value evaluation
order to ensure deterministic evaluation. The notation E [e] denotes the replacement of
E ’s hole � with expression e.

The top-level evaluation relation e 7−→ e′ reduces an expression e at the top level
to e′. Rule dyn-field deals with field accesses newN (v).fi . The auxiliary relation
fields(N) = T f , also defined in Figure 3.6, returns the fields declared by the superclasses
of N and N itself. CoreGI assumes that the ith constructor argument vi corresponds to
the field Ti fi, so newN (v).fi reduces to vi. Rules dyn-invoke-class, dyn-invoke-iface,
and dyn-invoke-static handle invocations of class methods, non-static interface meth-
ods, and static interface methods, respectively. The notation [e/x] denotes the capture-
avoiding expression substitution that replaces expression variables xi with expressions
ei. Among the rules dyn-invoke-class and dyn-invoke-iface, at most one is applicable
because the namespaces for class and interface methods are disjoint (see Convention 3.4).
Finally, rule dyn-cast allows casts from newN (v) to type T if N is a subtype of T .

The proper evaluation relation e −→ e′ reduces an expression e to e′ by using a suitable
evaluation context E together with the top-level evaluation relation 7−→.

Remark. Several places in the definition of the dynamic semantics rely on CoreGI’s sub-
typing relation. Except for the premise of rule dyn-cast in Figure 3.6, all uses of the
subtyping relation have the form ∅ ` T ≤ N ; that is, the type environment is empty and
only class types appear as possible supertypes. In these cases, the full subtyping relation
is not needed; instead, plain inheritance between classes and an additional rule covering
the case N = Object suffices.1

1The definition of inheritance between classes is standard. See Figure 3.16 on page 52 for a formal
definition.

40



3.4 Dynamic Semantics

Figure 3.6 Dynamic semantics.

Values and evaluation contexts

v, w ::= newN (v)

E ::= � | E .f | E .m<T>(e) | v.m<T>(v, E , e)
| K[T ].m<T>(v, E , e) | newN (v, E , e) | (T ) E

Top-level evaluation: e 7−→ e′

dyn-field
fields(N) = T f

newN (v).fi 7−→ vi

dyn-invoke-class
v = newN (w)

getmdefc(mc, N) = <X>T x→ T where P {e}
v.mc<U>(v) 7−→ [v/this, v/x][U/X]e

dyn-invoke-iface
(∀i ∈ {0, . . . , n}) vi = newNi(wi)

getmdef i(mi, N0, N) = <X>T x→ T where P {e}
v0.m

i<U>(vn) 7−→ [v0/this, v/x][U/X]e

dyn-invoke-static
getsmdef(m,K,U) = <X>T x→ T where P {e}

K[U ].m<V >(v) 7−→ [v/x][V/X]e

dyn-cast
∅ ` N ≤ T

(T )newN (v) 7−→ newN (v)

Proper evaluation: e −→ e′

dyn-context
e 7−→ e′

E [e] −→ E [e′]

fields(N) = T f

fields-object

fields(Object) = •

fields-class

class C<X> extends N where P {T f . . . } fields([U/X]N) = T ′ f ′

fields(C<U>) = T ′ f ′, [U/X]T f

41



3 Formalization of CoreGI

Figure 3.7 Well-formedness of types and constraints.

∆ ` T ok

ok-tvar
X ∈ dom(∆)

∆ ` X ok

ok-object

∆ ` Object ok

ok-class

class C<X> extends N where P . . . ∆ ` T ok ∆  [T/X]P

∆ ` C<T> ok

ok-iface
interface I <X> [Y whereR] where P . . .

∆ ` T ok Y /∈ ftv(T ,∆) ∆, Y implements I <T>  [T/X](R,P )

∆ ` I <T> ok

∆ ` P ok

ok-impl-constr
interface I <X> [Y whereR] where P . . .

∆ ` T ,U ok ∆  [U/X, T/Y ](R,P )

∆ ` T implements I <U> ok

ok-ext-constr
∆ ` T,U ok

∆ ` T extendsU ok

3.5 Static Semantics

This section presents a declarative specification of CoreGI’s type system. We defer the
definition of a typechecking algorithm until Section 3.7.

All types and constraints occurring in a type-correct CoreGI program must be well-
formed. Formally, a type T or constraint P is well-formed under type environment ∆
if, and only if, ∆ ` T ok or ∆ ` P ok, respectively, holds (see Figure 3.7). Often
∆ ` T ok and ∆ ` P ok abbreviate (∀i) ∆ ` Ti ok and (∀i) ∆ ` Pi ok, respectively.
Rule ok-iface in Figure 3.7 ensures that only single-headed interfaces form interface
types. Well-formedness of a constraint T implements I <U> (rule ok-impl-constr) not
only demands that T ,U are well-formed but also that the constraints of the interface I
are fulfilled.

The relation mtype∆(m,T ), defined in Figure 3.8, looks up the signature of method m
for receiver type T . Rule mtype-class handles class methods mc. Unlike the correspond-
ing rule for FGJ, lookup of class methods does not ascend the inheritance hierarchy of
classes because CoreGI’s typing rules (explained shortly) allow subsumption on the re-
ceiver. Rule mtype-iface handles interface methods mi by searching the interface and
the receiver defining the method and asserting validity of the corresponding implementa-
tion constraint, possibly “guessing” the types V and some of the types T . Figure 3.8 also

42



3.5 Static Semantics

Figure 3.8 Method typing.

mtype∆(m,T ) = <X>U x→ U where P

mtype-class

class C<X> extends N where P { . . . m : msig {e} }
mtype∆(mc

j ,C<T>) = [T/X]msigj

mtype-iface
interface I <X> [Y whereR ] where P { . . . rcsig }

rcsigj = receiver {m : msig} ∆  T implements I <V >

mtype∆(mi
k, Tj) = [V/X, T/Y ]msigk

smtype∆(m,K[T ]) = <X>U x→ U where P

mtype-static
interface I <X> [Y whereR ] where P {m : staticmsig . . . }

∆  T implements I <U>

smtype∆(mi
k, I <U>[T ]) = [U/X, T/Y ]msigk

defines the relation smtype∆(m, I <U>[T ]), which looks up the signature of static method
m defined in interface I under type parameters U and implementing types T .

3.5.1 Expression Typing

Expression typing, written ∆; Γ ` e : T , states that under type environment ∆ and
variable environment Γ, expression e has type T . Variable environments Γ are defined
as follows:

Definition 3.8 (Variable environment). A variable environment Γ is a finite mapping
from variables x to types T . The notation Γ, x : T extends Γ with a mapping from x
to T assuming x is not already bound in Γ. The notation Γ(x) denotes the type T such
that Γ maps x to T . It assumes that Γ contains such a binding for x.

Figure 3.9 defines the expression typing judgment. Typechecking a field access e.fj
looks up the type of field fj in the fields declared by C (rule exp-field). There is no
need to search the superclasses of C for a definition of fj because rule exp-subsume

allows lifting the type of e to some supertype. Thanks to mtype and smtype from
Figure 3.8, typechecking method invocations is straightforward (rules exp-invoke and
exp-invoke-static).

Rule exp-new handles an object allocation newN (e) by asserting that N is well-
formed and by checking that the ith argument ei is type correct with respect to the
type of the ith field declaration returned by fields(N). The auxiliary fields(N) = T f ,
already defined in Figure 3.6, computes the fields declared by the superclasses of N and

43



3 Formalization of CoreGI

Figure 3.9 Expression typing.

∆; Γ ` e : T

exp-var

∆; Γ ` x : Γ(x)

exp-field
∆; Γ ` e : C<T> class C<X> extends N where P {U f . . . }

∆; Γ ` e.fj : [T/X]Uj

exp-invoke
∆; Γ ` e : T mtype∆(m,T ) = <X>U x→ U where P

(∀i) ∆; Γ ` ei : [V/X]Ui ∆  [V/X]P ∆ ` V ok

∆; Γ ` e.m<V >(e) : [V/X]U

exp-invoke-static
smtype∆(m, I <W>[T ]) = <X>U x→ U where P

(∀i) ∆; Γ ` ei : [V/X]Ui ∆  [V/X]P ∆ ` T , V ok

∆; Γ ` I <W>[T ].m<V >(e) : [V/X]U

exp-new
∆ ` N ok fields(N) = T f (∀i) ∆; Γ ` ei : Ti

∆; Γ ` newN (e) : N

exp-cast
∆ ` T ok ∆; Γ ` e : U

∆; Γ ` (T ) e : T

exp-subsume
∆; Γ ` e : U ∆ ` U ≤ T

∆; Γ ` e : T

N itself. Unlike FGJ, which has three rules for cast expressions to differ between upcasts,
downcasts, and stupid casts, CoreGI uses a single rule for casts because they are not in
the focus of the formalization.

3.5.2 Program Typing

Figures 3.10 and 3.11 specify the well-formedness rules for definitions and programs,
including several auxiliary relations.

� The relation ∆ ` msig ≤ msig ′ extends subtyping to method signatures by treating
argument types invariantly and return types covariantly (Figure 3.10).

� The relation override-ok∆(m : msig , N) asserts that class type N correctly overrides
method m with signature msig (Figure 3.10).

� The relations ∆ ` msig ok, ∆ ` mdef ok, and ∆ ` rcsig ok assert well-formedness of
method signatures, method definitions, and receiver signatures, respectively (Fig-
ure 3.10).

44



3.5 Static Semantics

Figure 3.10 Auxiliaries for well-formedness of definitions.

∆ ` msig ≤ msig ′ override-ok∆(m : msig , N)

sub-msig
∆, P ` T ≤ T ′

∆ ` <X>T x→ T where P ≤ <X>T x→ T ′ where P

ok-override
(∀N ′) if ∆ ` N ≤ N ′ and mtype∆(m,N ′) = msig ′ then ∆ ` msig ≤ msig ′

override-ok∆(m : msig , N)

∆ ` msig ok ∆; Γ ` mdef ok ∆ ` rcsig ok ∆ ` m : mdef ok inN

ok-msig
∆, P ,X ` T ,U, P ok

∆ ` <X>T x→ U where P ok

ok-mdef
∆ ` <X>T x→ U where P ok ∆, P ,X; Γ, x : T ` e : U

∆; Γ ` <X>T x→ U where P {e} ok

ok-rcsig
(∀i) ∆ ` msig i ok

∆ ` receiver {m : msig} ok

ok-mdef-in-class
∆; this : N ` msig {e} ok override-ok∆(m : msig , N)

∆ ` m : msig {e} ok inN

∆ ` mdef implements msig ∆ ` rcdef implements rcsig

impl-meth
∆; Γ ` msig {e} ok ∆ ` msig ≤ msig ′

∆; Γ ` msig {e} implements msig ′

impl-recv
(∀i) ∆; Γ ` mdef i implements msig i

∆; Γ ` receiver {mdef } implements receiver {m : msig}

45



3 Formalization of CoreGI

Figure 3.11 Well-formedness of definitions and programs.

` cdef ok ` idef ok ` impl ok

ok-cdef
P ,X ` N,P , T ok (∀i) P ,X ` mi : mdef i ok in C<X>

` class C<X> extends N where P {T f m : mdef } ok

ok-idef
R,P ,X, Y ` R,P ,msig , rcsig ok

` interface I <X> [Y whereR ] where P {m : static msig rcsig } ok

ok-impl
P ,X ` N implements I <T>, P ok

interface I <Y > [ZwhereR ] where Q {m : staticmsig rcsig }
(∀i) P ,X; ∅ ` mdef i implements [T/Y ,N/Z]msig i

(∀i) P ,X; this : Ni ` rcdef i implements [T/Y ,N/Z]rcsig i

` implementation<X> I <T> [N ] where P { staticmdef rcdef } ok

` prog ok

ok-prog
` def ok ∅; ∅ ` e : T

additional well-formedness criteria from Section 3.5.3 hold

` def e ok

� The relation ∆ ` m : mdef ok inN asserts that the definition mdef of method m
in class N is well-formed (Figure 3.10).

� The relation ∆ ` mdef implements msig asserts that method definition mdef is a
valid implementation of signature msig (Figure 3.10).

� The relation ∆ ` rcdef implements rcsig asserts that receiver definition rcdef prop-
erly implements all methods from receiver signature rcsig (Figure 3.10). As already
discussed in Section 3.2, methods in receiver definitions are matched by position
against methods in receiver signatures.

� The relations ` cdef ok, ` idef ok, and ` impl ok assert well-formedness of class,
interface, and implementation definitions, respectively (Figure 3.11).

� The relation ` prog ok asserts well-formedness of programs (Figure 3.11). Well-
formedness of programs requires several additional well-formedness criteria. For the
full JavaGI language, Section 2.3.4 already discussed the most important of them
informally. The next section gives the complete list of additional well-formedness
criteria for CoreGI.

46



3.5 Static Semantics

3.5.3 Additional Well-Formedness Criteria

The additional well-formedness criteria for CoreGI are divided into criteria that apply to
classes, interfaces, implementations, whole programs, and type environments.

Criteria for Classes

For each class

class C<X> extends N where P {T fn m : mdef
l }

the following well-formedness criteria must hold:

wf-class-1 The field names, including names of inherited fields, are pairwise disjoint.
That is, i 6= j ∈ [n] implies fi 6= fj and fields(N) = U g implies f ∩ g = ∅.

wf-class-2 The method names m are pairwise disjoint. That is, i 6= j ∈ [l] implies
mi 6= mj .

Criterion wf-class-1 states that CoreGI does not support field shadowing, whereas
wf-class-2 rules out method overloading (together with rule ok-override from Fig-
ure 3.11). Both restrictions are not present in the full JavaGI language.

Criteria for Interfaces

The predicate at-top(X,T ) ensures that each of the type variables X occur only at the
top level of type T .

Definition 3.9. at-top(X,T ) holds if, and only if, X ∩ ftv(T ) = ∅ or T ∈ X.

The well-formedness criteria for interfaces then require that for each interface

interface I <X> [Y whereR ] where P {m : staticmsig rcsig }

the following conditions must hold:

wf-iface-1 The names m of static methods are pairwise disjoint.

wf-iface-2 In all superinterface constraints G implementsK ∈ R, the implementing
types Y do not occur in K and the types G are pairwise distinct type variables
from Y ; that is, Y ∩ ftv(K) = ∅ and G ⊆ Y and Gi 6= Gj for i 6= j.

wf-iface-3 In all method signatures <Z>T x → U where Q contained in rcsig , the
implementing types Y may occur only at the top level of T and U , and they do not
appear in Q; that is, at-top(Y , Ti) for all i and at-top(Y , U) and ftv(Q) ∩ Y = ∅.

Criterion wf-iface-1 prevents overloading of static interface methods. (It is not nec-
essary to include inherited method in this check because invocations of static interface
methods are always qualified with the interface defining the method.) The full JavaGI
language does not have this restriction. Criterion wf-iface-2 restricts the form of su-
perinterface constraints to simplify the superinterface relation.

47



3 Formalization of CoreGI

Figure 3.12 Illegal CoreGI program (implementing type nested in result position).

class C<X> {}
class A {}
class B extends A {}
interface I [X] {
receiver {m : • → C<X>} // illegal
}
implementation I [A] {
receiver {
• → C<A> {newC<A>()}
}
}
implementation I [B] {
receiver {
• → C<B> {newC<B>()}
}
}
new B().m() // has either type C<B> or C<A>

The last criterion wf-iface-3 limits implementing types in method signatures to ap-
pear only at the top level of the result and argument types. Allowing implementing types
to occur nested inside argument types would make it impossible to implement method
dispatch under Java’s type erasure semantics [26]. Nested occurrences of implementing
types in result positions would cause loss of minimal types, as shown by the program in
Figure 3.12. The expression newB().m() would have either type C<B> (when typing
newB() as B) or type C<A> (when typing newB() as A), but subtyping does not relate
these two types. Last not least, implementing types in constraints of method signatures
would cause unsoundness. Consider the program in Figure 3.13. It is type correct (apart
from the constraint X implements J on method mI of interface I) but gets stuck at run
time:

� newB().mI() reduces to newB().mJ().break() because getmdef i(B,mI , •) selects
the definition of mI from implementation I [B].

� newB().mJ().break() reduces to newA().break() but class A does not provide
method break. Hence, evaluation gets stuck.

Criteria for Implementations

The specification of the well-formedness criteria for implementation definitions requires
the introduction of an alternative formulation of constraint entailment and subtyping.
This alternative formulation is called quasi algorithmic because it constitutes a first step
towards an algorithm for checking constraint entailment and subtyping.

48



3.5 Static Semantics

Figure 3.13 Illegal CoreGI program (implementing type in method constraint).

class A {}
class B extends A {

break : • → Object {newObject()}
}
interface J [X] {
receiver {mJ : • → X}
}
implementation J [A] {
receiver {
• → A {newA()}
}
}
interface I [X] {
receiver {
mI : • → Object where X implements J // illegal
}
}
implementation I [A] {
receiver {
• → Object where A implements J {newObject()}
}
}
implementation I [B] {
receiver {
• → Object where B implements J {

// with local constraint B implements J , this.mJ() has type B
this.mJ().break()
}
}
}
new B().mI() // typechecks by assigning type A to the expression newB()

Figure 3.14 Illegal CoreGI program (misses an implementation of I for C).

class C extends Object {}
interface I [X] {
receiver {m : • → Object}
}
interface J [X where X implements I] {}
implementation J [C] {}
new C().m()

49



3 Formalization of CoreGI

Quasi-algorithmic constraint entailment is needed to ensure that an implementation
of some interface comes with appropriate implementations for all its superinterfaces. As
an example, consider the program in Figure 3.14. It fails at run time because there is
no implementation of interface I for class C that could provide the code for m, so the
expression new C().m() is stuck. However, the typing rules for expressions (Figure 3.9)
accept the expression new C().m() because the constraint C implements I holds by
rules ent-super and ent-impl from Figure 3.3. The root of the problem is that there
exists an implementation of interface J for class C without a suitable implementation of
J ’s superinterface I.

A failed attempt to deal with the problem for the program in Figure 3.14 is to require
the following condition:

wf-impl-1-informal-wrong

“For every implementation<X> J [N ] where P . . . the corresponding
superinterface constraintN implements I must hold under type environment
P .”

But P  N implements I always holds by rule ent-super because rules ent-impl and
ent-env allow us to derive P  N implementsJ .

A similar problem arises with Haskell type classes when checking that suitable instance
definitions for all superclasses of a given type class exist [238].2 In the context of Haskell,
Sulzmann [209] suggests a restricted form of constraint entailment to check for superclass
instances.

We follow Sulzmann’s approach and use quasi-algorithmic constraint entailment to
check for appropriate implementations of superinterfaces. It is an open question whether
it is possible to use the declarative form of constraint entailment instead. Figure 3.15 and
Figure 3.16 define quasi-algorithmic constraint entailment and subtyping, respectively,
together with several auxiliary relations.

� Quasi-algorithmic constraint entailment, written ∆ q P, asserts validity of con-
straint P under type environment ∆. Section 3.6.1 shows that the quasi-algorithmic
and the declarative version of constraint entailment are equivalent.

The idea of quasi-algorithmic entailment is to restrict derivations of declarative
entailment (Figure 3.3) such that consecutive applications of rule ent-up are merged
into an application of a single rule, and that rule ent-super is applied only to
constraints originally established by rule ent-env or rule ent-iface. In Figure 3.15,
rule ent-q-alg-up mimics consecutive applications of rule ent-up: it establishes
validity of a constraint T implements I <V > by first lifting all Tj pointwise to
supertypes Uj , thereby respecting j’s polarity in I, and then solving the resulting
constraint U implements I <V >.

� The kernel of quasi-algorithmic entailment, written ∆ q
′ P, is a subset of the quasi-

algorithmic entailment relation. Rule ent-q-alg-env simulates an application of

2Haskell’s type classes and instance definitions are the analogon to JavaGI’s generalized interfaces and
implementation definitions, respectively (see Section 8.1).

50



3.5 Static Semantics

Figure 3.15 Quasi-algorithmic constraint entailment.

∆ q P

ent-q-alg-extends

∆ q̀ T ≤ U
∆ q T extendsU

ent-q-alg-up

(∀i) ∆ q̀
′ Ti ≤ Ui (∀i) if Ti 6= Ui then i ∈ pol−(I) ∆ q

′ U implements I <V >

∆ q T implements I <V >

∆ q
′ R

ent-q-alg-env

S ∈ ∆ R ∈ sup(S)

∆ q
′ R

ent-q-alg-impl

implementation<X> I <T> [N ] where P . . . ∆ q [U/X]P

∆ q
′ [U/X](N implements I <T>)

ent-q-alg-iface

1 ∈ pol+(I) I <V > Ei K non-static(I)

∆ q
′ I <V > implementsK

R ∈ sup(S)

sup-refl

R ∈ sup(R)

sup-step
interface I <X> [Y whereS] . . . U implements I <V > ∈ sup(R)

[V/X,U/Y ]Sj ∈ sup(R)

51



3 Formalization of CoreGI

Figure 3.16 Inheritance and quasi-algorithmic subtyping.

N Ec M

inh-class-refl

N Ec N

inh-class-super

class C<X> extends M . . . [T/X]M Ec N

C<T> Ec N

K Ei L

inh-iface-refl

K Ei K

inh-iface-super

interface I <X> [Y whereR] . . . Ri = Y implementsK [T/X]K Ei L

I <T> Ei L

∆ q̀ T ≤ U

sub-q-alg-kernel

∆ q̀
′ T ≤ U

∆ q̀ T ≤ U

sub-q-alg-impl

∆ q̀
′ T ≤ U ∆ q

′ U implementsK

∆ q̀ T ≤ K

∆ q̀
′ T ≤ U

sub-q-alg-var-refl

∆ q̀
′ X ≤ X

sub-q-alg-obj

∆ q̀
′ T ≤ Object

sub-q-alg-var

X extendsT ∈ ∆
U 6= X,U 6= Object ∆ q̀

′ T ≤ U
∆ q̀

′ X ≤ U

sub-q-alg-class

N Ec N
′ N ′ 6= Object

∆ q̀
′ N ≤ N ′

sub-q-alg-iface

K Ei K
′

∆ q̀
′ K ≤ K ′

52



3.5 Static Semantics

rule ent-env followed by zero or more applications of rule ent-super. Similarly,
rule ent-q-alg-iface imitates an application of rule ent-iface followed by zero or
more applications of rule ent-super.

� The auxiliary relation R ∈ sup(S) states that R is a super constraint of S. Super
constraints arise either through reflexivity (rule sup-refl) or through superinterface
constraints (rule sup-step).

� Quasi-algorithmic subtyping, written ∆ q̀ T ≤ U , states that T is a subtype
of U under type environment ∆. Section 3.6.1 proves that quasi-algorithmic and
declarative subtyping coincide.

Quasi-algorithmic subtyping distinguishes two cases: Rule sub-q-alg-kernel states
that quasi-algorithmic subtyping includes its kernel variant (explained next), and
rule sub-q-alg-impl establishes a subtyping relationship between type T and inter-
face type K by lifting T to U and then solving the constraint U implementsK.
Different to rule ent-q-alg-up, there is no polarity check.

� The kernel of quasi-algorithmic subtyping , written ∆ q̀
′ T ≤ U , is a subset of

the quasi-algorithmic subtyping relation that does not include subtyping implied
by constraint entailment. Essentially, the kernel of quasi-algorithmic subtyping
corresponds to FGJ’s subtyping relation extended with interface inheritance. The
side conditions “U 6= X,U 6= Object in rule sub-q-alg-var and “N ′ 6= Object”
in rule sub-q-alg-class ensure that the kernel of quasi-algorithmic subtyping is
syntax-directed; that is, given a derivation D of ∆ q̀

′ T ≤ U , the two types T and
U uniquely determine the last rule of D.

� The relation N Ec M denotes class inheritance between class types N and M ,
whereas K Ei L denotes interface inheritance between interface types K and
L. Rule inh-iface-super expresses non-trivial inheritance between interface types
through superinterface constraints. The rule is only applicable to single-headed
interfaces because multi-headed interfaces do not form valid types. The notation
N Ec M abbreviates (∀i) Ni Ec Mi.

With quasi-algorithmic constraint entailment, the condition to ensure that all super-
interfaces are properly implemented for the program in Figure 3.14 now reads as follows
(cf. condition wf-impl-1-informal-wrong, page 50):

wf-impl-1-informal
“For every implementation<X> J [N ] where P . . . the corresponding

superinterface constraintN implements I must hold under type environment
P with respect to quasi-algorithmic constraint entailment.”

Indeed, unlike wf-impl-1-informal-wrong, this criterion detects that the program in
Figure 3.14 misses an implementation of I for C: there exists no derivation for ∅ q

C implements I.
Before defining the well-formedness criteria for implementation definitions, Figure 3.17

introduces the notion of dispatch types. The jth implementing type of interface I is a

53



3 Formalization of CoreGI

Figure 3.17 Dispatch types and positions.

j ∈ disp(I) Y ∈ disp(rcsig) Y ∈ disp(P ) Y ∈ disp(msig)

disp-iface
interface I <X> [Y

n
whereR

m
] where P { . . . rcsig

n }
(∀i ∈ [n], i 6= j) Yj ∈ disp(rcsig i) (∀i ∈ [m]) Yj ∈ disp(Ri)

j ∈ disp(I)

disp-rcsig
(∀i) Y ∈ disp(msig i)

Y ∈ disp(receiver {msig})

disp-constr
(∀i) if Gi = Y then i ∈ disp(I)

Y ∈ disp(G implements I <V >)

disp-msig
Y /∈ X Y ∈ T

Y ∈ disp(<X>T x→ T where P )

dispatch type, written j ∈ disp(I), if it appears in every non-static method signature
of I or one of its superinterfaces as the receiver or at the top level of some argument
type. In other words: if m is a non-static method of I or any of its superinterfaces, then
j ∈ disp(I) guarantees that every invocation of m resolves the jth implementing type
of I. The auxiliary relations Y ∈ disp(rcsig), Y ∈ disp(P ), and Y ∈ disp(msig) assert
that implementing type variable Y is a dispatch type with respect to a receiver rcsig , a
constraint P , and a method signature msig , respectively.

The well-formedness criteria for implementations now require that for each implemen-
tation

implementation<X> I <V > [N ] where P . . .

the following conditions must hold:

wf-impl-1 There exist suitable implementations for all superinterfaces of I; that is, if
Q ∈ sup(N implements I <V >) then P q Q.

wf-impl-2 The dispatch types among N fully determine the type variables X; that is
X ⊆ ftv({Ni | i ∈ disp(I)}).

wf-impl-3 In all constraints G implementsK ∈ P , the types G are type variables from
X; that is, G ⊆ X.

As already discussed, criterion wf-impl-1 ensures that suitable implementations for
all relevant superinterfaces exist. The two other criteria contribute to decidability of
constraint entailment. Criterion wf-impl-2, in combination with wf-prog-4 as defined
shortly, bears some resemblance to the coverage condition given by Sulzmann and cowork-
ers [210] for Haskell type classes. For criterion wf-impl-3, there exists a corresponding
restriction in the Haskell 98 report [173]. Sulzmann and coworkers’ bound-variable con-
dition [210] is also similar to it.

54



3.5 Static Semantics

Figure 3.18 Greatest lower bound.

∆ ` G1 uG2 = H

glb-left
∆ ` G1 ≤ G2

∆ ` G1 uG2 = G1

glb-right
∆ ` G2 ≤ G1

∆ ` G1 uG2 = G2

Criteria for Programs

The notation ∆ ` G1 u G2 = H denotes that H is the greatest lower bound of G1

and G2 with respect to ∆. Figure 3.18 defines this relation formally. The notation
∆ ` G uG′ = H abbreviates (∀i) ∆ ` Gi uG′i = Hi.

The CoreGI program under consideration must fulfill the following well-formedness
criteria:

wf-prog-1 A program does not contain two different implementations for the same
interface with unifiable implementing types. That is, for each pair of disjoint im-
plementation definitions

implementation<X> I <T> [M ] where P . . .

implementation<Y > I <U> [N ] where Q . . .

it holds that, for all substitutions [V/X] and [W/Y ], [V/X]M 6= [W/Y ]N .

wf-prog-2 A program does not contain two implementations of different instantiations
of the same interface or for different non-dispatch types, provided the dispatch
types of the implementations are subtype compatible. That is, for each pair of
implementation definitions

implementation<X> I <T> [M ] where P . . .

implementation<Y > I <U> [N ] where Q . . .

and for all substitutions [V/X] and [W/Y ] such that ∅ ` [V/X]Miu [W/Y ]Ni exists
for all i ∈ disp(I), it holds that [V/X]T = [W/Y ]U and that [V/X]Mj = [W/Y ]Nj

for all j /∈ disp(I).

wf-prog-3 Implementation definitions are downward closed. That is, for each pair of
implementation definitions

implementation<X> I <T> [N ] where P . . .

implementation<X ′> I <T ′> [N ′ ] where P ′ . . .

55



3 Formalization of CoreGI

Figure 3.19 Illegal CoreGI program (violates well-formedness criterion wf-prog-7).

interface I [X] {
receiver {m : • → X}
}
interface J1 [X where X implements I] {receiver {}}
interface J2 [X where X implements I] {receiver {}}
interface J [X where X implements J1, X implements J2] {// illegal
receiver {m′ : X → Object}
}

and for all substitutions [V/X] and [V ′/X ′] with ∅ ` [V/X]N u [V ′/X ′]N ′ = M
there exists an implementation definition

implementation<Y > I <U> [M ′ ] where Q . . .

and a substitution [W/Y ] such that M = [W/Y ]M ′.

wf-prog-4 Constraints on implementation definitions are consistent with constraints on
implementation definitions for subclasses. That is, for each pair of implementation
definitions

implementation<X> I <T> [M ] where P . . .

implementation<Y > I <U> [N ] where Q . . .

and for all substitutions [V/X] and [W/Y ] with [V/X]M Ec [W/Y ]N and ∅ 
[W/Y ]Q, it holds that ∅  [V/X]P .

wf-prog-5 The class and interface graphs of the program are acyclic. (Each class def-
inition class C<X> extends D<T> . . . contributes an edge C → D to the class
graph, and each interface definition interface I <X> [Y whereR] . . . and each
constraint G implements J<V > ∈ R contribute an edge I → J to the interface
graph.)

wf-prog-6 Multiple instantiation inheritance for interfaces is not allowed. That is, if
K Ei I <T> and K Ei I <U> then T = U .

wf-prog-7 Multiple inheritance for single-headed interfaces with neither positive nor
negative polarity is not allowed. That is, if 1 /∈ pol+(I), 1 /∈ pol−(I), I <T> Ei K1,
and I <T> Ei K2, then either K1 Ei K2 or K2 Ei K1.

We already discussed criteria wf-prog-1 to wf-prog-4 in Section 2.3.4. Criteria
wf-prog-5 and wf-prog-6 are standard for Java-like languages [82, § 8.1.4, § 8.1.5,
§ 9.1.3].

The last criterion wf-prog-7 is required to ensure that minimal types exist. Consider
the program in Figure 3.19, which violates the criterion because 1 /∈ pol−(J), 1 /∈ pol+(J),

56



3.5 Static Semantics

Figure 3.20 Closure of a set of types.

T ∈ closure∆(T )

closure-elem
T ∈ T

T ∈ closure∆(T )

closure-up
T ∈ closure∆(T ) ∆ q̀

′ T ≤ N
N ∈ closure∆(T )

closure-decomp-class
C<T> ∈ closure∆(T )

Ti ∈ closure∆(T )

closure-decomp-iface
I <T> ∈ closure∆(T )

Ti ∈ closure∆(T )

J Ei J1, J Ei J2, but neither J1 Ei J2 nor J2 Ei J1 holds. We have 1 ∈ pol+(Ji), so
∅  Ji implements I for i = 1, 2 by rules ent-iface and ent-super from Figure 3.3.
Thus, ∅;x : J ` x.m() : Ji for i = 1, 2 by subsuming x to either J1 or J2. However,
1 /∈ pol+(J), so ∅  J implements I is not derivable. Consequently, ∅;x : J ` x.m() : J
is not derivable. Because J1 and J2 are not related by subtyping, we conclude that x.m()
does not have a minimal type under the variable environment x : J .

Criteria for Type Environments

The following definition is due to Trifonov and Smith [230].

Definition 3.10 (Contractive type environments). A type environment ∆ is contrac-
tive if, and only if, there exist no type variables X1, . . . , Xn such that X1 = Xn and
Xi extendsXi+1 ∈ ∆ for each i ∈ {1, . . . , n− 1}.

The notation closure∆(T ) denotes the closure of a set of types T with respect to a
type environment ∆. (Metavariables T , U , and V range over sets of types.) Figure 3.20
defines closure∆(T ) as the least superset of T closed under the kernel of quasi-algorithmic
subtyping and under decomposition of generic class and interface types.

The well-formedness criteria on type environments now require that every type envi-
ronment ∆ must fulfill the following conditions.

wf-tenv-1 The type environment ∆ is contractive.

wf-tenv-2 If T is a finite set of types, then the closure of T with respect to ∆ is finite.

wf-tenv-3 A type variable does not have several unrelated G-types among its bounds.
That is, if X extendsG1 ∈ ∆ and X extendsG2 ∈ ∆ then ∆ ` G1 ≤ G2 or
∆ ` G2 ≤ G1.

wf-tenv-4 A type variable is not a subtype of different instantiations of the same in-
terface. That is, if ∆ q̀

′ X ≤ I <T> and ∆ q̀
′ X ≤ I <U> then T = U .

wf-tenv-5 A type variable has only negative interfaces among its bounds. That is, if
X extends I <T> ∈ ∆ then 1 ∈ pol−(I).

57



3 Formalization of CoreGI

wf-tenv-6 The type environment ∆ does not contain two implementation constraints
for different instantiations of the same interface or for different non-dispatch types
in covariant position, provided the dispatch types of the implementation constraints
are subtype compatible. The same holds for one implementation constraint in
combination with an implementation definition. That is:

1. For each pair of constraints

G implements I <T> ∈ sup(∆)

H implements I <W> ∈ sup(∆)

such that ∆ ` Gi u Hi exists for all i ∈ disp(I), it holds that T = W and
Gj = Hj for all j /∈ disp(I) ∪ pol−(I).

2. For each constraint and each implementation definition

G implements I <T> ∈ sup(∆)

implementation<X> I <W> [N ] where P . . .

such that ∆ ` Gi u [U/X]Ni exists for all i ∈ disp(I) and some U , it holds
that T = [U/X]W and Gj = [U/X]Nj for all j /∈ disp(I) ∪ pol−(I).

Criterion wf-tenv-1 and wf-tenv-2 are required to establish decidability of con-
straint entailment and subtyping. Strictly speaking, criterion wf-tenv-2 is not compat-
ible with JavaGI being a conservative extension of Java 1.5 because Java allows programs
to have an infinitary closure of types. However, neither the authors nor other researchers
are aware of any such programs with practical value [233, 113]. Moreover, neither the
Scala language [166, § 5.1.5] nor the Common Language Infrastructure of the .NET frame-
work [65, Partition II, § 9.2] allows programs to have an infinitary closure of types.

Without well-formedness criterion wf-tenv-3, minimal types do not exist. For exam-
ple, consider the interface

interface I [X] { receiver { m : X → X } }

together with the type environment

∆ = {X extendsY1, X extendsY2, Y1 implements I, Y2 implements I}

which violates wf-tenv-3. Then we have ∆; Γ ` x1.m(x2) : Yi for i = 1, 2 and Γ = x1 :
X,x2 : X. However, Y1 and Y2 are not related by subtyping. Moreover, ∆; Γ ` x1.m(x2) :
X is not derivable because 1 /∈ pol−(I) prevents ∆  X implements I from being valid.
Hence, the expression x1.m(x2) does not have a minimal type under ∆ and Γ.

Criterion wf-tenv-4 is common for Java-like languages [82, § 4.4]. Moreover, the
criterion is necessary to ensure minimal types. Assume two distinct classes C1 and C2,
an interface

interface I <X> [Y ] { receiver { m : • → X } }

58



3.5 Static Semantics

Figure 3.21 CoreGI program demonstrating necessity of criterion wf-tenv-5.

interface I [X] {
receiver {m : • → X}
}
interface J [X where X implements I] {receiver {}}
class C {}
implementation I [C] {
receiver {
• → C{newC ()}
}
}

Figure 3.22 CoreGI program demonstrating necessity of criterion wf-tenv-6(1).

interface I [X,Y ] {
receiver {m : • → Y }
receiver {}
}
class A {}
class B extends A {}
class C1 {}
class C2 {}

and a type environment

∆ = {X extends I <C1>, X extends I <C2>}

violating wf-tenv-4. Then ∆;x : X ` x.m() : Ci for i = 1, 2 but C1 and C2 are not
related by subtyping, and ∆;x : X ` x.m() : T is not derivable for any common subtype
T of C1 and C2.

Criterion wf-tenv-5 is also required to ensure the existence of minimal types. Con-
sider the program in Figure 3.21 together with the type environment

∆ = {X extendsC,X extendsJ}

violating wf-tenv-5 (because 1 /∈ pol−(J)). The constraints C implements I and
J implements I hold under ∆, so ∆;x : X ` x.m() : C and ∆;x : X ` x.m() : J
but C and J are not related by subtyping. Moreover, X implements I does not hold
under ∆, so ∆;x : X ` x.m() : X is not derivable. Hence, x.m() has no minimal type
under ∆ and x : X.

The last well-formedness criterion wf-tenv-6, which is somewhat related to wf-prog-2,
once again helps to guarantee the existence of minimal types. The example in Figure 3.22
shows why part (1) of the criterion is needed; a similar example shows why part (2) is

59



3 Formalization of CoreGI

needed. Consider the type environment

∆ = {AC1 implements I, B C2 implements I}

which violates wf-prog-2(1) because ∆ ` A u B = B, 2 /∈ disp(I), 2 /∈ pol−(I), but
C1 6= C2. Then ∆;x : B ` x.m() : Ci for i = 1, 2 but C1 and C2 do not have a common
subtype. Hence, minimal types do not exist.

3.6 Meta-Theoretical Properties

Having completed the definition of the static semantics, this sections proves that CoreGI
enjoys type soundness and that its evaluation relation is deterministic. Moreover, the
section shows that the declarative and the quasi-algorithmic formulations of constraint
entailment and subtyping are equivalent. All theorems presented in this section make
the implicit assumption that the underlying CoreGI program is well-formed.

3.6.1 Type Soundness

The type soundness proof relies on the equivalence of declarative and quasi-algorithmic
constraint entailment and subtyping.

Theorem 3.11. Quasi-algorithmic constraint entailment and subtyping are sound with
respect to declarative constraint entailment and subtyping.

(i) If ∆ q
′ R then ∆  R.

(ii) If ∆ q P then ∆  P.

(iii) If ∆ q̀
′ T ≤ U then ∆ ` T ≤ U .

(iv) If ∆ q̀ T ≤ U then ∆ ` T ≤ U .

Proof. The proof is by induction on the combined height of the derivations of ∆ q
′ R,

∆ q P, ∆ q̀
′ T ≤ U , and ∆ q̀ T ≤ U . See Section B.1.1 for details.

Theorem 3.12. Quasi-algorithmic constraint entailment and subtyping are complete with
respect to declarative constraint entailment and subtyping.

(i) If ∆  P then ∆ q P.

(ii) If ∆ ` T ≤ U then ∆ q̀ T ≤ U .

Proof. The proof is by induction on the combined height of the derivations of ∆  P and
∆ ` T ≤ U . See Section B.1.2 for details.

The type soundness proof of CoreGI follows the syntactic approach pioneered by Wright
and Felleisen [244]. The progress theorem states that a well-typed expression is either a
value or reduces to some other expression or is stuck on a bad cast.

60



3.6 Meta-Theoretical Properties

Definition 3.13 (Stuck on a bad cast). An expression e is stuck on a bad cast if, and
only if, there exists an evaluation context E , a type T , and a value v = newN (w) such
that e = E [(T ) v] and not ∅ ` N ≤ T .

Theorem 3.14 (Progress). If ∅; ∅ ` e : T then either e = v for some value v or e −→ e′

for some expression e′ or e is stuck on a bad cast.

Proof. The proof is by induction on the derivation of ∅; ∅ ` e : T . See Section B.2.1 for
details.

The preservation theorems for the evaluation relations 7−→ and −→ show that evalu-
ation of expressions preserves types.

Theorem 3.15 (Preservation for top-level evaluation). If ∅; ∅ ` e : T and e 7−→ e′ then
∅; ∅ ` e′ : T .

Proof. The proof is by induction on the derivation of ∅; ∅ ` e : T . See Section B.2.2 for
details.

Theorem 3.16 (Preservation for proper evaluation). If ∅; ∅ ` e : T and e −→ e′ then
∅; ∅ ` e′ : T .

Proof. The derivation of e −→ e′ must end with rule dyn-context, so there exists an
evaluation context E and expressions e0, e

′
0 such that e = E [e0] and e0 7−→ e′0 and

E [e′0] = e′. The claim ∅; ∅ ` E [e′] : T now follows by induction on the structure of E ,
using Theorem 3.15 for the base case. See Section B.2.3 for details.

In the following, −→∗ denotes the reflexive, transitive closure of the evaluation relation
−→. The type soundness theorem for CoreGI is very similar to that for FGJ.

Theorem 3.17 (Type soundness). If ∅; ∅ ` e : T then either e diverges, or e −→∗ v for
some value v such that ∅; ∅ ` v : T , or e −→∗ e′ for some expression e′ such that e′ is
stuck on a bad cast.

Proof. Assume that e −→∗ e′ for some normal form e′. Theorem 3.16 and an induction
on the length of the evaluation sequence yields ∅; ∅ ` e′ : T . The claim now follows by
Theorem 3.14.

A stronger type soundness theorem holds for programs not containing any cast expres-
sions.

Definition 3.18 (Cast-free). An expression e is cast-free if, and only if, neither e nor the
underlying program contains a cast (T ) e′ for some type T and some expression e′.

Theorem 3.19 (Type soundness for programs without casts). If ∅; ∅ ` e : T and e is
cast-free then either e diverges or e −→∗ v for some value v such that ∅; ∅ ` v : T .

Proof. Obviously, if e −→∗ e′ and e is cast-free then so is e′. Moreover, a cast-free
expression cannot be stuck on a bad cast. The claim now follows with Theorem 3.17.

61



3 Formalization of CoreGI

Figure 3.23 Program exhibiting nontermination of quasi-algorithmic entailment.

interface I [X] {receiver {}}
class C<X> extends Object {}
class D extends C<D> {}
implementation<X> I [C<X>] where X implements I {receiver {}}

Figure 3.24 Failed attempt to construct a derivation of ∅ q D implements I.
Variables r1 and r2 stand for rule names ent-q-alg-up and ent-q-alg-impl, respectively.

(holds obviously)

∅ q̀
′ D ≤ C<D>

(holds obviously)

∅ q̀
′ D ≤ C<D>

...

∅ q D implements I
implementation<X> I [C<X>]

where X implements I . . .

∅ q
′ C<D> implements I

r2

∅ q D implements I
r1

implementation<X> I [C<X>] where X implements I . . .

∅ q
′ C<D> implements I

r2

∅ q D implements I
r1

3.6.2 Determinacy of Evaluation

CoreGI also enjoys a deterministic evaluation relation. This property is important because
CoreGI’s method lookup may involve more than one dispatch type, which could easily
lead to ambiguities.

Theorem 3.20 (Determinacy of evaluation). If e −→ e′ and e −→ e′′ then e′ = e′′.

Proof. See Section B.3.

3.7 Typechecking Algorithm

The development of a typechecking algorithm for CoreGI proceeds in three steps: Sec-
tion 3.7.1 shows how to decide constraint entailment and subtyping, Section 3.7.2 shows
how to decide expression typing, and Section 3.7.3 shows how to decide program typing.

3.7.1 Deciding Constraint Entailment and Subtyping

The declarative specification of constraint entailment and subtyping in Section 3.3 is not
immediately suitable for implementation: the conclusions of several rules overlap and the
premises of rules ent-super, ent-up, and sub-trans involve types not mentioned in the
conclusions.

62



3.7 Typechecking Algorithm

Figure 3.25 Algorithmic constraint entailment and subtyping.

∆ a P ∆; G ;β a P

ent-alg-main
∆; ∅; false a P

∆ a P

ent-alg-extends
∆; G à T ≤ U

∆; G ;β a T extendsU

ent-alg-env
R ∈ ∆ G implements I <V > ∈ sup(R) ∆;β; I à T ↑ G

∆; G ;β a T implements I <V >

ent-alg-iface1

∆;β; I à T ↑ I <V >
1 ∈ pol+(I) non-static(I)

∆; G ;β a T implements I <V >

ent-alg-iface2

1 ∈ pol+(I) I <V > Ei K non-static(I)

∆; G ;β a I <V > implementsK

ent-alg-impl
implementation<X> I <V ′> [N ] where P . . .

∆;β; I à T ↑ [U/X]N V = [U/X]V ′ [U/X]N implements I <V > /∈ G

∆; G ∪ {[U/X]N implements I <V >}; false a [U/X]P

∆; G ;β a T implements I <V >

∆;β; I à T ↑ U

ent-alg-lift
(∀i) ∆ q̀

′ Ti ≤ Ui β or
(
(∀i) if Ti 6= Ui then i ∈ pol−(I)

)
∆;β; I à T

n ↑ Un

∆ à T ≤ U ∆; G à T ≤ U

sub-alg-main
∆; ∅ à T ≤ U
∆ à T ≤ U

sub-alg-kernel
∆ q̀

′ T ≤ U
∆; G à T ≤ U

sub-alg-impl
∆; G ; true a T implementsK

∆; G à T ≤ K

Section 3.5.3 introduced an equivalent, quasi-algorithmic formulation of entailment
and subtyping. However, this formulation does not lead directly to an implementation
either: the conclusions of several rules overlap, the premises of rules ent-q-alg-up and
sub-q-alg-impl involve types not present in the conclusions, and the recursive invocation
of constraint entailment in rule ent-q-alg-impl may lead to nontermination. To illustrate
the danger of nontermination, consider the program in Figure 3.23. Searching for a
derivation of ∅ q D implements I quickly leads to infinite regress as demonstrated by
the failed attempt in Figure 3.24.

63



3 Formalization of CoreGI

Figure 3.25 shows an algorithmic formulation of constraint entailment and subtyping.
It is straightforward to derive an implementation from this formulation (see Figures B.3
and B.4 in the appendix).

� Algorithmic constraint entailment, written ∆ a P, asserts validity of constraint
P with respect to type environment ∆. The declarative specification of constraint
entailment is equivalent to the algorithmic formulation (to be proved shortly).

� The auxiliary relation ∆; G ;β a P for algorithmic constraint entailment estab-
lishes validity of constraint P with respect to type environment ∆, goal cache G ,
and boolean flag β. The goal cache G maintains the set of implementation con-
straints encountered while searching for a derivation. Rule ent-alg-impl avoids
nontermination by performing recursive invocations only on constraints not con-
tained in G . The boolean flag β specifies whether type Tj of some constraint
T implements I <V > may be lifted to a supertype without checking that the po-
larity of the jth implementing type of I is negative.

� The auxiliary relation ∆;β; I à T ↑ U lifts the types T of an implementation
constraint T implements I <V > to supertypes U under type environment ∆. The
job of β is the same as before.

� Algorithmic subtyping, written ∆ à T ≤ U , states that T is a subtype of U under
type environment ∆. The declarative specification of subtyping is equivalent to the
algorithmic formulation (to be proved shortly).

� The auxiliary relation ∆; G à T ≤ U states that T is a subtype of U under type
environment ∆ and goal cache G . Rule sub-alg-kernel falls back to the kernel
variant of quasi-algorithmic subtyping because the corresponding rules are already
syntax-directed and easily implementable (see Figure 3.16).

Following the rules in Figure 3.25 and the rules for quasi-algorithmic kernel subtyp-
ing in Figure 3.16, the implementation of a entailment and subtype checker becomes
straightforward (see Figures B.3 and B.4 in the appendix). Only two details need further
explanation:

� Rules ent-alg-env, ent-alg-iface1, ent-alg-iface2, and ent-alg-impl overlap.
The implementation simply tries the rules in order of their appearance until one
succeeds or all fail.

� Rule ent-alg-impl lifts types T to class types [U/X]N , which requires finding
a suitable substitution [U/X]. In other words, [U/X] must solve the matching
problem modulo kernel subtyping (∆, X, {T1 ≤? N1, . . . , Tn ≤? Nn}).

Matching modulo kernel subtyping is a special case of unification modulo kernel sub-
typing, which the forthcoming Section 3.7.3 needs anyway. In the following, the notation
ftv(∆) denotes the set

⋃
{ftv(P ) | P ∈ ∆} for some type environment ∆.

64



3.7 Typechecking Algorithm

Figure 3.26 Transformation of unification modulo kernel subtyping problems.

{Ti ≤? Ui} =⇒∆ {T ′i ≤? Ui}

unify-class
C 6= D class C<Y > extends M . . .

{C<T> ≤? D<U>} ∪̇S =⇒∆ {[T/Y ]M ≤? D<U>} ∪S

unify-iface-up
I 6= J interface I <X> [Y whereR] . . .

Ri = Y implementsK

{I <T> ≤? J<U>} ∪̇S =⇒∆ {[T/X]K ≤? J<U>} ∪S

unify-iface-object

{K ≤? G} ∪̇S =⇒∆ {Object ≤? G} ∪S

unify-var-env
X extendsT ∈ ∆

{X ≤? U} ∪̇S =⇒∆ {T ≤? G} ∪S

unify-var-object
X extendsT /∈ ∆ for all T

{X ≤? U} ∪̇S =⇒∆ {Object ≤? U} ∪S

Definition 3.21 (Unification modulo kernel subtyping). A unification problem modulo
kernel subtyping is a triple U =

(
∆, X, {T1 ≤? U1, . . . Tn ≤? Un}

)
such that ftv(∆)∩X = ∅

and Ti = Y (or Ui = Y ) implies Y /∈ X for all i ∈ [n]. A solution of U is a substitution
ϕ = [V/X] such that ∆ q̀

′ ϕTi ≤ ϕUi for all i = 1, . . . , n. A most-general solution of U
is a solution ϕ that is more general than any other solution ϕ′ of U; that is, there exists
a substitution ψ such that ϕ′ = ψϕ (where ψϕ denotes the composition of ψ and ϕ).

The relation {Ti ≤? Ui} =⇒∆ {T ′i ≤? Ui}, defined in Figure 3.26, transforms a set of

inequations {Ti ≤? Ui} into {T ′i ≤? Ui} by lifting one of the types Ti to a direct supertype
T ′i under type environment ∆. The notation M1 ∪̇M2 denotes the disjoint union of M1

and M2; that is, M1 ∪̇M2 is the same as M1∪M2 but additionally asserts M1∩M2 = ∅.
The metavariable S ranges over subtyping inequations {T1 ≤? U1, . . . Tn ≤? Un}.

Definition 3.22 (Algorithm for unification modulo kernel subtyping). The procedure
unify≤(U) solves a unification problem modulo kernel subtyping U = (∆, X,S ) by first
reducing S to all its normal forms with respect to =⇒∆. If syntactic unification [8]
succeeds for any of these normal forms and returns a solution ϕ, unify≤(U) also returns
ϕ. Otherwise, it fails.

Theorem 3.23 (Soundness and completeness of unify≤). Let U be a unification problem
modulo kernel subtyping. If unify≤(U) returns a substitution ϕ then ϕ is an idempotent,
most general solution of U (soundness). Moreover, if U has a solution, then unify≤(U)
does not fail (completeness).

65



3 Formalization of CoreGI

Proof. If U = (∆, X,S ) and S =⇒∆ S ′ then (∆, X,S ′) is a unification problem
modulo kernel subtyping with the same solution set as U. The claim now follows because
syntactic unification is sound and complete.

Theorem 3.24 (Termination of unify≤). Let U be a unification problem modulo kernel
subtyping. Then unify≤(U) terminates.

Proof. Holds because syntactic unification terminates and the reduction relation =⇒ is
terminating. See Section B.4.1 for details.

Equivalence of algorithmic and quasi-algorithmic entailment and subtyping follows
with the next two theorems.

Theorem 3.25. Algorithmic constraint entailment and subtyping are sound with respect
to quasi-algorithmic constraint entailment and subtyping.

(i) If ∆ a P then ∆ q P.

(ii) If ∆ à T ≤ U then ∆ q̀ T ≤ U .

Proof. See Section B.4.2.

Theorem 3.26. Algorithmic constraint entailment and subtyping are complete with re-
spect to quasi-algorithmic constraint entailment and subtyping.

(i) If ∆ q P then ∆ a P

(ii) If ∆ q̀ T ≤ U then ∆ à T ≤ U .

Proof. See Section B.4.3.

Equivalence between the algorithmic and the declarative formulations of constraint
entailment and subtyping then follows with Theorems 3.11 and 3.12. Algorithmic con-
straint entailment and subtyping also terminates:

Theorem 3.27 (Termination of algorithmic entailment and subtyping). The entailment
and subtyping algorithms induced by the rules in Figure 3.25 and by the rules for quasi-
algorithmic kernel subtyping in Figure 3.16 terminate.

Proof. The proof relies on well-formedness criterion wf-tenv-2 to show that the goal
cache G does not grow indefinitely. Section B.4.4 gives all the details of the proof,
including a precise definition of the entailment and subtyping algorithms.

3.7.2 Deciding Expression Typing

The declarative specification of the typing relation for expressions from Section 3.5.1
is not well-suited for implementing a typechecking algorithm. The main culprit is the
explicit subsumption rule exp-subsume that allows lifting the type of an expression to
some arbitrary supertype. This section presents a syntax-directed variant of expression
typing that is suitable for implementation and that computes minimal types.

66



3.7 Typechecking Algorithm

Algorithmic Method Typing

Algorithmic method typing compensates for the lack of an explicit subsumption rule in
the syntax-directed variant of expression typing (to be defined shortly) by integrating
subsumption into method typing. Furthermore, it infers those types which the declarative
specification of method typing must guess. Consider rule mtype-iface from Figure 3.8
on page 43. An application of this rule must guess all types Ti for i 6= j and all types
V . Even if mtype also had access to the types of the actual parameters of a method
invocation, this would, in general, not be enough to determine all T and all V .

Fortunately, well-formedness criteria wf-prog-2 and wf-tenv-6 make it possible to
define an algorithmic variant of mtype that infers those T and V that are needed to
compute the type (i.e., signature) of a method. Figure 3.27 defines the first part of the
inference machinery by extending algorithmic constraint entailment to entailment for
constraints with optional types.

A constraint with optional types has the form T ? implements I <U?>, where each T ?
i

and each U?
i is optional (i.e., either nil or a regular type). Entailment for such con-

straints has the form ∆ ?
a T ? implements I <U?> _ T implements I <U>. It takes a

constraint T ? implements I <U?> and completes it to T implements I <U> by inferring
types for those T ?

i and U?
i that are nil. Moreover, it ensures that the completed constraint

T implements I <U> holds under type environment ∆. The definition of entailment for
constraints with optional types relies on several auxiliaries:

� The auxiliary ∆; G ;β ?
a T ? implements I <U?> _ T implements I <U> is the

analogon to ∆; G ;β a T implementsU from Figure 3.25.

� The auxiliary ∆;β; I `?
a T ? ↑ U _ T is the analogon to ∆;β; I à T ↑ U from

Figure 3.25: it lifts those T ?
i 6= nil to a supertype Ui and completes those T ?

i = nil
to Ui.

� The auxiliary T ? ∼ T matches an optional type T ? with a regular type T .

Theorem 3.28. Entailment for constraints with optional types is sound with respect to
algorithmic entailment: if ∆ ?

a T
? implements I <W ?>_ R then ∆ a R.

Proof. The proof is by induction on the derivation given. See Section B.5.1 for details.

Theorem 3.29. Entailment for constraints with optional types is complete with respect
to algorithmic entailment: if ∆ a T implements I <V > and T ? V ? ∼ T V and T ?

i 6= nil

for i ∈ disp(I), then ∆ ?
a T ? implements I <V ?> _ U implements I <V > such that

∆ q̀
′ Ti ≤ Ui for all i and Ui = Ti for those i with T ?

i 6= nil or i /∈ pol−(I).

Proof. The claim follows with a case distinction on the last rule of the derivation given.
See Section B.5.2 for details.

Figure 3.29 formalizes algorithmic method typing, relying on the auxiliaries of Fig-
ure 3.28. The relation a-mtype∆(m,T, T ) determines the signature of non-static method
m when invoked on receiver and arguments with static types T and T , respectively. The

67



3 Formalization of CoreGI

Figure 3.27 Entailment for constraints with optional types.

∆ ?
a T

? implements I <U?>_ R ∆; G ;β ?
a T

? implements I <U?>_ R

ent-nil-alg-main

∆; ∅; false ?
a T

? implements I <U?>_ R

∆ ?
a T

? implements I <U?>_ R

ent-nil-alg-env

R ∈ ∆ G implements I <V > ∈ sup(R) ∆;β; I `?
a T

? ↑ G_ T (∀i) V ?
i ∼ Vi

∆; G ;β ?
a T

? implements I <V ?>_ T implements I <V >

ent-nil-alg-iface1

∆;β; I à T ↑ I <V > 1 ∈ pol+(I) non-static(I) (∀i) V ?
i ∼ Vi

∆; G ;β ?
a T implements I <V ?>_ T implements I <V >

ent-nil-alg-iface2

1 ∈ pol+(I) non-static(I) I <V > Ei J<U> (∀i) U?
i ∼ Ui

∆; G ;β ?
a I <V > implements J<U?>_ I <V > implements J<U>

ent-nil-alg-impl

implementation<X> I <V > [N ] where P . . . ∆;β; I `?
a T

? ↑ [U/X]N _ T

(∀i) V ?
i ∼ [U/X]Vi [U/X]N implements I <[U/X]V > /∈ G

∆; G ∪ {[U/X]N implements I <[U/X]V >}; false a [U/X]P

∆; G ;β ?
a T

? implements I <V ?>_ T implements I <[U/X]V >

∆;β; I `?
a T

? ↑ U _ V T ? ∼ T

ent-nil-alg-lift
(∀i) T ?

i = nil or ∆ q̀
′ T ?

i ≤ Ui
β or

(
(∀i) if T ?

i 6= Ui and T ?
i 6= nil then i ∈ pol−(I)

)
(∀i) if T ?

i = nil then Vi = Ui else Vi = T ?
i

∆;β; I `?
a T

?
n
↑ Un _ V

n

matches-nil

nil ∼ T
matches-equal

T ∼ T

68



3.7 Typechecking Algorithm

Figure 3.28 Auxiliaries for algorithmic method typing.

bound∆(T ) = N

bound
∆ q̀

′ T ≤ N if ∆ q̀
′ T ≤ N ′ then N Ec N

′

bound∆(T ) = N

pick-constrk
?

∆ R = R

pick-constr-nil
n ≥ 1 i ∈ [n]

pick-constrnil∆ {R
n} = Ri

pick-constr-non-nil
n ≥ 1 (∀i ∈ [n]) ∆ q̀

′ Tjk ≤ Tik
pick-constrk∆{T1 implementsK1, . . . , Tn implementsKn} = Tj implementsKj

sresolve∆;X(T , T ) = T

sresolve-non-empty
C = {Ti | i ∈ [n], Ui = X} C 6= ∅ T = mub∆(C )

sresolve∆;X(U
n
, T

n
) = T

sresolve-empty
{Ti | i ∈ [n], Ui = X} = ∅
sresolve∆;X(U

n
, T

n
) = ∅

mub∆(T ) = T

mub
V = {V | (∀T ∈ T ),∆ q̀

′ T ≤ V }
U = {V ∈ V | (∀V ′ ∈ V \ {V }) not ∆ q̀

′ V ′ ≤ V }
mub∆(T ) = U

69



3 Formalization of CoreGI

Figure 3.29 Algorithmic method typing.

a-mtype∆(m,T, T ) = <X>U x→ U where P

alg-mtype-class
bound∆(T ) = N a-mtypec(mc, N) = <X>U x→ U where P

a-mtype∆(mc, T, T ) = <X>U x→ U where P

alg-mtype-iface

interface I <Z ′> [Z
l
whereR ] where P { . . . rcsig }

rcsigj = receiver {m : msig} mi = mk msigk = <Y >U x→ U where Q

(∀i ∈ [l], i 6= j) sresolve∆;Zi(U, T ) = Vi sresolve∆;Zj (Zj U, T T ) = Vj
p? = (if U = Zi for some i ∈ [l] then i else nil)

W implements I <W ′> =
pick-constrp

?

∆ {V implements I <V ′′>
| (∀i ∈ [l]) if Vi = ∅ then V ?

i = nil

else define V ?
i such that

∆ q̀
′ V ′i ≤ V ?

i for some V ′i ∈ Vi,

∆ ?
a V

? implements I <nil>_ V implements I <V ′′>}
a-mtype∆(mi, T, T ) = [W/Z,W ′/Z ′]msigk

a-smtype∆(m,K[T ]) = <X>U x→ U where P

alg-mtype-static
interface I <X> [Y whereR ] where P {m : staticmsig . . . }

∆ a T implements I <U>

a-smtype∆(mi
k, I <U>[T ]) = [U/X, T/Y ]msigk

a-mtypec(m,N) = <X>U x→ U where P

alg-mtype-class-base
class C<X> extends N where P {T f m : mdef } mdef i = msig {e}

a-mtypec(mi,C<T>) = [T/X]msig

alg-mtype-class-super
class C<X> extends N where P {T f m : mdef }

m /∈ m a-mtypec(m, [T/X]N) = <X>U x→ U where P

a-mtypec(m,C<T>) = <X>U x→ U where P

70



3.7 Typechecking Algorithm

relation a-smtype∆(m, I <U>[T ]) determines the signature of a static interface method m
for interface I <U> and implementing types T . The definition of a-smtype is straightfor-
ward, the one for a-mtype requires several auxiliaries from Figure 3.28:

� a-mtypec(m,N) = <X>U x → U where P determines the signature of a class
method m by ascending the inheritance hierarchy starting at class N . The a-mtypec

relation is very similar to the method typing relation of Featherweight Generic
Java [96].

� bound∆(T ) = N computes the bound N of a type T with respect to a type envi-
ronment ∆.

� pick-constrk
?

∆ R = R takes a set R of R-constraints, a type environment ∆, and an
optional index k?. If k = nil and R 6= ∅, pick-constr returns an arbitrary constraint
R ∈ R. If k ∈ N and R 6= ∅, it returns a constraint R ∈ R such that the kth
implementing type of R is minimal with respect to the kth implementing types of
all other constraints in R.

� sresolve∆;X(U, T ) = T is the static analogon of resolve from Figure 3.5 on page 39.
It resolves implementing type X with respect to formal parameter types U , the
static types T of the actual parameters, and type environment ∆. Whereas resolve
returns an optional type (the least upper bound, if existing, of a set of class types),
sresolve returns a set of types (the minimal elements of the upper bounds of all
static parameter types contributing to the resolution of X).

� mub∆(T ) = U takes a set of types T and returns a set of types U containing the
minimal elements of the upper bounds of all types in T .

The definition of a-mtype for class methods relies on a-mtypec to find the signature of
the method in question. The definition of a-mtype for interface methods is more involved:

� First, a-mtype retrieves interface I and receiver rcsigj defining method m.

� Then, it uses sresolve to compute, for each implementing type variable Zi, a set Vi.
This set contains the minimal elements of the upper bounds of all static argument
types that contribute to the resolution of the ith implementing type.

� Next, it collects all implementation constraints for I that are entailed by ∆ and
that match the Vi pointwise. This step also infers unknown types.

� Finally, a-mtype uses pick-constrp
?

∆ to pick an element from the collected constraints.
To minimize the result type of the signature computed by a-mtype, p? 6= nil if, and
only if, the signature declared in the interface uses the pth implementing type as its
result type. (Criterion wf-iface-3 ensures that implementing types do not occur
nested inside the result type.)

Definition 3.30. A type environment ∆ is well-formed, written ` ∆ ok if, and only if,
∆ ` P ok for all P ∈ ∆.

71



3 Formalization of CoreGI

Figure 3.30 Algorithmic expression typing.

∆; Γ à e : T

exp-alg-var

∆; Γ à x : Γ(x)

exp-alg-field
∆; Γ à e : T bound∆(T ) = N fields(N) = U f

∆; Γ à e.fj : Uj

exp-alg-invoke
∆; Γ à e : T (∀i) ∆; Γ à ei : Ti a-mtype∆(m,T, T ) = <X>U x→ U where P

(∀i) ∆ à Ti ≤ [V/X]Ui ∆ a [V/X]P ∆ à V ok

∆; Γ à e.m<V >(e) : [V/X]U

exp-alg-invoke-static
a-smtype∆(m, I <W>[T ]) = <X>U x→ U where P

(∀i) ∆; Γ à ei : U ′i (∀i) ∆ à U
′
i ≤ [V/X]Ui ∆ a [V/X]P ∆ à T , V ok

∆; Γ à I <W>[T ].m<V >(e) : [V/X]U

exp-alg-new
(∀i) ∆; Γ à ei : Ti ∆ à N ok fields(N) = U f (∀i) ∆ à Ti ≤ Ui

∆; Γ à newN (e) : N

exp-alg-cast
∆ à T ok ∆; Γ à e : U

∆; Γ à (T ) e : T

Theorem 3.31 (Soundness of algorithmic method typing). Assume that ` ∆ ok and
∆ ` T, T ok. If a-mtype∆(m,T, T ) = <X>U x→ U where P then there exists a type T ′

such that ∆ ` T ≤ T ′ and mtype∆(m,T ′) = <X>U x→ U where P.

Proof. See Section B.5.3.

Theorem 3.32 (Completeness of algorithmic method typing). Assume mtype∆(m,T ) =
<X>U x

n → U where P and let ϕ be a substitution [V/X]. Furthermore, suppose ` ∆ ok
and ∆ ` T ′ ok. If ∆ ` T ′ ≤ T and ∆ ` Ti ≤ ϕUi for all i ∈ [n] and ∆  ϕP, then
a-mtype∆(m,T ′, T ) = <X>U ′ x

n → U ′ where P such that ∆ ` Ti ≤ ϕU ′i for all i ∈ [n]
and ∆ ` ϕU ′ ≤ ϕU .

Proof. See Section B.5.4.

Algorithmic Expression Typing

With algorithmic method typing in hand, the definition of an algorithm for typechecking
expressions is straightforward and follows closely the approach taken by Featherweight

72



3.7 Typechecking Algorithm

Generic Java [96]. Figure 3.30 presents the relation ∆; Γ à e : T that assigns type
T to expression e under type environment ∆ and variable environment Γ. The rules
defining the relation are syntax-directed and easy to implement. They rely on algorithmic
formulations of the well-formedness judgments from Figure 3.7 on 42:

Definition 3.33. The relations ∆ à T ok and ∆ à P ok are defined analogously to the
relations ∆ ` T ok and ∆ ` P ok, respectively, replacing ` with à and  with a.

Algorithmic expression typing is equivalent to the declarative specification of expression
typing in Figure 3.9.

Definition 3.34. A variable environment Γ is well-formed under type environment ∆,
written ∆ ` Γ ok, if, and only if, ∆ ` T : ok for all x : T occurring in Γ.

Theorem 3.35 (Soundness of algorithmic expression typing). Suppose ` ∆ ok and ∆ `
Γ ok. If ∆; Γ à e : T then ∆; Γ ` e : T .

Proof. The proof is by induction on the derivation of ∆; Γ à e : T . See Section B.5.5 for
details.

Theorem 3.36 (Completeness of algorithmic expression typing). Assume ` ∆ ok and
∆ ` Γ ok. If ∆; Γ ` e : T then ∆; Γ à e : U such that ∆ ` U ≤ T .

Proof. The proof is by induction on the derivation of ∆; Γ ` e : T . See Section B.5.6 for
details.

Algorithmic expression typing also terminates.

Theorem 3.37. The algorithm induced by the rules in Figures 3.27, 3.28, 3.29, and 3.30
terminates.

Proof. See Section B.5.7.

3.7.3 Deciding Program Typing

Given the algorithms for constraint entailment, subtyping, and expression typing, im-
plementing a typechecker for CoreGI programs is almost straightforward, only the imple-
mentation of well-formedness criteria wf-prog-2, wf-prog-3, wf-prog-4, wf-tenv-2,
and wf-tenv-6(2) poses a challenge.

Checking wf-prog-2, wf-prog-3, wf-prog-4, wf-tenv-6(2)

A direct implementation of these criteria is not possible because their definition involves
universal quantification over substitutions subject to subtype or greatest lower bound
conditions.

Definition 3.38 (Unification modulo greatest lower bounds). A unification problem mod-
ulo greatest lower bounds is a triple L =

(
∆, X, {G1 u? H1, . . . Gn u? Hn}

)
such that

ftv(∆) ∩ X = ∅ and Gi = Y (or Hi = Y ) implies Y /∈ X for all i ∈ [n]. A solution of
L is a substitution ϕ = [V/X] such that ∆ ` ϕTi u ϕUi exists for all i = 1, . . . , n. A

73



3 Formalization of CoreGI

most-general solution of L is a solution that is more general than any other solution of
L (see Definition 3.21).

Obviously, a solution of (∆, X, {G11 u? G12, . . . , Gn1 u? Gn2}) also solves the unifica-
tion problem modulo kernel subtyping (∆, X, {G1i1 ≤? G1j1 , . . . , Gnin ≤? Gnjn}) for some
set of pairs {(i1, j1), . . . , (in, jn)} where (ik, jk) ∈ {(1, 2), (2, 1)} for all k ∈ [n]. Thus, a
naive algorithm for solving unification modulo greatest lower bounds simply enumerates
all of these unification problems modulo kernel subtyping and checks whether any of
them has a solution ϕ. If so, it returns ϕ and fails otherwise. Call this naive algorithm
unifyu.

Theorem 3.39 (Soundness, completeness, and termination of unifyu). Let L be a unifi-
cation problem modulo greatest lower bounds. If L has a solution then unifyu(L) returns
an idempotent, most general solution of L. If L does not have a solution, unifyu(L)
terminates with a failure.

Proof. See Section B.6.1.

The following alternative formulations of wf-prog-2, wf-prog-3, wf-prog-4, and
wf-tenv-6(2) are straightforward to implement.

wf-prog-2′ For each pair of disjoint implementation definitions

implementation<X> I <T> [M ] where P . . .

implementation<Y > I <U> [N ] where Q . . .

with X ∩ Y = ∅ and unifyu(∅, X Y , {Mi u? Ni | i ∈ disp(I)}) = ϕ, it holds that
ϕT = ϕU and that ϕMj = ϕNj for all j /∈ disp(I).

wf-prog-3′ For each pair of disjoint implementation definitions

implementation<X> I <T> [N
n

] where P . . .

implementation<X ′> I <T ′> [N ′
n

] where P ′ . . .

with X ∩ X ′ = ∅ and unifyu(∅, X X ′, {Ni u? N ′i | i ∈ [n]}) = ϕ, there exists an
implementation definition

implementation<Y > I <U> [M ] where Q . . .

and a substitution [W/Y ] such that ∅ ` ϕN u ϕN ′ = [W/Y ]M .

wf-prog-4′ For each pair of disjoint implementation definitions

implementation<X> I <T> [M ] where P . . .

implementation<Y > I <U> [N ] where Q . . .

with X ∩ X ′ = ∅ and unify≤(∅, X Y , {Mi ≤? Ni | i ∈ [n]}) = ϕ, it holds that

for all P ∈ ϕP either {Q ∈ ϕQ}  P or P ∈ ϕQ ∪ sup(ϕQ) ∪ {T extendsU |
T extendsU ′ ∈ ϕQ, {Q ∈ ϕQ} q̀

′ U ′ ≤ U}.

74



3.7 Typechecking Algorithm

wf-tenv-6′

1. Unchanged from criterion wf-tenv-6.

2. For each constraint and each implementation definition

G implements I <T> ∈ sup(∆)

implementation<X> I <W> [N ] where P . . .

with X ∩ (
⋃
{ftv(S) | R ∈ ∆, S ∈ sup(R)}) = ∅ and unifyu(∆, X, {Gi u? Ni |

i ∈ disp(I)}) = ϕ, it holds that T = ϕW and Gj = ϕNj for all j /∈ disp(I) ∪
pol−(I).

Theorem 3.40. Criteria wf-prog-2′, wf-prog-3′, and wf-tenv-6′ are equivalent to
their counterparts from Section 3.5.3. Criterion wf-prog-4′ is sound with respect to
wf-prog-4 (i.e., wf-prog-4′ implies wf-prog-4).

Proof. See Section B.6.2.

It is an open question whether there exists a complete algorithm for checking well-
formedness criterion wf-prog-4.

Checking wf-tenv-2

This criterion requires the closure of a finite set of types to be finite. Thanks to Vi-
roli [232], there is an equivalent but syntactic characterization of this property. Roughly
speaking, Viroli’s approach defines a dependency graph between the formal type pa-
rameters of all classes such that finitary closure of a finite set of types is equivalent
to the absence of certain cycles in the dependency graph. Section B.7 recasts Viroli’s
approach and shows that it leads to an equivalent and implementable formulation of
well-formedness criterion wf-tenv-2.

Concluding Remarks

This chapter formalized CoreGI, a small calculus capturing most aspects of the general-
ized interface mechanism of JavaGI. The formalization included the definition of CoreGI’s
dynamic semantics and a declarative specification of its static semantics. Two impor-
tant properties hold for a well-typed CoreGI program: evaluation is deterministic and
evaluation cannot get stuck if all cast operations succeed.

Besides proving these properties, the chapter also demonstrated how to typecheck
CoreGI programs. To this end, algorithmic formulations of constraint entailment, sub-
typing, method typing, expression typing, and program typing were presented.

75





4
Translation

The preceding chapter formalized the static and the dynamic semantics of CoreGI, a
small calculus capturing most aspects of the full JavaGI language. Such a formalization
is important to gain assurance that JavaGI programs per se do not behave in unexpected
ways. However, JavaGI programs are not executed by some custom interpreter but com-
piled to standard Java byte code and executed on the Java Virtual Machine [125]. Thus,
it is also important to verify that the compilation step does not change the behavior
of JavaGI programs. To this end, the present chapter formalizes a translation from a
significant subset of CoreGI to a slightly extended version of Featherweight Java [96].
It suffices to consider such a source-to-source translation because the main challenge in
the implementation of a compiler for JavaGI is the mapping from JavaGI to plain Java
constructs. The actual generation of byte code is standard.

Chapter Outline. The chapter is divided into five sections:

� Section 4.1 introduces CoreGI[, the source language of the translation. The section
defines the syntax and the dynamic semantics of CoreGI[ but defers the definition
of its static semantics until Section 4.3.

� Section 4.2 formalizes iFJ, the target language of the translation. The formalization
includes syntax, dynamic semantics, static semantics, and a proof of type sound-
ness.

� Section 4.3 defines a type-directed translation from CoreGI[ to iFJ, which also serves
as the definition of the static semantics of CoreGI[.

� Section 4.4 proves that the translation from CoreGI[ to iFJ preserves the static and
the dynamic semantics of CoreGI[.

� Section 4.5 shows that CoreGI[ is indeed a subset of CoreGI, a fact that implies type
soundness and determinacy of evaluation for CoreGI[.

77



4 Translation

Figure 4.1 Syntax of CoreGI[.

prog ::= def e
def ::= cdef | idef | impl

cdef ::= class C extends N {T f m : mdef }
idef ::= interface I extends I {m : msig }
impl ::= implementation I [N ] {mdef }
msig ::= T x→ T
mdef ::= msig {e}
M,N ::= C | Object

T,U, V,W ::= N | I
d, e ::= x | e.f | e.m(e) | newN (e) | (T ) e

C,D ∈ ClassName I, J ∈ IfaceName
m ∈ MethodName f, g ∈ FieldName x, y, z ∈ VarName

4.1 Source Language: CoreGI[

To keep the formal setup within reasonable size and complexity limits, the translation
presented in this chapter considers only a simplified version of CoreGI as its source lan-
guage. The source language, dubbed CoreGI[, does not support type variables, con-
straints, explicit implementing types, multi-headed interfaces, static interface methods,
and covariant return types because these features do not pose significant challenges to
the full translation from JavaGI to Java. However, CoreGI[ supports retroactive interface
implementations, which are the most difficult part of the full translation.

The definition of CoreGI[ in this section comprises only the syntax (Section 4.1.1) and
the dynamic semantics (Section 4.1.2). Section 4.3 completes the definition by specifying
a static semantics, which is interweaved with the translation from CoreGI[ to iFJ.

4.1.1 Syntax

Figure 4.1 defines the abstract syntax of CoreGI[. As in Chapter 3, overbar notation
denotes sequencing (see Definition 3.1) and the various kinds of identifiers are drawn
from pairwise disjoint and countably infinite sets of class names (ranged over by C,D),
interface names (ranged over by I, J), method names (ranged over by m), field names
(ranged over by f, g), and variable names (ranged over by x, y, z). CoreGI[ shares the
identifier sets for class, interface, method, field, and variable names with CoreGI.

A CoreGI[ program prog consists of a sequence of definitions def followed by a “main”
expression e. A definition is either a class, interface, or implementation definition.

Each class C has an explicit superclass N , where N is a class type (either an instanti-
ated class or Object). If the superclass is Object , we sometimes omit the extends clause
altogether. The predefined class Object does not have a superclass and it does not define
any fields or methods. The body of a class contains a sequence of field definitions T f ,
where T is a type and f the name of the field, followed by a sequence of method defini-

78



4.1 Source Language: CoreGI [

Figure 4.2 Class and interface inheritance for CoreGI[.

N E[c M

inh-class-refl[

N E[c N

inh-class-super[

class C extends M . . . M E[c N

C E[c N

I E[i J

inh-iface-refl[

I E[i I

inh-iface-super[

interface I extends J . . . Ji E
[
i I
′

I E[i I
′

tions m : mdef , where m is the method name and mdef specifies the signature msig and
the body expression e of the method. The signature of a method consists of arguments
x together with their types T and the result type T .

The definition of an interface I specifies its superinterfaces J through an extends
clause, which we omit if J = •. An interface definition also lists the names and the
signatures of the methods supported by the interface. For the names of interface methods
the following conventions apply:

Convention 4.1 (Disjoint namespaces for class and interface methods). The namespaces
for class and interface methods are disjoint. At some points, mc or mi explicitly denotes
the name of a class or interface method, respectively.

Convention 4.2 (Globally unique names of interface methods). The names of interface
methods are globally unique; that is, if some interface defines a method m then no other
interface defines a method with the same name m.

A retroactive implementation definition impl specifies an implementation of interface
I for implementing type N . The body of an implementation contains definitions for the
methods of I. These definitions are anonymous because they are matched by position
against the methods declared in I.

MetavariablesM,N range over class types, whereas full types (ranged over by T,U, V,W )
also include interface types. Expressions d, e include variables, field accesses, method
calls, object allocations, and casts. By convention, syntactic constructs that differ only
in the names of bound expression variables are interchangeable in all contexts [176].

4.1.2 Dynamic Semantics

Dynamic method lookup in CoreGI[ depends on the class inheritance relation N E[c M ,
which expresses that class type N is a subclass of type M . Figure 4.2 defines this relation
together with the inheritance relation on interfaces I E[i J , which expresses that interface

79



4 Translation

Figure 4.3 Dynamic method lookup for CoreGI[.

getmdef[(m,N) = mdef

dyn-mdef-class-base[

class C extends N {T f m : mdef }
getmdef[(mj , C) = mdef j

dyn-mdef-class-super[

class C extends N {T f m : mdef }
mc /∈ m getmdef[(mc, N) = mdef

getmdef[(mc, C) = mdef

dyn-mdef-iface[

interface I extends I {m : msig }
least-impl[{implementation I [M ] . . . | N E[c M}

= implementation I [M ] {m : mdef }
getmdef[(mk, N) = mdef k

least-impl[{impl} = impl

least-impl[

impl i = implementation I [Ni ] . . . n ≥ 1 (∀i ∈ [n]) Nk E
[
c Ni

least-impl[{impl1, . . . , impln} = implk

type I is a subinterface of J . The definition of E[c and E[i is straightforward and similar
to that of the corresponding relations Ec and Ei for CoreGI as defined in Figure 3.16.

Figure 4.3 defines dynamic method lookup for CoreGI[. The getmdef[(m,N) rela-
tion searches for a definition of method m for receiver of run-time type N . If m
is a class method, getmdef[ first retrieves the definition of m directly from N (rule
dyn-mdef-class-base[). If this fails, getmdef[ continues searching in N ’s superclass (rule
dyn-mdef-class-super[). The search stops when it reaches Object because there is no
matching rule. Rule dyn-mdef-iface[ handles the case where m is not a class but an
interface method. The rule first collects all implementations whose implementing types
are superclasses of N . Among these implementations, the rule then chooses the minimal
one by using the least-impl[ auxiliary, which Figure 4.3 defines as well.

To properly support run-time casts, CoreGI[’s dynamic semantics makes use of the
subtyping relation defined in Figure 4.4. As in Chapter 3, the figure uses the notation
ξ? to denote an optional construct: ξ? is either a regular ξ or the special symbol nil.
The relation `[′ T ≤ U is the kernel of CoreGI[ subtyping. The full subtyping relation
`[ T ≤ U  I? establishes a subtyping relationship between types T and U . The “ I?”
part specifies whether this relationship depends on a retroactive interface implementation;
it is only relevant for the translation given in Section 4.3. Other places simply omit this
part and use `[ T ≤ U to abbreviate `[ T ≤ U  I? for some fresh metavariable I.

Figure 4.5 specifies the dynamic semantics of CoreGI[. The definition of values (ranged
over by v, w) and of call-by-value evaluation contexts (denoted by E) is standard. The

80



4.1 Source Language: CoreGI [

Figure 4.4 Subtyping for CoreGI[.

`[′ T ≤ U

sub-object[

`[′ T ≤ Object

sub-class[

C E[c C
′

`[′ C ≤ C ′

sub-iface[

I E[i I
′

`[′ I ≤ I ′

`[ T ≤ U  I?

sub-kernel[

`[′ T ≤ U
`[ T ≤ U  nil

sub-impl[

`[′ T ≤ N implementation I [N ] . . .

`[ T ≤ I  I

Figure 4.5 Dynamic semantics of CoreGI[.

Values and evaluation contexts

v, w ::= newN (v)
E ::= � | E .f | E .m(e) | v.m(v, E , e) | newN (v, E , e) | (T ) E

Top-level evaluation: e 7−→[ e′

dyn-field[

fields[(N) = T f

newN (v).fi 7−→[ vi

dyn-invoke[

v = newN (w)

getmdef[(m,N) = T x→ T {e}
v.m(v) 7−→[ [v/this, v/x]e

dyn-cast[

v = newN (v)

`[ N ≤ T
(T ) v 7−→[ v

Proper evaluation: e −→[ e′

dyn-context[

e 7−→[ e′

E [e] −→[ E [e′]

fields[(N) = T f

fields-object[

fields[(Object) = •

fields-class[

class C extends N {T f . . . } fields[(N) = T ′ f ′

fields[(C) = T ′ f ′, T f

81



4 Translation

Figure 4.6 Syntax of iFJ.

prog ::= def e
def ::= cdef | idef

cdef ::= class C extends N implements J {T f m : mdef }
idef ::= interface I extends J {m : msig }

msig ::= T x→ T
mdef ::= msig { e }
M,N ::= C | Object

T,U, V,W ::= N | I
d, e ::= x | e.f | e.m(e) | newN(e) | cast(T, e)

| getdict(I, e) | letT x = e in e

C,D ∈ ClassNameiFJ I, J ∈ IfaceNameiFJ
m ∈ MethodNameiFJ f, g ∈ FieldNameiFJ x, y, z ∈ VarNameiFJ

top-level evaluation relation e 7−→[ e′ reduces an expression e at the top level to e′. Rule
dyn-field[ deals with field accesses newN (v).fi . The auxiliary relation fields[(N) = T f ,
also defined in Figure 4.5, returns the fields declared by the superclasses of N and N
itself. CoreGI[ assumes that the ith constructor argument vi corresponds to the field
Ti fi, so newN (v).fi reduces to vi. Rule dyn-invoke[ handles method invocations, using
the notation [e/x] to denote the capture-avoiding expression substitution that replaces
variables xi with expressions ei. Finally, rule dyn-cast[ allows casts from newN (v) to
type T if N is a subtype of T .

The proper evaluation relation e −→ e′ reduces an expression e to e′ by using a suitable
evaluation context E together with the top-level evaluation relation 7−→[.

Definition 4.3. The notation −→[+ denotes the transitive closure of −→[, whereas −→[∗

denotes the reflexive and transitive closure of −→[.

4.2 Target Language: iFJ

The target language of the translation, dubbed iFJ, extends Featherweight Java (FJ [96])
with interfaces, let-expressions, and a primitive operation simulating CoreGI[’s lookup
of retroactive implementation definitions.1 The following subsections define iFJ’s syntax
(Section 4.2.1), its dynamic semantics (Section 4.2.2), and its static semantics (Sec-
tion 4.2.3). Furthermore, Section 4.2.4 proves type soundness for iFJ.

4.2.1 Syntax

Figure 4.6 defines the abstract syntax of iFJ. To facilitate the distinction between iFJ
and CoreGI[ constructs, the syntax of iFJ uses a sans-serif font to typeset keywords.
Again, overbar notation denotes sequencing (see Definition 3.1) and the various kinds

1For full JavaGI, the run-time system provides this primitive operation.

82



4.2 Target Language: iFJ

of identifiers are drawn from pairwise disjoint and countable infinite sets of class names
(ranged over by C,D), interface names (ranged over by I, J), method names (ranged over
by m), field names (ranged over by f, g), and variable names (ranged over by x, y, z).

The translation from CoreGI[ to iFJ requires several designated class, interface, and
field names. The definition of iFJ provides these names as follows:

� For each CoreGI[ interface name I ∈ IfaceName and each CoreGI[ class typeN , there
exists an iFJ class name DictI,N ∈ ClassNameiFJ denoting the name of a dictionary
class for I and N .2 Dictionary classes result as the translation of retroactive
implementation definitions.

� For each CoreGI[ interface name I ∈ IfaceName, there exists an iFJ interface name
DictI ∈ IfaceNameiFJ denoting the name of a dictionary interface for I. Each
dictionary class DictI,N implements the corresponding dictionary interface DictI .

� For each CoreGI[ interface name I ∈ IfaceName, there exists an iFJ class name
WrapI ∈ ClassNameiFJ denoting the name of a wrapper class for I. The translation
from CoreGI[ to iFJ uses wrapper classes as adapters for classes that implement the
corresponding interface retroactively in CoreGI[.

� There exists a field name wrapped ∈ FieldNameiFJ.

The designated names just introduced are subject to the following convention:

Convention 4.4. The namespaces for regular classes, dictionary classes, and wrapper
classes are pairwise disjoint. Similarly, the namespaces for regular interfaces and dictio-
nary interfaces are disjoint. Furthermore, dictionary classes, dictionary interfaces, and
wrapper classes do not appear in stand-alone iFJ programs; they only occur as the result
of the translation from CoreGI[ to iFJ. Similarly, the field name wrapped is reserved for
the translation and appears only in wrapper classes.

An iFJ program prog consists of a sequence of definitions def and a “main expression”
e. A definition is either a class definition cdef or an interface definition idef . Class
definitions are similar to those in FJ, except that iFJ classes also support an implements
clause specifying the interfaces implemented by the class. The predefined class Object
does not have a superclass and contains no fields and methods. The definition of an
interface I specifies its superinterfaces J through an extends clause. Moreover, it also
lists the names and the signatures of the methods supported by the interface. We often
omit an extends clause of a class whose superclass is Object. Moreover, we also omit
implements clauses if the sequence of superinterfaces is empty.

A method signature msig specifies that a method accepts parameters x of types T and
produces a result of type T . A method definition mdef pairs a method signature msig
with a body expression e.

Metavariables M,N range over class types, full types (ranged over by T,U, V,W )
also comprise interface types. Expressions d, e include variables, field access, method
calls, object allocations, and casts, just as FJ does. However, the syntax of casts is

2The term “dictionary” goes back to early work on type classes in Haskell [236] and is well-established
in the Haskell community.

83



4 Translation

Figure 4.7 Subtyping for iFJ.

`iFJ T ≤ U

sub-refl-ifj

`iFJ T ≤ T
sub-object-ifj

`iFJ T ≤ Object

sub-trans-ifj
`iFJ T ≤ U `iFJ U ≤ V

`iFJ T ≤ V
sub-class-ifj
class C extends N . . .

`iFJ C ≤ N

sub-class-iface-ifj
class C extends N implements J . . .

`iFJ C ≤ Ji

sub-iface-ifj
interface I extends J . . .

`iFJ I ≤ Ji

different than in FJ to emphasize that their dynamic behavior differs from that in FJ
(see Section 4.2.2). In addition to the expression forms of FJ, the iFJ calculus supports
a getdict(I, e) construct that simulates CoreGI[’s lookup of retroactive implementation
definitions. Moreover, the expression form letT x = e1 in e2 binds the result of e1 to x
within e2. The type T prescribes to type of e1 and x.

As for CoreGI[, syntactic constructs that differ only in the names of bound expression
variables are interchangeable in all contexts [176]. However, Conventions 4.1 and 4.2 do
not apply to iFJ programs; that is, the namespaces of class and interface methods may
overlap, and names of interface methods do not need to be globally unique.

4.2.2 Dynamic Semantics

The dynamic semantics of iFJ depends on the subtyping relation defined in Figure 4.7.
The judgment `iFJ T ≤ U asserts that T is a subtype of U with respect to the se-
mantics of iFJ, as indicated by the subscript “iFJ”. The subtyping rules extend those of
FJ with support for interfaces (rules sub-class-iface-ifj and sub-iface-ifj) and a rule
sub-object-ifj stating that Object is a supertype of any other type, including interface
types. Subtyping in iFJ is reflexive and transitive, as usual.

Figure 4.8 defines several auxiliary relations:

� fieldsiFJ(N) returns the fields declared by the superclasses of N and N itself.

� getmdef iFJ(m,C) returns the definition of method m as defined by class C or one
of its superclasses.

� mindictiFJM selects a minimal class from a set M of dictionary classes. If there
exists no minimal class then mindictiFJM is undefined.

� unwrap(v) removes all wrappers at the top level of v. The metavariables v and w
range over values as defined in Figure 4.9.

84



4.2 Target Language: iFJ

Figure 4.8 Auxiliaries for iFJ’s dynamic semantics.

fieldsiFJ(N) = T f

fields-object-ifj

fieldsiFJ(Object) = •

fields-class-ifj
class C extends N implements J {T f . . . }

fieldsiFJ(N) = U g

fieldsiFJ(C) = U g, T f

getmdef iFJ(m,C) = msig

dyn-mdef-class-base-ifj
class C extends N implements J { . . . m : mdef }

getmdef iFJ(mk, C) = mdefk

dyn-mdef-class-super-ifj
class C extends N implements J { . . . m : mdef }

m /∈ m getmdef iFJ(m,N) = mdef

getmdef iFJ(m,C) = mdef

mindictiFJ{class DictI,N . . .} = N

mindict-ifj
(∀i ∈ [n]) `iFJ Nk ≤ Ni

mindictiFJ{class DictI,N1 . . . , . . . , class DictI,Nn . . .} = DictI,Nk

unwrap(v) = v

unwrap-base-ifj
N 6= WrapI for any I

unwrap(newN(v)) = newN(v)

unwrap-step-ifj
unwrap(v) = w

unwrap(new WrapI(v)) = w

85



4 Translation

Figure 4.9 Dynamic semantics of iFJ.

Values and evaluation contexts

v, w ::= newN(v)
E ::= � | E .f | E .m(e) | v.m(v, E , e) | newN(v, E , e)

| cast(T, E) | getdict(I, E) | letT x = E in e

Top-level evaluation: e 7−→iFJ e
′

dyn-field-ifj
fieldsiFJ(N) = U f

newN(v).fi 7−→iFJ vi

dyn-invoke-ifj
v = newN(w) getmdef iFJ(m,N) = T x→ T {e}

v.m(v) 7−→iFJ [v/this, v/x]e

dyn-cast-ifj
unwrap(v) = newN(v) `iFJ N ≤ T

cast(T, v) 7−→iFJ newN(v)

dyn-cast-wrap-ifj
unwrap(v) = newN(v) not `iFJ N ≤ I

class DictI,M . . . `iFJ N ≤M
cast(I, v) 7−→iFJ new WrapI(newN(v))

dyn-getdict-ifj
unwrap(v) = newN(v)

mindictiFJ{class DictI,N
′
. . . |`iFJ N ≤ N ′} = M

getdict(I, v) 7−→iFJ newM()

dyn-let-ifj

letT x = v in e 7−→iFJ [v/x]e

Proper evaluation: e −→iFJ e
′

dyn-context-ifj
e 7−→iFJ e

′

E [e] −→iFJ E [e′]

Besides the syntax of values, Figure 4.9 also defines call-by-value evaluation contexts
(denoted by E), the top-level evaluation relation (written e 7−→iFJ e

′), and the proper
evaluation relation (written e −→iFJ e

′). The definition of the latter is simple because it
just selects an appropriate evaluation context and delegates the rest of the work to the
top-level evaluation relation.

At the top level of an expression, the 7−→iFJ relation reduces field accesses, method in-
vocations, and let-expressions in the obvious way. (As before, the notation [e/x] denotes
the capture-avoiding expression substitution that replaces variables xi with expressions
ei.) The rules for expressions of the form cast(T, v) and getdict(I, v) are slightly more
involved. All three rules (dyn-cast-ifj, dyn-cast-wrap-ifj, dyn-getdict-ifj) first re-
move the wrappers at the top level of v to access the true run-time type N of v. Rule
dyn-getdict-ifj then uses mindictiFJ to reduce getdict(I, v) to the minimal dictionary
class DictI,N

′
with `iFJ N ≤ N ′. There are two rules for casts of the form cast(T, v). The

86



4.2 Target Language: iFJ

Figure 4.10 Method types for iFJ.

mtypeiFJ(m,T ) = msig

mtype-class-base-ifj

class C extends N implements J { . . . m : msig {e} }
mtypeiFJ(mk, C) = msigk

mtype-class-super-ifj
class C extends N implements J { . . . m : mdef }

m /∈ m mtypeiFJ(m,N) = msig

mtypeiFJ(m,C) = msig

mtype-iface-base-ifj
interface I extends J {m : msig }

mtypeiFJ(mk, I) = msigk

mtype-iface-super-ifj
interface I extends J {m : msig }
m /∈ m mtypeiFJ(m,Ji) = msig

mtypeiFJ(m, I) = msig

first, rule dyn-cast-ifj, handles the case where N is indeed a subtype of T . The second,
rule dyn-cast-wrap-ifj, is only relevant to iFJ programs in the image of the translation
from CoreGI[ to iFJ because it assumes the existence of dictionary and wrapper classes
(see Convention 4.4). The rule applies if T is an interface type I such that N is not a
subtype of I according to iFJ’s subtyping rules, but where a retroactive interface imple-
mentation established a subtyping relationship between N and I in the original CoreGI[

program. Such a retroactive interface implementation translates to a dictionary class
DictI,M with `iFJ N ≤ M , as reflected in the premise of the rule. The result of the cast
carries a fresh wrapper for I to compensate for the missing iFJ-subtyping relationship
between N and I.

Definition 4.5. The notation −→+
iFJ denotes the transitive closure of −→iFJ, whereas

−→∗iFJ denotes the reflexive and transitive closure of −→iFJ.

4.2.3 Static Semantics

The relation mtypeiFJ(m,T ) = msig, defined in Figure 4.10, looks up the signature of
method m for receiver type T . It extends FJ’s mtype relation with support for in-
terfaces in the obvious way. The choice of superinterface Ji in the premise of rule
mtype-iface-super-ifj is deterministic because the typing rules for programs, to be de-
fined shortly, ensure that two distinct superinterfaces do not define methods with identical
names.

As in Chapter 3, a variable environment Γ is a finite mapping from variables to types.
The notation Γ, x : T extends Γ with a mapping from x to T , assuming that x is not
already bound in Γ. The notation Γ(x) denotes the type T such that Γ maps x to T . It
assumes that Γ contains such a binding for x.

87



4 Translation

Figure 4.11 Expression typing for iFJ.

Γ `iFJ e : T

exp-var-ifj

Γ `iFJ x : Γ(x)

exp-field-ifj
Γ `iFJ e : C fieldsiFJ(C) = U f

Γ `iFJ e.fj : Uj

exp-invoke-ifj
Γ `iFJ e : T mtypeiFJ(m,T ) = U x→ U

(∀i) Γ `iFJ ei : Ti (∀i) `iFJ Ti ≤ Ui
Γ `iFJ e.m(e) : U

exp-new-ifj
(∀i) Γ `iFJ ei : Ti
fieldsiFJ(N) = U f
(∀i) `iFJ Ti ≤ Ui

Γ `iFJ newN(e) : N

exp-cast-ifj
Γ `iFJ e : U

Γ `iFJ cast(T, e) : T

exp-getdict-ifj
Γ `iFJ e : T

Γ `iFJ getdict(I, e) : DictI

exp-let-ifj
Γ `iFJ e1 : T ′ `iFJ T ′ ≤ T Γ, x : T `iFJ e2 : U

letT x = e1 in e2 : U

Figure 4.11 defines the expression typing judgment Γ `iFJ e : T , which states that
under variable environment Γ the expression e has type T . The rules for variables, fields,
method calls, and object allocations are identical to the corresponding rules for FJ.
Unlike in FJ, there is only one rule for casts because FJ’s distinction between upcasts,
downcasts, and stupid casts is not relevant to iFJ. The typing rules for dictionary lookup
and let-expressions are straightforward.

Figure 4.12 specifies the typing rules for iFJ programs, including several auxiliary re-
lations.

� The relation override-okiFJ(m : msig , C) asserts that class C correctly overrides
method m : msig (see rule ok-override-ifj). Method overriding requires invariant
return types as in FJ.

� The relation `iFJ m : mdef ok inC asserts that the definition mdef of method m in
class C is well-formed (see rule ok-mdef-in-class-ifj).

� The relation `iFJ C implements I asserts that class C correctly implements all
methods required by interface I (see rule impl-iface-ifj).

� The relations `iFJ cdef ok and `iFJ idef ok assert well-formedness of class and inter-
face definitions, respectively (see rules ok-cdef-ifj and ok-idef-ifj, respectively).
To keep things simple, well-formedness for interfaces requires that an interface does
not override any method defined in one of its superinterfaces and that an interface

88



4.2 Target Language: iFJ

Figure 4.12 Program typing for iFJ.

override-okiFJ(m : msig, C)

ok-override-ifj
class C extends N . . . if mtypeiFJ(m,N) = msig′ then msig = msig′

override-okiFJ(m : msig, C)

`iFJ m : mdef ok inC

ok-mdef-in-class-ifj
this : C, x : T `iFJ e : U ′ `iFJ U ′ ≤ U override-okiFJ(m : T x→ U,C)

`iFJ m : T x→ U {e} ok inC

`iFJ C implements I

impl-iface-ifj
interface I extends J {m : msig }

(∀i) `iFJ C implements Ji (∀i) mtypeiFJ(mi, C) = msig

`iFJ C implements I

`iFJ cdef ok `iFJ idef ok

ok-cdef-ifj
(∀i) `iFJ mi : mdefi ok inC (∀i) `iFJ C implements Ji

`iFJ class C extends N implements J {T f m : mdef } ok

ok-idef-ifj
(∀i, j) mtypeiFJ(Ji,mj) undefined

(∀i) if mtypeiFJ(Ji,m) = msig then mtypeiFJ(Jj ,m) undefined for all j 6= i

`iFJ interface I extends J {m : msig }

`iFJ prog ok

ok-prog-ifj
well-formedness criteria defined in Figure 4.13 hold

(∀i) `iFJ defi ok ∅ `iFJ e : T

`iFJ def e ok

89



4 Translation

Figure 4.13 Additional well-formedness criteria for iFJ.

wf-ifj-1 If a class or interface name appears anywhere in a program, then the program
also contains a definition for that class or interface.

wf-ifj-2 The class and interface hierarchies are acyclic.

wf-ifj-3 The names of the fields defined in a class and any of its superclasses are pairwise
disjoint. (That is, iFJ does not support field shadowing.)

wf-ifj-4 The names of the methods defined in a class or an interface are pairwise disjoint.
(That is, iFJ does not support method overloading.)

wf-ifj-5 For all dictionary classes DictI,N , it holds that fieldsiFJ(DictI,N ) = • and that
DictI,N implements interface DictI .

wf-ifj-6 Wrapper classes WrapI have the form

class WrapI extends Object implements I {Object wrapped m : mdef }

for some sequence m : mdef.

does not have two distinct superinterfaces both defining a method with the same
name.

� The relation `iFJ prog ok asserts well-formedness of programs (see rule ok-prog).
Well-formedness of programs relies on the additional well-formedness criteria de-
fined in Figure 4.13.

4.2.4 Type Soundness

The type soundness proof for iFJ follows the syntactic approach developed by Wright
and Felleisen [244] and the type soundness proof for FJ. The theorems of this section
implicitly assume that the underlying iFJ program is well-formed.

The preservation theorem states that an evaluation step preserves the type of an ex-
pression.

Theorem 4.6 (Preservation for proper evaluation of iFJ). If ∅ `iFJ e : T and e −→iFJ e
′

then ∅ `iFJ e′ : T ′ for some T ′ with `iFJ T ′ ≤ T .

Proof. It suffices to show that ∅ `iFJ E [e] : T and e 7−→iFJ e
′ imply ∅ `iFJ E [e′] : T ′ with

`iFJ T ′ ≤ T . This proof is by induction on the structure of E . See Section C.1.1 for
details.

In FJ, an expression may get stuck on a bad cast. The same may happen in iFJ.

90



4.3 From CoreGI [ to iFJ

Figure 4.14 Well-formedness of CoreGI[ types.

`[ T ok

ok-object[

`[ Object ok

ok-class[

class C . . .

`[ C ok

ok-iface[

interface I . . .

`[ I ok

Definition 4.7 (Stuck on a bad cast for iFJ). An iFJ expression e is stuck on a bad cast
if, and only if, there exists an evaluation context E , a type T , and a value v such that
e = E [cast(T, v)], unwrap(v) = newN(v), and neither `iFJ N ≤ T nor `iFJ N ≤ M for
some dictionary class DictI,M with T = I holds.

Additionally, an iFJ expression may also get stuck on a bad dictionary lookup.

Definition 4.8 (Stuck on a bad dictionary lookup). An iFJ expression e is stuck on a bad
dictionary lookup if, and only if, there exists an evaluation context E , an interface type
I, and a value v such that e = E [getdict(I, v)], unwrap(v) = newN(v), and mindictiFJM
is undefined for M = {class DictI,N

′
. . . |`iFJ N ≤ N ′}.

The progress theorem states that a well-typed expression is either a value, or reducible,
or stuck for one of the two reasons just defined.

Theorem 4.9 (Progress for iFJ). If ∅ `iFJ e : T then either e = v for some value v, or
e −→iFJ e

′ for some expression e′, or e is stuck on a bad cast or a bad dictionary lookup.

Proof. By induction on the derivation of ∅ `iFJ e : T . See Section C.1.2 for details.

Theorem 4.10 (Type soundness for iFJ). If ∅ `iFJ e : T then either e diverges, or e −→∗iFJ v
for some value v such that ∅ `iFJ v : T ′ with `iFJ T ′ ≤ T , or e −→∗iFJ e′ for some expression
e′ that is stuck on a bad cast or a bad dictionary lookup.

Proof. Assume that e −→∗iFJ e′ for some normal form e′. Using Theorem 4.6, transitivity
of subtyping, and an induction on the length of the evaluation sequence yields ∅ `iFJ e′ : T ′
with `iFJ T ′ ≤ T . The claim now follows with Theorem 4.9.

4.3 From CoreGI[ to iFJ

Having defined the source and target languages, it is now time to formalize the translation
from CoreGI[ to iFJ. The translation is not a purely syntactic one but may depend on
the type of the construct being translated. Thus, we interweave the translation with the
definition of a static semantics for CoreGI[.

Figure 4.14 defines the relation `[ T ok, which states that the CoreGI[ type T is well-
formed. The relation mtype[(m,T ) = msig  I?, defined in Figure 4.15, looks up the
signature of method m for static receiver type T . The optional interface name I? is

91



4 Translation

Figure 4.15 Method types for CoreGI[.

mtype[(m,T ) = msig  I?

mtype-class-base[

class C extends N { . . . m : msig {e} } mc = mk

mtype[(mc, C) = msigk  nil

mtype-class-super[

class C extends N { . . . m : mdef } mc /∈ m mtype[(mc, N) = msig  nil

mtype[(mc, C) = msig  nil

mtype-iface[

interface I extends J {m : msig } `[ T ≤ I  J?

mtype[(mi
k, T ) = msigk  J?

different from nil if, and only if, m is a method of interface I? and T implements I? only
retroactively. As before, we omit the part “ I?” if this information is irrelevant; that
is, mtype[(m,T ) = msig abbreviates mtype[(m,T ) = msig  I? for some fresh I.

Figure 4.16 defines the typing and translation rules for CoreGI[ expressions. The judg-
ment Γ `[ e : T  e′ denotes that under variable environment Γ the CoreGI[ expression
e has type T and translates to the iFJ expression e′. If the translation part “ e′” is
irrelevant, we simply omit it, so Γ `[ e : T means that there exists some iFJ expression e′

with Γ `[ e : T  e′.

To lighten the notation, we do not make the translation of identifiers explicit. Instead,
we simply use CoreGI[ identifiers as if they were iFJ identifiers and assume an implicit
translation of identifiers. It is always clear from the context whether an identifier acts as
a CoreGI[ or as an iFJ identifier.

The translation of variables (rule exp-var[), field accesses (rule exp-field[), and cast
operations (rule exp-cast[) is straightforward. The translation of method invocations
(rule exp-invoke[) and object allocations (rule exp-new[) is more involved because it
needs to compensate the lack of retroactive interface implementations in the target lan-
guage iFJ by using wrappers [10]. The general scheme is as follows: if a CoreGI[ expression
e has type T but the context of the expression uses e at interface type I such that the
subtyping relationship between T and I in CoreGI[ depends on a retroactive implemen-
tation (see Figure 4.4), then the translation wraps e with a wrapper of class WrapI .
Omitting the wrapper would produce an ill-typed iFJ expression because iFJ does not
support retroactive interface implementations, so `iFJ T ≤ I does not hold. The auxil-
iary function wrap, also defined in Figure 4.16, performs the wrapping just described.

We next consider typing and translation of CoreGI[ classes, interfaces, implementation
definitions, and programs. Before presenting the formal rules, it helps to look at some
concrete examples. Figure 4.17 shows several CoreGI[ constructs and their translations

92



4.3 From CoreGI [ to iFJ

Figure 4.16 Typing and translating CoreGI[ expressions.

Γ `[ e : T  e′

exp-var[

Γ `[ x : Γ(x) x

exp-field[

Γ `[ e : C  e′ fields[(C) = U f

Γ `[ e.fj : Uj  e′.fj

exp-invoke[

Γ `[ e : T  e′ mtype[(m,T ) = U x→ U  I? (∀i) Γ `[ ei : Ti  e′i
(∀i) `[ Ti ≤ Ui  J?

i e′′ = wrap(I?, e′) (∀i) e′′i = wrap(J?
i , e
′
i)

Γ `[ e.m(e) : U  e′′.m(e′′)

exp-new[

(∀i) Γ `[ ei : Ti  e′i
`[ N ok fields[(N) = U f (∀i) `[ Ti ≤ Ui  J?

i (∀i) e′′i = wrap(J?
i , e
′
i)

Γ `[ newN (e) : N  new N(e′′)

exp-cast[

`[ T ok Γ `[ e : U  e′

Γ `[ (T ) e : T  cast(T, e′)

wrap(I?, e) = e′

wrap(I?, e) =

{
e if I? = nil

new WrapI(e) if I? = I

to iFJ. The CoreGI[ interface I translates into an identical iFJ interface I, a dictionary in-
terface DictI , and a wrapper class WrapI . The dictionary interface serves as the common
interface for all dictionaries that the translation generates for I’s retroactive implemen-
tations. The method foo of DictI has the same signature as the foo method of I but
extended with an additional parameter y of type Object to abstract over the implement-
ing type of potential retroactive implementations of I. The wrapper class WrapI adapts
objects of classes that implement I only retroactively in CoreGI[. It implements the foo
method of I as follows: first retrieve the dictionary for I and the wrapped object to get
a value of type DictI ; then invoke the foo method on this value and pass the wrapped
object as the additional parameter.

The translation of the CoreGI[ classes D and C is straightforward. The translation
of the retroactive implementation of I with implementing type C is more interesting.
It produces a dictionary class DictI,C that implements the dictionary interface DictI .
Method foo of this class is the translation of the method that remains anonymous in

93



4 Translation

Figure 4.17 Sample translation.
The left-hand side shows CoreGI[ constructs, the right-hand side shows their translations to iFJ.

interface I {
foo : • → D
}

interface I {
foo : • → D
}
interface DictI {

foo : Object y → D
}
class WrapI implements I {

Object wrapped
foo : • → D {

getdict(I, this.wrapped).foo(this.wrapped)
}
}

class D {
bar : I x→ D{x.foo()}
}

class D {
bar : I x→ D{x.foo()}
}

class C {
Df
}

class C {
Df
}

implementation I [C ] {
• → D {this.f}
}

class DictI,C implements DictI {
foo : Object y → D {

letC z = cast(C, y) in z.f
}
}

newC (newD()).foo() new WrapI(newC(newD())).foo()

newD().bar(newC (newD())) newD().bar(new WrapI(newC(newD())))

94



4.3 From CoreGI [ to iFJ

the retroactive implementation. The additional parameter y of foo abstracts over the
implementing type C. Its type is Object as demanded by DictI , so the body of foo first
casts y to C and then accesses the field f .

Figure 4.17 also shows two expressions and their translations. The translation of the
first expression has to wrap the receiver of the call because the receiver implements the
target method foo only retroactively. In the second expression, the argument of the call
requires wrapping because the method being invoked expects an object of type I, which
the argument class C implements only retroactively.

Let us turn to the formal typing and translation rules for CoreGI[ classes, interfaces,
implementation definitions, and programs. Figure 4.18 defines several auxiliaries:

� override-ok[(m : msig , C) is the usual check to verify that a CoreGI[ method m with
signature msig correctly overrides method m of C’s direct superclass.

� `[ msig ok establishes well-formedness of a CoreGI[ method signature msig .

� Γ `[ mdef ok  e checks well-formedness of a CoreGI[ method definition mdef
under variable environment Γ and translates the body of the method definition to
the iFJ expression e.

� `[ m : mdef ok inC  mdef ′ asserts that m : mdef is well-formed in class C and
translates the CoreGI[ method definition mdef to the iFJ method definition mdef ′.

� Γ `[ mdef implements msig  mdef ′ ensures that mdef , a CoreGI[ method defini-
tion from a retroactive implementation, properly implements the CoreGI[ method
signature msig under variable environment Γ. Moreover, it translates mdef into
an iFJ method definition mdef ′ such that mdef ′ may be used inside the dictionary
class serving as the translation of mdef ’s implementation definition.

� wrapper-methods(I) = m : mdef computes all iFJ methods m : mdef that should be
contained in the wrapper class for I.

� dict-methods(I) = m : mdef computes all iFJ methods m : mdef that are needed by
a dictionary class to implement the methods of the dictionary interface DictI . The
translation of a retroactive implementation of interface J invokes dict-methods for
all direct superinterfaces of J .

With these preparations, the definition of the typing and translation rules for CoreGI[

programs is straightforward (Figure 4.19).

� The judgment `[ cdef ok cdef ′ asserts well-formedness of the CoreGI[ class cdef
and translates it into an iFJ class cdef ′.

� The judgment `[ idef ok  def asserts well-formedness of the CoreGI[ interface
idef and translates it into a sequence of iFJ definitions def . These definitions consist
of the iFJ version of the interface, the corresponding dictionary interface, and an
appropriate wrapper class.

95



4 Translation

Figure 4.18 Auxiliaries for typing and translating CoreGI[ programs.

override-ok[(m : msig , C)

ok-override[

class C extends N . . . if mtype[(m,N) = msig ′  nil then msig = msig ′

override-ok[(m : msig , C)

`[ msig ok Γ `[ mdef ok e `[ m : mdef ok inC  mdef′

ok-msig[

`[ T ,U ok

`[ T x→ U ok

ok-mdef[

`[ T x→ U ok Γ, x : T `[ e : U ′  e′ `[ U ′ ≤ U  I?

Γ `[ T x→ U {e} ok wrap(I?, e′)

ok-mdef-in-class[

this : C `[ msig {e} ok e′ override-ok[(m : msig , C)

`[ m : msig {e} ok inC  msig {e′}

Γ `[ mdef implements msig  mdef′

impl-meth[

Γ `[ T x→ U {e} ok e′ T x→ U = msig Γ(this) = N y, z fresh

Γ `[ T x→ U {e} implements msig
 Object y,T x→ U {letN z = cast(N, y) in [z/this]e′}

wrapper-methods(I) = m : mdef dict-methods(I) = m : mdef

wrapper-methods[

interface I extends J
n {m : msig }

(∀i) msig i = T x→ U and
mdefi = T x→ U { getdict(I, this.wrapped).mi(this.wrapped, x)}

wrapper-methods(I) = m : mdef wrapper-methods(J1) . . .wrapper-methods(Jn)

dict-methods[

interface I extends J
n {m : msig }

(∀i) msig i = T x→ U and mdefi = Object y,T x→ U { getdict(I, y).mi(y, x)}
dict-methods(I) = m : mdef dict-methods(J1) . . . dict-methods(Jn)

96



4.3 From CoreGI [ to iFJ

Figure 4.19 Typing and translating CoreGI[ programs.

`[ cdef ok cdef′ `[ idef ok def `[ impl ok cdef

ok-cdef[

`[ N,T ok (∀i) `[ mi : mdef i ok inC  mdefi
′

`[ class C extends N {T f m : mdef } ok

 class C extends N implements • {T f m : mdef ′ }

ok-idef[

`[ J,msig ok

`[ interface I extends J {m : msig }
 interface I extends J {m : msig }

interface DictI extends DictJ {m : Object y,msig }
class WrapI extends Object implements I {Object wrapped wrapper-methods(I) }

ok-impl[

`[ N, I ok interface I extends J
n {m : msig }

(∀i) this : N `[ mdef i implements msig i  mdefi
′

`[ implementation I [N ] {m : mdef } ok

 class DictI,N extends Object implements DictI {
m : mdef ′

dict-methods(J1) . . . dict-methods(Jn)
}

`[ prog ok prog′

ok-prog[

well-formedness criteria defined in Figure 4.20 hold

(∀i) `[ def i ok defi
′ ∅ `[ e : T  e′

`[ def
n
e ok def ′1 . . . def ′n e′

97



4 Translation

Figure 4.20 Additional well-formedness criteria for CoreGI[.

� For each class definition class C extends N {T fn m : mdef
l } the following well-

formedness criteria must hold:

wf[-class-1 The field names, including names of inherited fields, are pairwise
disjoint. That is, i 6= j ∈ [n] implies fi 6= fj and fields(N) = U g implies
f ∩ g = ∅.

wf[-class-2 The method names m are pairwise disjoint.

� For each implementation definition implementation I [N ] . . . the following well-
formedness criterion must hold:

wf[-impl-1 There exist suitable implementations for all superinterfaces of I.
Suppose J is a direct superinterface of I. Then there exists a definition
implementation J [M ] . . . such that `[ N ≤M .

(This criterion corresponds to wf-impl-1 in Chapter 3.)

� The CoreGI[ program under consideration must fulfill the following well-formedness
criteria:

wf[-prog-1 A program does not contain two different implementations for the
same interface with identical implementation types. That is, for each
pair of disjoint implementation definitions implementation I [N ] . . . and
implementation I [M ] . . . it holds that N 6= M .

(This criterion corresponds to wf-prog-1 in Chapter 3.)

wf[-prog-2 The class and interface hierarchies of the program are acyclic.

(This criterion corresponds to wf-prog-5 in Chapter 3.)

� The judgment `[ impl ok cdef asserts well-formedness of the CoreGI[ implemen-
tation definition impl and translates it into a dictionary class cdef .

� The judgment `[ prog ok  prog ′ asserts well-formedness of the CoreGI[ program
prog and translates it into an iFJ program prog ′. The judgment depends on the
additional well-formedness criteria defined in Figure 4.20.

4.4 Meta-Theoretical Properties

The translation from CoreGI[ to iFJ has two important meta-theoretical properties: it
preserves the static semantics and the dynamic semantics of CoreGI[. The next two
subsections prove these properties formally.

98



4.4 Meta-Theoretical Properties

Figure 4.21 Potentially commuting diagram.

e ,2[

Γ`[ e :T  d
��
�O
�O
�O

e′

Γ`[ e′ :T ′ d′

��
�O
�O
�O

d ,2+
iFJ d′

4.4.1 Translation Preserves Static Semantics

The following theorem shows that a CoreGI[ expression e of type T translates into an iFJ
expression e′ of the same type T . (It is possible to use the same type T for both calculi
because the translation of identifiers happens implicitly.)

Theorem 4.11 (Translation preserves types of expressions). Suppose that the underlying
iFJ program is the translation of the underlying CoreGI [ program. If Γ `[ e : T  e′ then
Γ `iFJ e′ : T .

Proof. The proof is by induction on the derivation of Γ `[ e : T  e′. See Section C.2.1
for details.

Moreover, well-formedness of a CoreGI[ program implies well-formedness of its iFJ coun-
terpart.

Theorem 4.12 (Translation preserves well-formedness of programs). If `[ prog ok  
prog ′ then `iFJ prog ′ ok.

Proof. See Section C.2.2.

4.4.2 Translation Preserves Dynamic Semantics

The probably easiest way to show that the translation from CoreGI[ to iFJ preserves
the dynamic semantics would be to prove that translation commutes with evaluation.
Commutativity of translation and evaluation is often depicted as a commuting diagram
(Figure 4.21): it does not matter whether we first evaluate e to e′ in CoreGI[ and then
translate e′ to d′, or first translate e to d and then evaluate d to d′ in iFJ.

Unfortunately, the translation from CoreGI[ to iFJ does not commute with evaluation
because the expression d in Figure 4.21 does not necessarily reduce to d′. Instead, it
may reduce to some other iFJ expression d′′ such that d′ and d′′ differ modulo wrappers.
In the following, two examples demonstrate in what ways d′ and d′′ possibly differ.
These examples then motivate the definition of a type-directed equivalence relation on
iFJ expressions that formalizes what we mean with “modulo wrappers”. It turns out
that this equivalence relation is sound with respect to contextual equivalence [153, 177]
and that translation and evaluation commute modulo wrappers.

99



4 Translation

Figure 4.22 CoreGI[ definitions used to illustrate non-commutativity.

interface I {}
class D {}
implementation I [D] {}
class E {Object obj }
class C {

Object bar(I x){x}
E foo(I x){newE (x)}

}

Examples

Consider the CoreGI[ definitions in Figure 4.22.

1. It holds that

Γ `[
=:e1︷ ︸︸ ︷

newC ().bar(newD()) : Object  

=:d1︷ ︸︸ ︷
newC().bar(new WrapI(newD()))

for any variable environment Γ, so we arrive at the following diagram:

e1 ,2[

Γ`[ e1 :Object d1
��
�O
�O
�O

newD()

��
�O
�O
�O

d1
,2+
iFJ ???

However, evaluating d1 and translating newD() yield different results:

d1 −→iFJ new WrapI(newD())

Γ `[ newD() : D  newD()

2. It holds that

Γ `[
=:e2︷ ︸︸ ︷

newC ().foo(newD()) : E  

=:d2︷ ︸︸ ︷
newC().foo(new WrapI(newD()))

for any variable environment Γ, so we arrive at the following diagram:

e2 ,2[

Γ`[ e2 :E d2
��
�O
�O
�O

newE (newD())

��
�O
�O
�O

d2
,2+
iFJ ???

However, evaluating d2 and translating newE (newD()) yield different results:

d2 −→iFJ newE(new WrapI(newD()))

Γ `[ newE (newD()) : E  newE(newD())

100



4.4 Meta-Theoretical Properties

Figure 4.23 Auxiliaries for type-directed equivalence modulo wrappers.

defines-field(C, f)

defines-field
class C extends N implements J {U f . . . }

defines-field(C, fi)

topmost(T,m)

topmost-class
class C extends N implements J { . . . m : mdef }

mtype(mi, N) undefined (∀j) mtype(mi, Jj) undefined

topmost(C,mi)

topmost-iface
interface I extends J {m : msig }

topmost(I,mi)

Type-Directed Equivalence Modulo Wrappers

The examples just shown suggest that two iFJ expressions should be considered equivalent
if they are syntactically identical modulo removal of wrapper constructors. Further, the
equivalence is type-directed in the sense that it allows the removal of wrapper constructors
only at positions of certain types.

The definition of such a type-directed equivalence relation relies on two auxiliaries
defined in Figure 4.23:

� defines-field(C, f) asserts that class C defines a field of name f .

� topmost(T,m) asserts that type T defines method m such that no supertype of T
contains another definition of m.

Figure 4.24 formalizes type-directed equivalence modulo wrappers, written Γ `iFJ e ≡ d :
T . This judgment states that under type environment Γ the iFJ expressions e and d are
equivalent at type T . The rules equiv-var, equiv-field, equiv-invoke, equiv-new-class,
equiv-cast, equiv-getdict, and equiv-let are similar to the corresponding iFJ typing
rules for expressions (Figure 4.11); they simply assert that two expressions with the
same top-level form are equivalent if their subexpressions are equivalent. The premises
defines-field(C, fj) and topmost(V,m) in rules equiv-field and equiv-invoke, respec-
tively, are required to show transitivity of the ≡-relation. Rule equiv-field-wrapped

states that accesses of the wrapped field on two wrapper objects are equivalent if the ob-
jects being wrapped are equivalent. Rule equiv-new-wrap defines equivalence between
wrapper objects used at an interface type. Finally, the rules equiv-new-object-left

101



4 Translation

Figure 4.24 Type-directed equivalence modulo wrappers.

Γ `iFJ e ≡ e′ : T

equiv-var

`iFJ Γ(x) ≤ T
Γ `iFJ x ≡ x : T

equiv-field

Γ `iFJ e ≡ e′ : C defines-field(C, fj)

fieldsiFJ(C) = U f `iFJ Uj ≤ T
Γ `iFJ e.fj ≡ e′.fj : T

equiv-field-wrapped

Γ `iFJ e ≡ e′ : Object

Γ `iFJ new WrapI(e).wrapped ≡ new WrapJ(e′).wrapped : Object

equiv-invoke

Γ `iFJ e ≡ e′ : V
topmost(V,m) mtypeiFJ(m,V ) = U x→ U (∀i) Γ `iFJ ei ≡ e′i : Ui `iFJ U ≤ T

Γ `iFJ e.m(e) ≡ e′.m(e′) : T

equiv-new-class

`iFJ N ≤ T fieldsiFJ(N) = U f
(∀i) Γ `iFJ ei ≡ e′i : Ui

Γ `iFJ newN(e) ≡ newN(e′) : T

equiv-new-wrap

`iFJ I ≤ J `iFJ I ′ ≤ J
Γ `iFJ e ≡ e′ : Object

Γ `iFJ new WrapI(e) ≡ new WrapI
′
(e′) : J

equiv-new-object-left

Γ `iFJ e ≡ e′ : Object

Γ `iFJ new WrapI(e) ≡ e′ : Object

equiv-new-object-right

Γ `iFJ e ≡ e′ : Object

Γ `iFJ e ≡ new WrapI(e′) : Object

equiv-cast

Γ ` e ≡ e′ : Object `iFJ U ≤ T
Γ `iFJ cast(U, e) ≡ cast(U, e′) : T

equiv-getdict

Γ `iFJ e ≡ e′ : Object `iFJ DictI ≤ T
Γ `iFJ getdict(I, e) ≡ getdict(I, e′) : T

equiv-let

Γ `iFJ e1 ≡ e′1 : T Γ, x : T `iFJ e2 ≡ e′2 : U

Γ `iFJ letT x = e1 in e2 ≡ letT x = e′1 in e′2 : U

102



4.4 Meta-Theoretical Properties

Figure 4.25 Visualization of Theorem 4.16.

e ,2
iFJ

Γ`iFJ e≡ d :T

e′

Γ`iFJ e′≡ d′ :T

d ,2
iFJ d′

and equiv-new-object-right allows the removal of a wrapper constructor when the two
expressions involved are used at type Object.

Definition 4.13. Let Γ be a variable environment and T be a type. The set EΓ,T is
defined as the set containing all iFJ expressions e such that Γ `iFJ e : T ′ for some type T ′

with `iFJ T ′ ≤ T .

Theorem 4.14 (≡ is an equivalence relation). Suppose that the iFJ program under consid-
eration is well-formed and in the image of the translation from CoreGI [ to iFJ. Moreover,
let Γ be a variable environment and T be a type. Then the relation Γ `iFJ · ≡ · : T is an
equivalence relation over EΓ,T .

Proof. See Section C.3.1. The proofs of reflexivity and symmetry do not rely on the
assumption that the iFJ program under consideration is in the image of the translation
from CoreGI[ to iFJ.

The ≡-relation is stable under substitution and evaluation.

Theorem 4.15 (Substitution preserves ≡). Suppose that the iFJ program under consid-
eration is well-formed. If Γ, x : U `iFJ e1 ≡ e2 : T and Γ `iFJ d1 ≡ d2 : U then
Γ `iFJ [d1/x]e1 ≡ [d2/x]e2 : T .

Proof. See Section C.3.2.

Theorem 4.16 (Evaluation preserves ≡). Suppose that the iFJ program under consider-
ation is well-formed. If Γ `iFJ e ≡ d : T and e −→iFJ e

′ then d −→iFJ d
′ such that

Γ `iFJ e′ ≡ d′ : T . In other words, the diagram in Figure 4.25 commutes.

Proof. See Section C.3.3.

Equivalence modulo wrappers relates only iFJ expressions that are contextually equiv-
alent [153]. Informally, two expressions e1 and e2 of the same type T are contextually
equivalent if no context is able to distinguish them. That is, if d[e1] is a well-typed
expressions containing instances of e1 and d[e2] is the expression obtained by replac-
ing those instances by e2, then d[e1] and d[e2] give exactly the same observable results
when evaluated [177, Definition 7.3.2]. It is common to consider only termination and
non-termination as observable results.

Expressions in iFJ do not provide binding constructs, so it is possible to build d[e1]
and d[e2] from an expression d by substituting e1 and e2, respectively, for a designated

103



4 Translation

Figure 4.26 Visualization of Theorem 4.19.

e1 ,2[

Γ`[ e1 :T  e′1

��
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O

e2

Γ`[ e2 :T ′ e′′2
��
�O
�O
�O

e′′2
`[ T ′≤T  I?

��

wrap(I?, e′′2)

Γ`iFJ wrap(I?, e′′2 )≡ e′2 :T

e′1
,2+
iFJ e
′
2

variable χ ∈ VarName; that is, d[e1] := [e1/χ]d and d[e2] := [e2/χ]d. This leads to a
formal definition of contextual equivalence in iFJ.

Definition 4.17 (Contextual equivalence in iFJ). Assume that e1 and e2 are two iFJ ex-
pressions such that Γ `iFJ e1 : T1 and Γ `iFJ e2 : T2 with `iFJ T1 ≤ T and `iFJ T2 ≤ T
for some type T . Then e1 and e2 are contextually equivalent at value environment Γ
and type T , written Γ `iFJ e1 =ctx e2 : T , if, and only if, for any expression d with
Γ, χ : T `iFJ d : U for some type U , it holds that either both [e1/χ]d and [e2/χ]d diverge
or both [e1/χ]d and [e2/χ]d terminate.

The following theorem verifies the claim that equivalence modulo wrappers relates only
iFJ expressions that are contextually equivalent.

Theorem 4.18 (≡ is sound with respect to contextual equivalence). Suppose that the
underlying iFJ program is well-formed. If Γ `iFJ e1 ≡ e2 : T then Γ `iFJ e1 =ctx e2 : T .

Proof. Follows with Theorems 4.15 and 4.16. See Section C.3.4 for details.

Equivalence modulo wrappers is not complete with respect to contextual equivalence.
For example, given the class definition

class C {
C m(){this}
}

it obviously holds that ∅ `iFJ newC() =ctx newC().m() : C but the equivalence ∅ `iFJ
newC() ≡ newC().m() : C is not derivable.

Translation and Evaluation Commute Modulo Wrappers

The following theorem states that the translation from CoreGI[ to iFJ commutes modulo
wrappers with single-step evaluation in CoreGI[ and multi-step evaluation in iFJ.

Theorem 4.19. Suppose that the underlying CoreGI [ program prog is well-formed and
that the underlying iFJ program is the translation of prog. If Γ `[ e1 : T  e′1 and

104



4.4 Meta-Theoretical Properties

Figure 4.27 Visualization of Theorem 4.20.

e0 ,2[∗

Γ`[ e0 :T  e′0

��
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O

en

Γ`[ en :T ′ e′

��
�O
�O
�O

e′

`[ T ′≤T  I?

��

wrap(I?, e′)

Γ`iFJ wrap(I?, e′)≡ e :T

e′0
,2∗
iFJ e

e1 −→[ e2, then e′1 −→
+
iFJ e

′
2 such that Γ `[ e2 : T ′  e′′2 and `[ T ′ ≤ T  I? and

Γ `iFJ wrap(I?, e′′2) ≡ e′2 : T . In other words, the diagram in Figure 4.26 commutes.

Proof. It suffices to prove the following claim:

If Γ `[ E [d1] : T  e1 and d1 7−→[ d2, then e1 −→+
iFJ e2 such that

Γ `[ E [d2] : T ′  e′2 and `[ T ′ ≤ T  I? and Γ `iFJ wrap(I?, e′2) ≡ e2 : T .

The proof of this claim is by induction on the structure of E . See Section C.3.5 for
details.

A generalization of Theorem 4.19 considers multi-step evaluation in CoreGI[ instead of
single-step evaluation.

Theorem 4.20 (Translation and evaluation commute modulo wrappers). Suppose that
the underlying CoreGI [ program prog is well-formed and that the underlying iFJ program
is the translation of prog. If Γ `[ e0 : T  e′0 and e0 −→[∗ en, then e′0 −→∗iFJ e such that
Γ `[ en : T ′  e′ and `[ T ′ ≤ T  I? and Γ `iFJ wrap(I?, e′) ≡ e : T . In other words,
the diagram in Figure 4.27 commutes.

Proof. The proof is by induction on the length n of the evaluation sequence e0 −→[∗ en.
For the case n > 0, Figure 4.28 sketches the proof idea: commutativity of (a) follows from
Theorem 4.19; an application of the induction hypothesis yields commutativity of (b);
Commutativity of (c) holds trivially; commutativity of (d) follows with Theorem 4.16.
Section C.3.6 gives all details of the proof.

105



4 Translation

Figure 4.28 Proof sketch for Theorem 4.20.

e0 ,2[

��
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O

(a)

e1 ,2[∗

��
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O

(b)

en

��
�O
�O
�O

e′

��

wrap(J ′?, e′)

e′′1
,2∗
iFJ

��

(c)

d

��

wrap(J?, e′′1) ,2∗
iFJ

(d)

wrap(J?, d)

e′0
,2+
iFJ e
′
1

,2∗
iFJ e

4.5 Relating CoreGI[ and CoreGI

Chapter 3 introduced the calculus CoreGI and Section 4.1 defined CoreGI[as a simplified
version of CoreGI. This section formally proves that CoreGI[ is a subset of CoreGI. As
a consequence, meta-theoretical properties of CoreGI—for example, type soundness and
deterministic evaluation—automatically hold for CoreGI[ too.

Figure 4.29 defines a restricted variant of CoreGI’s syntax. The figure highlights differ-
ences with respect to the definition of CoreGI’s original syntax in Figure 3.1 on page 32.
Obviously, each syntactic phrase that is valid according to the syntax in Figure 4.29 is
also valid according to the syntax in Figure 3.1.

Definition 4.21. A syntactic phrase of CoreGI is said to be restricted if, and only if, it is
valid according to the syntax in Figure 4.29.

Figure 4.30 defines a family of functions mapping syntactic phrases of CoreGI[ to re-
stricted syntactic phrases of CoreGI. More specifically, function Bp maps CoreGI[ programs
to restricted CoreGI programs, Bd maps CoreGI[ definitions to restricted CoreGI defini-
tions, Bms maps CoreGI[ method signatures to restricted CoreGI method signatures, Bmd

maps CoreGI[ method definitions to restricted CoreGI method definitions, Bt maps CoreGI[

types to restricted CoreGI types, and Be maps CoreGI[ expressions to restricted CoreGI
expressions. The working of most of these functions is straightforward. Function Bd

maps the extends clause of a CoreGI[ interface to superinterface constraints of CoreGI.

All functions defined in Figure 4.30 are invertible because they are bijective, as stated
in the following theorem:

106



4.5 Relating CoreGI [ and CoreGI

Figure 4.29 Restricted syntax of CoreGI.

prog ::= def e
def ::= cdef | idef | impl

cdef ::= class C<•> extends N where • {T f m : mdef }
idef ::= interface I <•> [ This whereThis implements I < • > ] where •

{ • receiver {m : msig} }
impl ::= implementation<•> K [ N ] where • { • receiver {mdef } }
msig ::= <•>T x→ T where •
mdef ::= msig {e}
M,N ::= C<•> | Object
G,H ::= N no type variables
K,L ::= I <•>

T,U, V,W ::= G | K
d, e ::= x | e.f | e.m<•>(e) | newN (e) | (T ) e no calls of static interface

methods

This ∈ TvarName (fixed)

Theorem 4.22. The functions Bp, Bd, Bms, Bmd, Bt, and Be are bijections between
CoreGI [ and restricted CoreGI programs, definitions, method signatures, method defini-
tions, types, and expressions, respectively.

Proof. Obviously, Bt is injective. A straightforward induction on the structure of CoreGI[

expressions then shows that Be is injective. It is then easy to show that Bms, Bmd, Bd,
and Bp are injections as well.

Similarly, Bt is clearly surjective on the set of restricted CoreGI types. An easy induction
on the structure of restricted CoreGI expressions then shows that Be is also surjective.
Now it is straightforward to verify that Bms, Bmd, Bd, and Bp are surjective as well.

Besides removing certain syntactic constructs from CoreGI, it is also necessary to re-
move CoreGI’s support for covariant return types because CoreGI[ requires invariant return
types.

Definition 4.23. A restricted CoreGI program has invariant return types if, and only if,
the following two conditions hold:

1. Assume

class C< • > extends N where • { . . . m : mdef }

class D< • > extends N ′ where • { . . . m′ : mdef ′ }

such that D< • > Ec C< • > and mi = m′j . If mdef i = < • >T x→ T where • {e}
and mdef ′j = < • >U y → U where • {d} then T = U .

107



4 Translation

Figure 4.30 Bijections between CoreGI[ and the restricted variant of CoreGI.

Bp

q
def e

y
= Bd Jdef iK Be JeK

Bd

s
class C extends N

{T f m : mdef }

{
= class C< • > extends Bt JNK where •

{Bt JTiK fi mi : Bmd Jmdef iK }

Bd

s
interface I extends I
{m : msig }

{
= interface I < • >

[This whereThis implements Ii< • >]

where • { • receiver {mi : Bms Jmsig iK} }

Bd

s
implementation I [N ]

{mdef }

{
= implementation< • > Bt JIK [Bt JNK ]

where • { • receiver {Bmd Jmdef iK} }
Bms

q
T x→ T

y
= < • >Bt JTiK xi → Bt JT K where •

Bmd Jmsig {e}K = Bms JmsigK {Be JeK}
Bt JObjectK = Object

Bt JCK = C< • >
Bt JIK = I < • >
Be JxK = x

Be Je.f K = Be JeK .f

Be Je.m(e)K = Be JeK .m< • >(Be JeiK)

Be JnewN (e)K = newN (Be JeiK)
Be J(T ) eK = (Bt JT K)Be JeK

2. Assume

interface I < • > [ This where This implements Ii ] where •
{ • receiver {m : msig} }

implementation< • > I < • > [N ] where • { • receiver {mdef } }

If msig i = < • >T x → T where • and mdef i = < • >U y → U where • {e} then
T = U .

The following theorems now show that the dynamic and the static semantics of CoreGI[

(as specified in Sections 4.1 and 4.3) are equivalent to the dynamic and the static se-
mantics of CoreGI (as defined in Chapter 3), provided all CoreGI constructs involved are
restricted and the CoreGI program under consideration has invariant return types. The
rest of this section implicitly assumes that all CoreGI constructs mentioned are restricted
and that the underlying CoreGI program is the image according to Bp of the underlying
CoreGI[ program. Further, the notation B−1 denotes the inverse of some function B.

108



4.5 Relating CoreGI [ and CoreGI

Theorem 4.24 (Equivalence of subtyping). If `[ T ≤ U then ∆ ` Bt JT K ≤ Bt JUK for
any type environment ∆. Furthermore, if ∅ ` V ≤W then `[ B−1

t JV K ≤ B−1
t JW K.

Proof. See Section C.4.1.

Theorem 4.25 (Equivalence of dynamic semantics).

(i) If e 7−→[ e′ then Be JeK 7−→ Be Je′K.

(ii) If e 7−→ e′ then B−1
e JeK 7−→[ B−1

e Je′K.

(iii) If e −→[ e′ then Be JeK −→ Be Je′K.

(iv) If e −→ e′ then B−1
e JeK −→[ B−1

e Je′K.

Proof. See Section C.4.2.

The next theorem extends the definition of Bt to value environments Γ by applying Bt

pointwise to all types in Γ.

Theorem 4.26 (Equivalence of expression typing).

(i) Assume `[ U ok for all x : U ∈ Γ. If Γ `[ e : T then ∆;Bt JΓK ` Be JeK : Bt JT K for
any type environment ∆.

(ii) Assume ∅ ` U ok for all x : U ∈ Γ. If ∅; Γ ` e : T then B−1
t JΓK `[ B−1

e JeK : U for
some U with `[ U ≤ B−1

t JT K.

Proof. See Section C.4.3.

Theorem 4.27 (Equivalence of program typing).

(i) If prog is a CoreGI [ program such that `[ prog ok, then ` Bp JprogK ok and Bp JprogK
has invariant return types.

(ii) If prog is a restricted CoreGI program with invariant return types and ` prog ok,
then `[ B−1

p JprogK ok.

Proof. See Section C.4.4.

Now it is straightforward to prove type soundness and deterministic evaluation for
CoreGI[.

Definition 4.28 (Stuck on a bad cast for CoreGI[). A CoreGI[ expression e is stuck on
a bad cast if, and only if, there exists an evaluation context E , a type T , and a value
v = newN (w) such that e = E [(T ) v] and not `[ N ≤ T .

Theorem 4.29 (Type soundness for CoreGI[). Assume that the underlying CoreGI [ pro-
gram is well-formed. If ∅ `[ e : T then either e diverges, or e −→[∗ v for some value v
such that ∅ `[ v : T ′ for some T ′ with `[ T ′ ≤ T , or e −→[∗ e′ for some expression e′

such that e′ is stuck on a bad cast.

Proof. Follows easily using Theorem 3.17, Theorem 4.22, Theorem 4.24, Theorem 4.25
Theorem 4.26, and Theorem 4.27.

109



4 Translation

Theorem 4.30 (Determinacy of evaluation for CoreGI[). Assume that the underlying
CoreGI [ program is well-formed. If e −→[ e′ and e −→[ e′′ then e′ = e′′.

Proof. Follows from Theorem 3.20, Theorem 4.25, and Theorem 4.27.

110



5
Extensions

Developing a new programming language involves exploring the boundaries of the design
space. Whereas the two preceding chapters formalized only features that are present in
the full JavaGI language, the chapter at hand defines two extensions of JavaGI’s subtyping
relation that both lead to undecidability of subtyping and are thus not included in the
full language, at least not without further restrictions.

Chapter Outline. The chapter consists of two sections:

� Section 5.1 defines the calculus IIT, which increases the flexibility of retroactive
interface implementations by supporting interfaces as implementing types. (The
calculus CoreGI from Chapter 3 supports only classes as implementing types.) The
section proves that subtyping in IIT is undecidable and presents several restrictions
that ensure decidability. The full JavaGI language features interfaces as implement-
ing types under one of these restrictions.

� Section 5.2 studies the calculus EXuplo, which supports bounded existential types [40]
with lower and upper bounds. Subtyping in EXuplo is shown to be undecidable,
but there exist two decidable fragments. The full JavaGI language does not pro-
vide bounded existential types because both decidable fragments are too weak to
be of practical value. The results in Section 5.2 are not only relevant to JavaGI’s
full type system, but also to Scala [166] and formal systems for modeling Java
wildcards [228, 38, 37].

5.1 Interfaces as Implementing Types

In Java, only classes may implement interfaces. Consequently, the calculus CoreGI from
Chapter 3 supports only classes as implementing types of retroactive interface imple-
mentations. However, it is sometimes desirable to implement the methods of an interface
in terms of the methods declared by some other interface. For example, the interface
EQ from Section 2.1.2 defines a single method boolean eq(This that) that compares

111



5 Extensions

Figure 5.1 Syntax and subtyping for IIT.

Syntax

T,U, V,W ::= X | I <T>
def ::= interface I <X> | implementation<X> I <T> [I <T>]

X,Y, Z ∈ TvarName IIT I, J ∈ IfaceName IIT

`i T ≤ U

iit-refl

`i T ≤ T

iit-trans
`i T ≤ U `i U ≤ V

`i T ≤ V

iit-impl
implementation<X> I <T> [J<U>]

`i [V/X]J<U> ≤ [V/X]I <T>

two objects for equality. Implementing eq for lists simply requires to iterate over the
two lists involved and to compare the individual elements for equality. Iterating over
the elements of a list is readily available through method Iterator<X> iterator() of
interface List<X>, so Section 2.1.3 provides a retroactive implementation of EQ with the
interface type List<X> acting as the implementing type.1

As already mentioned, CoreGI supports only classes as implementing types, so it is un-
clear whether the decidability result for subtyping in CoreGI (see Section 3.7.1) also holds
if interfaces are allowed as implementing types. To answer this question, Section 5.1.1
defines the calculus IIT, which models the essential aspects of subtyping in the pres-
ence of retroactive implementations with interfaces as implementing types. Section 5.1.2
shows that subtyping in IIT is undecidable by reduction from Post’s Correspondence
Problem [182]. Finally, Section 5.1.3 presents several decidable fragments of IIT, one
of which serves as the basis for the “no implementation chains” restriction imposed in
Section 2.3.4 on the full JavaGI language.

5.1.1 The Calculus IIT

Figure 5.1 defines the syntax along with the subtyping relation of IIT. As usual, over-
bar notation denotes sequencing (see Definition 3.1). A type T is either a type vari-
able X or an interface type I <T>. For simplicity, there are no class types. A def-
inition def is either an interface or an (retroactive) implementation definition. Defi-
nitions do not contain methods and there is no support for interface inheritance be-
cause these aspects are irrelevant to the decidability issues discussed here. A definition
implementation<X> I <T> [J<U>] implicitly assumes that X = ftv(J<U>), where ftv(ξ)
denotes the set of type variables free in ξ. Further, each occurrence of a type I <T

n
> im-

plicitly assumes the existence of a definition of interface I with n type parameters.

1The interfaces List<X> and Iterator<X> are part of the package java.util of the standard Java 1.5
API [212].

112



5.1 Interfaces as Implementing Types

The judgment `i T ≤ U , also defined in Figure 5.1, states that T is a subtype of
U in IIT. The subtyping relation is reflexive and transitive as usual and incorporates
retroactive interface implementations through rule iit-impl. The notation [T/X] denotes
the capture-avoiding type substitution replacing each Xi with Ti.

5.1.2 Undecidability of Subtyping in IIT

The undecidability of subtyping in IIT follows by reduction from Post’s Correspondence
Problem (PCP). In the following, Σ ranges over finite alphabets, Σ∗ denotes the set of
words over Σ, η and ζ range over elements from Σ∗, and ε denotes the empty word.

Definition 5.1 (PCP). Let {(η1, ζ1) . . . , (ηn, ζn)} be a set of pairs of non-empty words
over some finite alphabet Σ with at least two elements. A solution of PCP is a sequence
of indices i1 . . . ir such that ηi1 . . . ηir = ζi1 . . . ζir . The decision problem asks whether
such a solution exists.

Fact 5.2. The decision problem for PCP is undecidable [182, 90].

Theorem 5.3. Subtyping in IIT is undecidable.

Proof. Let P = {(η1, ζ1), . . . , (ηn, ζn)} be a particular instance of PCP over the alphabet
Σ. The encoding of P as an equivalent subtyping problem in IIT looks as follows. First,
words over Σ must be represented as types in IIT.

interface E (empty word ε)

interface L<X> (letter, for every L ∈ Σ)

Words η ∈ Σ∗ are formed with these interfaces through nested interface types. For
example, the word AB is represented by A<B<E>> Formally, the representation of a
word u is JηK := η # E, where η # T is the concatenation of η with a type T :

ε# T := T

Lη # T := L<η # T> for every L ∈ Σ

Two interfaces are required to model the search for a solution of PCP:

interface S<X,Y > (search state)

interface G (search goal)

The type S<JηK, JζK> represents a particular search state with accumulated indices
i1, . . . , ik such that η = ηi1 . . . ηik and ζ = ζi1 . . . ζik . To model valid transitions between
search states requires retroactive implementations of S for all i ∈ {1, . . . , n}:

implementation<X,Y > S<ηi #X, ζi # Y > [S<X,Y >] (5.1)

The type G represents the goal of a search, as expressed by the following implementa-
tion:

implementation<X> G [S<X,X>] (5.2)

It now holds that P has a solution if, and only if, there exists some i ∈ {1, . . . , n} such
that `i S<JηiK, JζiK> ≤ G is derivable. See Section D.1.1 for details.

113



5 Extensions

Example. Suppose the PCP instance P = {(η1, ζ1), (η2, ζ2)} with η1 = A, η2 = ABA,
ζ1 = AA, and ζ2 = B is given. The instance has the solution 1, 2, 1 because η1η2η1 =
ζ1ζ2ζ1 = AABAA. The IIT encoding of this problem looks like this:

interface E interface A<X> interface B<X>

interface S<X,Y > interface G

implementation<X,Y > S<A<X>,A<A<Y >>> [S<X,Y >] (5.3)

implementation<X,Y > S<A<B<A<X>>>,B<Y >> [S<X,Y >] (5.4)

implementation<X> G [S<X,X>] (5.5)

Define

T1 = S<Jη1K, Jζ1K> = S<JAK, JAAK>
T2 = S<JABAAK, JBAAK>
T3 = S<JAABAAK, JAABAAK>

Applications of rule iit-impl with implementations (5.4), (5.3), and (5.5) yield `i T1 ≤ T2,
`i T2 ≤ T3, and `i T3 ≤ G, respectively. Combining these three derivations through rule
iit-trans then yields `i T1 ≤ G as required.

5.1.3 Decidable Fragments

The undecidability proof of subtyping in IIT relies on two main ingredients:

Cyclic Interface Subtyping. Implementation definitions in IIT allow the introduction of
cycles in the subtyping graph of interfaces. Consider one of the implementations
defined by equation (5.1): it states that S<ηi#X, ζi#Y > is a supertype of S<X,Y >.
In the reduction from PCP, such cycles are used to encode the individual steps in
the search for a solution.

Multiple Instantiation Subtyping. Implementation definitions in IIT allow to introduce
two different instantiations of the same interface as supertypes of some other in-
terface. Consider again the implementations defined by equation (5.1): for ηi 6= ηj
or ζi 6= ζj , the implementations state that S<ηi #X, ζi # Y > 6= S<ηj #X, ζj # Y >
are both supertypes of S<X,Y >. In the reduction from PCP, multiple instantiation
subtyping encodes the choice between different pairs (ηi, ζi) and (ηj , ζj).

An obvious way to obtain decidable subtyping for IIT is to require that each type T
has only finitely many supertypes.

Definition 5.4. The set of T -supertypes, written ST , denotes the set of all supertypes of
T ; that is, ST := {U |`i T ≤ U}.

Restriction 5.5. The set ST must be finite for all types T .

Theorem 5.6. Under Restriction 5.5, subtyping in IIT is decidable.

114



5.1 Interfaces as Implementing Types

Figure 5.2 Algorithmic subtyping for IIT.

G ìa T ≤ U

iit-alg-refl

G ìa T ≤ T

iit-alg-impl

[V/X]J<U> 6= T implementation<X> I <T> [J<U>]

[V/X]I <T> /∈ G G ∪ {[V/X]I <T>} ìa [V/X]I <T> ≤ T
G ìa [V/X]J<U> ≤ T

ìa T ≤ U

iit-alg-sub
{T} ìa T ≤ U

ìa T ≤ U

Proof. Figure 5.2 defines an algorithmic subtyping relation ìa T ≤ U for IIT. The auxil-
iary relation G ìa T ≤ U uses a set of types G to prevent recursive invocations on a goal
that was visited before. Section D.1.2 proves that `i T ≤ U if, and only if, ìa T ≤ U .
Moreover, it proves that the algorithm induced by the rules in Figure 5.2 terminates.

Here is a restriction that eliminates cyclic interface subtyping.

Restriction 5.7. The underlying program must not contain a sequence def 1, . . . , def n
such that

(∀i ∈ {1, . . . , n}) def i = implementation<Xi> Ji<Ui> [Ii<Ti>]

and Ji = Ii+1 for all i = 1, . . . , n− 1 and Jn = I1.

Theorem 5.8. Restriction 5.7 implies Restriction 5.5.

Proof. See Section D.1.3.

Remark. Restriction 5.5 does not imply Restriction 5.7. A program containing only
one implementation, namely implementation I [I], obviously meets Restriction 5.5 but
violates Restriction 5.7.

The next restriction is strictly stronger than Restriction 5.7.

Restriction 5.9. For all implementation definitions

def 1 = implementation<X> J1<U> [I1<T>]

def 2 = implementation<Y > J2<W> [I2<V >]

of the underlying IIT program, it must hold that J1 6= I2.

115



5 Extensions

The full JavaGI language supports retroactive implementations with interfaces as im-
plementing types under this restriction (see the “no implementation chains” criterion in
Section 2.3.4). Section 6.1 explains this design decision and discusses decidability of
subtyping in full JavaGI.

Theorem 5.10. Under Restriction 5.9, subtyping in IIT is decidable.

Proof. Obviously, Restriction 5.9 implies Restriction 5.7, so the claim follows with The-
orem 5.8 and Theorem 5.6.

The last restriction considered eliminates multiple instantiation subtyping.

Restriction 5.11. If `i I <T> ≤ J<U> and `i I <T> ≤ J<V > then U = V .

Theorem 5.12. Restriction 5.11 implies Restriction 5.5.

Proof. Assume that Restriction 5.11 holds but Restriction 5.5 does not. Thus, there
exists a type I <T> such that SI <T> is infinite. Because types are formed from only
finitely many interface names, there must exist an interface name J and infinitely many,
pairwise disjoint sequences of types U1, U2, U3, . . . such that J<Ui> ∈ SI <T> for all i ∈ N.
This contradicts Restriction 5.11.

Remark. Neither Restriction 5.5 nor Restriction 5.7 implies Restriction 5.11: a program
consisting of

interface I

interface J<X>

implementation J<A> [I]

implementation J<B> [I]

meets both Restriction 5.5 and Restriction 5.7 but Restriction 5.11 does not hold. More-
over, Restriction 5.11 does not imply Restriction 5.7: a program consisting of

interface I

interface J

implementation I [J ]

implementation J [I]

meets Restriction 5.11 but violates Restriction 5.7.

5.2 Bounded Existential Types with Lower and Upper Bounds

A preliminary design of JavaGI [240] included bounded existential types [40] with lower
and upper bounds. Additionally, bounded existential types (existentials for short) also
supported implementation constraints. The main motivation for the inclusion of existen-
tials was to subsume different features under a single concept. In the following discussion,

116



5.2 Bounded Existential Types with Lower and Upper Bounds

the notation ∃XwhereP . T denotes a bounded existential type with quantified type
variables X, bounds P , and body type T . A bound is either a lower bound X superT ,
an upper bound X extendsT , or an implementation constraint U implements I <V >,
where U are types and I <V > is an interface I with type arguments V .

Existentials of this fashion subsume the following features:

� They properly generalize interface types. After all, an interface type I <T> simply
represents an unknown type implementing interface I <T>. Thus, I <T> is equivalent
to ∃XwhereX implements I <T> . X.

� They allow the general composition of interface types. For example, the type
∃XwhereX implements I <T>, X implements J<U> . X denotes the intersection
of types that implements both interface I <T> and J<U>.2

� They allow meaningful types in the presence of multi-headed interfaces. Consider
the observer pattern example from Section 2.1.7, which introduced a two-headed
interface ObserverPattern and an implementation of ObserverPattern for classes
ExprPool and ResultDisplay. In this context, the type ∃Xwhere ExprPool ∗
X implements ObserverPattern . X comprises all objects that act as an observer
for class ExprPool.

� They encompass Java wildcards [229, 37]. For example, consider the wildcard type
List<? extends Number>, which stands for a list with elements of some subtype of
Number. Its existential encoding is ∃XwhereX extends Number . List<X>. Java
also supports wildcards with lower bounds as in Comparator<? super String>,
which denotes a comparator for some unknown supertype of String. The existen-
tial encoding of this wildcard type is ∃XwhereX super String . Comparator<X>.

This section investigates decidability of subtyping for bounded existential types with
lower and upper bounds. It ignores implementation constraints for existentials because
lower and upper bounds are enough to render subtyping undecidable. Starting point of
the investigation is the calculus EXuplo to be defined in Section 5.2.1. Next, Section 5.2.2
proves undecidability of subtyping in EXuplo by reduction from subtyping in FD≤ [175],
a restricted form of the polymorphic λ-calculus extended with subtyping [40]. Finally,
Section 5.2.3 present two decidable fragments of EXuplo.

The results in this section are not only relevant to JavaGI’s full type system. First, it
may shed new light on the question whether or not subtyping for Java wildcards is decid-
able. Second, the programming language Scala [166] also supports bounded existential
types with lower and upper bounds. The subtyping rules for Scala’s existentials [166,
Sections 3.2.10 and 3.5.2] are similar to that in EXuplo, so it is likely that subtyping in
Scala is also undecidable. Section 8.10 discusses these matters in more detail.

5.2.1 The Calculus EXuplo

The calculus EXuplo supports bounded existential types with lower and upper bounds.
Other researchers [228, 38, 37] use formal systems similar to EXuplo for modeling Java

2Java 1.5 can denote such types only in the bound of generic type variables.

117



5 Extensions

Figure 5.3 Syntax, constraint entailment, and subtyping for EXuplo.

Syntax

N,M ::= C<X> | Object

T,U, V,W ::= X | N | ∃XwhereP .N
P,Q ::= X extendsT | X superT

X, Y, Z ∈ TvarNameEXuplo C,D ∈ ClassNameEXuplo

∆ ex T extendsU ∆ ex T superU

exuplo-extends
∆ `ex T ≤ U

∆ ex T extendsU

exuplo-super
∆ `ex U ≤ T

∆ ex T superU

∆ `ex T ≤ U

exuplo-refl

∆ `ex T ≤ T

exuplo-trans
∆ `ex T ≤ U ∆ `ex U ≤ V

∆ `ex T ≤ V

exuplo-object

∆ `ex T ≤ Object

exuplo-extends
X extendsT ∈ ∆

∆ `ex X ≤ T

exuplo-super
X superT ∈ ∆

∆ `ex T ≤ X

exuplo-open
∆, P `ex N ≤ T X ∩ ftv(∆, T ) = ∅

∆ `ex ∃XwhereP .N ≤ T

exuplo-abstract

T = [U/X]N (∀i) ∆ ex [U/X]Pi

∆ `ex T ≤ ∃XwhereP .N

wildcards. It is not the intention of EXuplo to provide another formalization of wildcards,
but rather to expose the essential ingredients that make subtyping undecidable in a
calculus as simple as possible.

Figure 5.3 defines the syntax and the constraint entailment and subtyping relations
of EXuplo. As usual, overbar notation denotes sequencing (see Definition 3.1). A class
type N is either Object or an instantiated generic class C<X>, where the type arguments
must be type variables. A type T is a type variable, a class type, or an existential. In
EXuplo, the body of an existential must be a class type. Existentials that differ only in
the names of bound type variables are considered equal. A constraint P places either an
upper bound (X extendsT ) or a lower bound (X superT ) on a type variable X. Type
environments ∆ are finite set of constraints P with ∆, P standing for ∆ ∪ {P}.

Class definitions and inheritance are omitted from EXuplo. The only assumption is
that every class name C comes with a fixed arity that is respected when applying C to
type arguments. There are some further (implicit) restrictions:

118



5.2 Bounded Existential Types with Lower and Upper Bounds

Restriction 5.13. An existential must abstract over at least one type variable and all its
bounded type variables must appear in the body type. That is, if T = ∃XwhereP .N
then X 6= • and X ⊆ ftv(N).

Restriction 5.14. An existential may only constrain bounded type variables. That is,
if T = ∃XwhereP .N and P ∈ P , then P = Y extendsT or P = Y superT with
Y ∈ X.

Restriction 5.15. A type variable must not have both upper and lower bounds.3

Constraint entailment ∆ ex P establishes validity of constraint P under type envi-
ronment ∆. The subtyping relation ∆ `ex T ≤ U states that T is a subtype of U under
type environment ∆. It is reflexive and transitive as usual, has Object as a supertype
of all other types, and incorporates lower and upper bounds of type variables via rules
exuplo-super and exuplo-extends, respectively. Rule exuplo-open opens an existential
on the left-hand side of the subtyping relation by moving its constraints into the type
environment. The premise X ∩ ftv(∆, T ) = ∅ ensures that the existentially quantified
type variables are sufficiently fresh and do not escape their scope. Rule exuplo-abstract

deals with existentials on the right-hand side of the subtyping relation. It states that a
type is a subtype of some existential if the constraints of the existential hold under an ap-
propriate substitution. As before, [T/X] denotes the capture-avoiding type substitution
replacing each Xi with Ti.

5.2.2 Undecidability of Subtyping in EXuplo

To get a feeling how subtyping derivations in EXuplo may lead to infinite regress, assume
that D and D′ are two unary classes and consider the goal

∆ `ex X ≤ ¬D′<X>

where ∆ := {X extends¬U}, U := ∃XwhereX extends¬D′<X> .D′<X> and, for
any type T , the notation ¬T abbreviates ∃XwhereX superT .D<X> for some fresh
X. Searching for a derivation of this goal quickly leads to a subgoal of the form ∆′ `ex

X ≤ ¬D′<X> such that ∆′ := ∆, Z superU where Z is a fresh type variable introduced
by rule exuplo-open:

exuplo-extends
X extends¬U ∈ ∆

∆ `ex X ≤ ¬U

exuplo-abstract

exuplo-extends

...

∆′ `ex X ≤ ¬D′<X>

∆′ ex X extends¬D′<X>

∆′ `ex D′<X> ≤ U
Z superU ∈ ∆′

∆′ `ex U ≤ Z
exuplo-super

∆′ `ex D′<X> ≤ Z
exuplo-trans

∆′ ex Z superD′<X>
exuplo-super

∆′ `ex D<Z> ≤ ¬D′<X>
exuplo-abstract

∆ `ex ¬U ≤ ¬D′<X>
exuplo-open

∆ `ex X ≤ ¬D′<X>
exuplo-trans

3Modeling Java wildcards requires upper and lower bounds for the same type variable in certain situa-
tions.

119



5 Extensions

Figure 5.4 Syntax and subtyping for FD≤ .

Syntax

τ+ ::= Top | ∀α0≤τ−0 . . . αn≤τ−n .¬ τ−
τ− ::= α | ∀α0 . . . αn .¬ τ+

Ω− ::= ∅ | Ω−, α≤τ−

α, γ ∈ TvarNameD

Ω− D̀ σ− ≤ τ+

d-top

Ω D̀ τ ≤ Top

d-var
τ 6= Top Ω D̀ Ω(α) ≤ τ

Ω D̀ α ≤ τ
d-all-neg

Ω, α0≤τ0 . . . αn≤τn D̀ τ ≤ σ
Ω D̀ ∀α0 . . . αn .¬σ ≤ ∀α0≤τ0 . . . αn≤τn .¬ τ

The formal undecidability proof of subtyping in EXuplo is by reduction from FD≤ [175],

a restricted version of F≤ [40]. Pierce defines FD≤ for his undecidability proof of F≤
subtyping [175]. Figure 5.4 recapitulates the syntax and the subtyping relation of FD≤ .
Let n be a fixed natural number. A type τ is either an n-positive type, τ+, or an n-
negative type, τ−, where n stands for the number of type variables (minus one) bound
at the top level of the type. (The symbol “¬ ” used in the syntax of types is not an
abbreviation as before but merely serves as a syntactic marker.) An n-negative type
environment Ω− associates type variables α with upper bounds τ−. The polarity (+ or −)
characterizes at which positions of a subtyping judgment a type or type environment may
appear. For readability, the polarity is often omitted and n is left implicit.

An n-ary subtyping judgment in FD≤ has the form Ω− D̀ σ− ≤ τ+, where Ω− is an
n-negative type environment, σ− is an n-negative type, and τ+ is an n-positive type.
Only n-negative types appear to the left and only n-positive types appear to the right
of the ≤ symbol. The subtyping rule d-all-neg compares two quantified types σ =
∀α0 . . . αn .¬σ′ and τ = ∀α0≤τ0 . . . αn≤αn .¬ τ ′ by swapping the left- and right-hand
sides of the subtyping judgment and checking τ ′ ≤ σ′ under the extended environment
Ω, α0≤τ0 . . . αn≤τn. The rule is correct with respect to F≤ because we may interpret
every FD≤ type as an F≤ type:

∀α0 . . . αn .¬σ′ ≡ ∀α0≤Top . . . ∀αn≤Top.∀γ≤σ′ . γ (γ fresh)
∀α0≤τ0 . . . αn≤αn .¬ τ ′ ≡ ∀α0≤τ0 . . . ∀αn≤τn.∀γ≤τ ′ . γ (γ fresh)

Using these abbreviations, every FD≤ subtyping judgment can be read as an F≤ sub-

typing judgment. The subtyping relations in FD≤ and F≤ coincide for judgments in their
common domain [175].

120



5.2 Bounded Existential Types with Lower and Upper Bounds

Figure 5.5 Reduction from FD≤ to EXuplo.

JTopK+ = Object

J∀α0≤τ−0 . . . αn≤τ−n .¬ τ−K+ = ¬∃Y,Xαi whereXα0 extends Jτ0K− . . .
Xαn extends JτnK−, Y extends JτK−

.C<Y,Xαi>

JαK− = Xα

J∀α0 . . . αn .¬ τ+K− = ¬∃Y,Xαi whereY extends JτK+ .C<Y,Xαi>

J∅K− = ∅
JΩ, α≤τ−K− = JΩK−, Xα extends JτK−

JΩ− D̀ τ− ≤ σ+K = JΩK− `ex JτK− ≤ JσK+

¬T ≡ ∃XwhereX superT .D<X> (X sufficiently fresh)

It is sufficient to consider only closed judgments. Define the domain of a FD≤ type
environment as dom(α1≤τ1, . . . , αn≤τn) := {α1, . . . , αn}. A type τ is closed under Ω if
ftv(τ) ⊆ dom(Ω) and, if τ = ∀α0≤τ0 . . . αn≤τn .¬σ, then no αi appears free in any τj . A
type environment Ω is closed if Ω = ∅ or Ω = Ω′, α≤τ with Ω′ closed and τ closed under
Ω′. A judgment Ω D̀ τ ≤ σ is closed if Ω is closed and τ, σ are closed under Ω.

Fact 5.16. Subtyping in FD≤ is undecidable [175].

We now state the central theorem of this section and sketch its proof.

Theorem 5.17. Subtyping in EXuplo is undecidable.

Proof. The proof is by reduction from FD≤ . Figure 5.5 defines a translation from FD≤
types, type environments, and subtyping judgments to their corresponding EXuplo forms.
The translation of an n-ary subtyping judgment assumes the existence of two EXuplo
classes: C accepts n+2 type arguments, and D takes one type argument. The superscripts
in J·K+ and J·K− indicate whether the translation acts on positive or negative entities.

As in the example at the beginning of this subsection, a negated type, written ¬T ,
is an abbreviation for an existential with a single super constraint (see Figure 5.5).
The super constraint simulates the behavior of the FD≤ subtyping rule d-all-neg, which
swaps the left- and right-hand sides of subtyping judgments.

An n-positive type ∀α0≤τ−0 . . . αn≤τ−n .¬ τ− is translated into a negated existential.
The existentially quantified type variables Xαi (abbreviating Xα0 , . . . , Xαn) correspond
to the universally quantified type variables α0, . . . , αn. The bound JτK− of the fresh type
variable Y represents the body ¬ τ− of the original type. It is not possible to use JτK−

directly as the body because existentials in EXuplo have only class types as their bodies.
The translation for n-negative types is similar to the one for n-positive types. It is easy
to see that the EXuplo types in the image of the translation meet Restrictions 5.13, 5.14,
and 5.15. Type environments and subtyping judgments are translated in the obvious
way.

121



5 Extensions

Figure 5.6 Subtyping for EXuplo without transitivity rule.

∆ ex
′ T extendsU ∆ ex

′ T superU

exuplo-extends’
∆ `ex

′ T ≤ U
∆ ex

′ T extendsU

exuplo-super’
∆ `ex

′ U ≤ T
∆ ex

′ T superU

∆ `ex
′ T ≤ U

exuplo-refl’
T = X or T = N

∆ `ex
′ T ≤ T

exuplo-object’

∆ `ex
′ T ≤ Object

exuplo-extends’
X extendsT ′ ∈ ∆ ∆ `ex

′ T ′ ≤ T
∆ `ex

′ X ≤ T

exuplo-super’
X superT ′ ∈ ∆ ∆ `ex

′ T ≤ T ′

∆ `ex
′ T ≤ X

exuplo-open’
∆, P `ex

′ N ≤ T X ∩ ftv(∆, T ) = ∅
∆ `ex

′ ∃XwhereP .N ≤ T

exuplo-abstract’

N = [Y/X]M (∀i) ∆ ex
′ [Y/X]Pi

∆ `ex
′ N ≤ ∃XwhereP .M

It remains to verify that Ω D̀ τ ≤ σ is derivable in FD≤ if, and only if, JΩ D̀ τ ≤ σK
is derivable in EXuplo. The “⇒” direction is an easy induction on the derivation of Ω D̀

τ ≤ σ. The “⇐” direction requires more work because the transitivity rule exuplo-trans

(Figure 5.3) involves an intermediate type which is not necessarily in the image of the
translation. Hence, a direct proof by induction on the derivation of JΩ D̀ τ ≤ σK fails.
To solve this problem, Figure 5.6 defines an alternative subtyping relation ∆ `ex

′ T ≤ U
for EXuplo that does not have a built-in transitivity rule. It is then possible to prove
that ∆ `ex

′ T ≤ U if, and only if, ∆ `ex T ≤ U and that JΩK− `ex
′ JτK− ≤ JσK+ implies

Ω D̀ τ ≤ σ. Section D.2.1 provides all the details and the full proofs.

5.2.3 Decidable Fragments

This section presents two decidable fragments of EXuplo. Definition 3.10 on page 57
already introduced the notion of contractive type environments in the context of CoreGI.
The following definition restates the definition for EXuplo:

Definition 5.18 (Contractive type environments for EXuplo). A type environment ∆ is
contractive if, and only if, there exist no type variables X1, . . . , Xn such that X1 = Xn

and either Xi extendsXi+1 ∈ ∆ for all i ∈ {1, . . . , n − 1} or Xi superXi+1 ∈ ∆ for all
i ∈ {1, . . . , n− 1}.

122



5.2 Bounded Existential Types with Lower and Upper Bounds

Theorem 5.19. If all type environments involved are contractive and support for lower
bounds is dropped, then subtyping in EXuplo becomes decidable.

Proof. The relation ∆ `ex
′ T ≤ U defined in Figure 5.6 is equivalent to EXuplo’s subtyp-

ing relation. Moreover, the algorithm induced by the rules in Figure 5.6 terminates. See
Section D.2.2 for details.

Definition 5.20. A bounded existential type ∃XwhereP .N is variable-bounded if all
constraints in P have only type variables as their bounds; that is, for all P ∈ P either
P = Y extendsZ or P = Y superZ.

Theorem 5.21. If all type environments involved are contractive, support for upper bounds
is dropped, and all existentials are variable-bounded, then subtyping in EXuplo becomes
decidable.

Proof. Similar to the proof of Theorem 5.19, see Section D.2.3.

123





6
Implementation

A new programming language with a convincing design and a rigorous formalization is
not very useful without a proper implementation in form of a compiler or interpreter. The
current chapter addresses this problem and presents the implementation of a compiler
and a run-time system for JavaGI.

The JavaGI compiler is an extension of the Eclipse Compiler for Java [62] and generates
byte code that runs on a standard Java Virtual Machine (JVM [125]). It supports the
full Java 1.5 language and all JavaGI-specific features presented in this dissertation. The
run-time system assists the compiler by maintaining the pool of available retroactive
implementations, by checking the well-formedness criteria defined in Section 2.3.4, and
by providing certain run-time operations.

Besides the compiler and the run-time system, there also exists a JavaGI plugin for
Eclipse [60], a widely used integrated development environment (IDE). The homepage
of the JavaGI project [239] makes the source code of the compiler, the run-time system,
and the Eclipse plugin available under the terms of the Eclipse Public License [61].

Chapter Outline. The chapter contains four sections.

� Section 6.1 sketches how to extend CoreGI to the full JavaGI language.

� Section 6.2 shows how to translate JavaGI constructs to Java byte code.

� Section 6.3 discusses JavaGI’s run-time system.

� Section 6.4 describes the JavaGI plugin for Eclipse.

6.1 Extending CoreGI to JavaGI

The CoreGI calculus from Chapter 3 lacks several features present in the full JavaGI
language. Section 2.3.3 already sketched how to typecheck method invocations without
CoreGI’s restrictions that namespaces for class and interface methods are disjoint and

125



6 Implementation

that names of interface methods are globally unique. Other features missing in CoreGI
include imperative features, visibility modifiers, type erasure [26], wildcards [229], in-
ference of type arguments for method invocations [82, § 15.12.2.7][204], and interfaces
as implementing types. The following discussion explains how the compiler for the full
language handles these features. Other features of JavaGI not included in CoreGI are
straightforward to implement.

6.1.1 Imperative Features

JavaGI does not introduce any new imperative features (with respect to Java) and most
of Java’s imperative features are orthogonal to the JavaGI-specific extensions. Thus, we
conjecture that type soundness of CoreGI also holds in a setting with Java’s imperative
features. A minor problem arises when JavaGI’s dynamic-dispatch algorithm for method
invocations encounters null as one of the dispatch arguments. The implementation
handles this case by throwing a NullPointerException, analogously to the case in Java
where null appears as the receiver of a method invocation.

6.1.2 Visibility Modifiers

JavaGI fully respects Java’s encapsulation properties. Inside retroactive implementa-
tions, regular Java visibility rules apply; for example, private fields and methods of the
implementing types are not accessible. JavaGI regards all implementations as public.

6.1.3 Type Erasure

CoreGI’s dynamic semantics is a type-passing semantics; that is, type arguments are
available at run time. In contrast, Java and the full JavaGI language perform type
erasure during compilation, so type arguments are not available at run time.

The definition of CoreGI carefully avoids relying too much on run-time type arguments.
For example, well-formedness criterion wf-iface-3 prevents implementing types from
appearing nested inside argument types of method signatures and criterion wf-prog-4
requires constraints of implementation definitions to be consistent with respect to sub-
typing among implementing types. Both criteria ensure that dynamic dispatch does not
require run-time type arguments.

At other places, the definition of CoreGI requires minor adjustments to work under
a type erasure semantics. For example, CoreGI’s well-formedness criterion wf-prog-1,
which prevents overlapping implementation definitions, needs to be adapted for the full
language (see Section 2.3.4, criterion “no overlap”).

6.1.4 Wildcards

Proving type soundness for Java wildcards [229] is known to be a tricky business [37].
Nevertheless, we believe that type soundness holds for the full JavaGI language including
wildcards because JavaGI generalizes CoreGI’s well-formedness criteria wf-iface-2 and
wf-iface-3 to prevent implementing type variables such as This from appearing nested

126



6.2 Translating JavaGI to Java Byte Code

inside generic types at all. Thus, implementing type variables, which behave covariantly,
never form upper or lower bounds of wildcards, the latter of which behave contravariantly.

Wildcards do not only challenge type soundness but also decidability of subtyping. In
general, it is still an open question whether subtyping for Java wildcards is decidable (see
Section 8.10). However, the inclusion of wildcards in JavaGI is a concession to ensure
backwards compatibility with Java 1.5. An embedding of generalized interfaces in other
languages such as C# could easily drop support for wildcards. Thus, the decidability
question for wildcards is not intrinsic to the decidability of subtyping in JavaGI.

6.1.5 Inference of Type Arguments

The JavaGI compiler supports inference of type arguments for method invocations by
simply reusing Java’s inference algorithm [82, § 15.12.2.7]. Consequently, JavaGI-specific
constraints in method signatures do not contribute to the improvement of type argu-
ments. In general, this is not a problem because Java’s inference algorithm is incomplete
anyway [204]. If inference fails, then the programmer may still invoke the method in
question by specifying the type arguments explicitly.

JavaGI-specific features run no risk of introducing soundness-holes into the type infer-
ence process because the JavaGI compiler verifies correctness of inference during type-
checking. This verification step is also needed for plain Java because Java’s inference
algorithm is unsound [204].

6.1.6 Interfaces as Implementing Types

CoreGI supports only classes as implementing types of retroactive interface implemen-
tations. The full language, however, also supports interfaces as implementing types
(see for example the implementation of EQ for interface List<X> in Section 2.1.3). Sec-
tion 5.1 proved that interfaces as implementing types renders subtyping—and hence
typechecking—undecidable. That section also defined four different restrictions that still
allow interfaces as implementing types but keep subtyping decidable.

The full JavaGI language supports interfaces as implementing types under one of these
restrictions (Restriction 5.9 in Section 5.1, mentioned as well-formedness criterion “no
implementation chains” in Section 2.3.4). It prefers Restriction 5.9 over Restriction 5.7
because the former is easier to check and simplifies the detection of ambiguities aris-
ing through conflicting implementation definitions. Further, Restriction 5.9 gives raise
to an efficient implementation of dynamic method lookup because it allows the use of
Java’s subtype check instead of JavaGI’s when searching for an implementation definition
matching certain run-time types. It is unclear how to check the two other restrictions
from Section 5.1 (Restriction 5.5 and Restriction 5.11) in practice.

6.2 Translating JavaGI to Java Byte Code

The compilation scheme employed by the JavaGI compiler is based on the formal trans-
lation from CoreGI[ to iFJ defined in Chapter 4. It never modifies existing source or byte
code, so existing clients are not affected and retroactive interface implementations can

127



6 Implementation

Figure 6.1 Translation of interface EQ and class Lists from Section 2.1.2.

// Java 1.4
import javagi.runtime.RT;
import javagi.runtime.Wrapper;
import java.util.*;
// Translation of the EQ interface
interface EQ { boolean eq(Object that); }
public interface EQ$Dict {
public static final int[] eq$DispatchVector = new int[]{0,0,0,1};
public boolean eq(Object this$, Object that);

}
public class EQ$Wrapper extends Wrapper implements EQ {

public static boolean eq$Dispatcher(Object this$, Object that) {
Object dict = RT.getDict(EQ$Dict.class, EQ$Dict.eq$DispatchVector,

new Object[]{this$, that});
return ((EQ$Dict) dict).eq(this$, that);

}
public EQ$Wrapper(Object obj) {

super(obj); // The superclass constructors stores obj in f i e l d this .wrapped
}
public boolean eq(Object that) {

// JavaGI compiler guarantees that this method is never cal led
throw new Error("Binary method invoked on wrapper object");

}
// Superclass delegates hashCode, equals , and toString to this .wrapped

}
// Translation of class Lists
class Lists {
static Object find(Object x, List list) {

Iterator iter = list.iterator();
while (iter.hasNext()) {
Object y = iter.next();
if (EQ$Wrapper.eq$Dispatcher(x, y)) return y;

}
return null;

}
}

be defined for arbitrary classes and interfaces, even if they are part of Java’s standard
library. Nevertheless, the compilation scheme allows for in-place object adaption; that
is, new operations are available even for existing objects.

To demonstrate how the compilation scheme works, Figure 6.1 contains the translation
of the interface EQ and the class Lists from Section 2.1.2. Moreover Figure 6.2 contains
the translation of the retroactive implementations defined in Sections 2.1.2 and 2.1.3.
For readability, the figures show Java 1.4 source code instead of the byte code generated
by the JavaGI compiler.

128



6.2 Translating JavaGI to Java Byte Code

6.2.1 Translating Interfaces

The JavaGI compiler generates for each interface J a dictionary interface J$Dict. For
single-headed interfaces, it also generates a wrapper class J$Wrapper and a Java 1.4
interface J using Java’s erasure translation [96, 82]. For example, the type variable
This of interface EQ becomes Object in the code in Figure 6.1.

The dictionary interface contains the same methods as the original interface but makes
the receiver of all non-static methods explicit by introducing a fresh argument of type
Object (the this$ argument of eq in EQ$Dict). Furthermore, the dictionary interface
contains a dispatch vector of name m$DispatchVector for each non-static method m of
the original interface. The dispatch vector connects the interface’s implementing types
with the method’s receiver and argument types. JavaGI’s run-time system relies on the
dispatch vector to perform multiple dispatch. For an n-headed interface, the dispatch
vector is an int array of length 2n where, for i ∈ {0, . . . , n − 1}, the value at index 2i
denotes the zero-based position of the implementing type corresponding to the receiver
or argument whose position is stored at index 2i + 1.1 (Positions of argument types
start at one, the receiver type has position zero.) For example, the receiver and the first
argument of eq both refer to the implementing type This of EQ, so the dispatch vector
in EQ$Dict is {0,0,0,1}.

The wrapper class serves as an adapter when a class is used at an interface type
that it implements only retroactively. Most aspects of wrapper classes are standard (see
Section 4.3 and the work by Baumgartner and coworkers [10]), but there are some JavaGI-
specific issues. First, the eq method of EQ$Wrapper always throws an exception because
JavaGI’s type system ensures that such a binary method is never called on a wrapper
object. (Section 2.3.1 explains why such a call would be unsound.)

Second, the wrapper class provides a static dispatcher method m$Dispatcher for every
method m of the original interface. These dispatcher methods simplify the translation of
retroactive method invocations. The dispatcher method for eq (named eq$Dispatcher)
calls getDict from class javagi.runtime.RT,2 passing the class object for EQ’s dictio-
nary, the dispatch vector for eq, and an array containing the actual arguments. Based on
this information, the run-time system returns a dictionary object corresponding to some
retroactive implementation of EQ, through which the dispatcher invokes the eq method.
For a non-binary method, the dispatcher would first try to invoke the method directly on
this$, provided this$ implemented the method’s declaring interface non-retroactively.

6.2.2 Translating Invocations of Retroactively Implemented Methods

The translation of an invocation of a retroactively implemented method just invokes the
corresponding dispatcher method of the wrapper class of the method’s defining interface.
For example, to compare two expressions for equality, the find method of class Lists
calls eq$Dispatcher defined in EQ$Wrapper (see Figure 6.1).

1It would be more natural to encode the dispatch vector as an n-element array of pairs of ints. However,
Java does not support a primitive type for pairs, so we choose the alternative, flat representation.

2The getDict method is the analogon to iFJ’s getdict primitive.

129



6 Implementation

6.2.3 Translating Retroactive Interface Implementations

Figure 6.2 presents the translation of the retroactive implementation definitions from
Sections 2.1.2 and 2.1.3, again displaying Java 1.4 source code instead of byte code.
The translation of a retroactive implementation definition results in a dictionary class
that implements the dictionary interface corresponding to the implementation’s interface.
For example, the dictionary class EQ$Dict$IntLit corresponds to the implementation
EQ [IntLit] and implements the dictionary interface EQ$Expr.

To implement the methods of the dictionary interface, the methods of the original
implementation need to be adapted: they have an extra parameter this$ to make the
receiver explicit and the types of those arguments declared as implementing types are
lifted to match the corresponding argument types in the dictionary interface. For exam-
ple, the argument that of the eq method in the implementation EQ [IntLit] has type
IntLit, but the corresponding argument in the original EQ interface is declared with
implementing type This. Hence, the JavaGI compiler lifts the type of that to Object, as
required by the eq method of the EQ$Dict interface.

To recover from this loss of type information, the compiler performs appropriate down-
casts on these arguments. For example, the eq method of class EQ$Dict$IntLit casts
the arguments this$ and that from Object to IntLit, assigns the results to fresh local
variables i1 and i2, respectively, and uses these local variables instead of this$ and
that in the rest of the method body.

Besides the dictionary interface, each dictionary class also implements the interface
javagi.runtime.Dictionary provided by JavaGI’s runtime system. This interface re-
quires a method _$JavaGI$implementationInfo used to reify information about the im-
plementation. More specifically, the ImplementationInfo object returned by the method
contains information about the type parameters, the interface, the implementing types,
the constraints, and the abstract methods of the implementation. Further, it also specifies
which of the implementing types are dispatch types.3

Figure 6.2 also contains the translation of the parameterized implementation of EQ
for List<X> from Section 2.1.3. The resulting code demonstrates that the translation
mechanism generalizes seamlessly to parameterized and type conditional implementa-
tions. The translation of inheritance between implementation definitions (not shown in
Figure 6.2) is also straightforward because it simply boils down to inheritance between
the corresponding dictionary classes.

6.3 Run-Time System

JavaGI’s run-time system maintains the available implementation definitions, checks their
well-formedness according to the criteria in Section 2.3.4, loads new implementation
definitions at run time, and performs dynamic dispatch on retroactively implemented
methods. Moreover, it carries out certain cast operations, instanceof tests, and identity
comparisons (==), for which the regular JVM instructions are not sufficient in the presence
of wrappers (see also Section 4.3). For example, to execute a JavaGI cast (J)obj, where

3Section 2.3.4 and Figure 3.17 defined the notion of dispatch types.

130



6.3 Run-Time System

Figure 6.2 Translation of retroactive implementations from Sections 2.1.2 and 2.1.3.

// Java 1.4
import javagi.runtime.Dictionary;
import javagi.runtime.ImplementationInfo;
import java.util.*;
// Translations of EQ [Expr]
public class EQ$Dict$Expr implements EQ$Dict, Dictionary {
public boolean eq(Object this$, Object that) {

// load−time checks ensure that this method is never cal led
throw new Error("abstract method");

}
public ImplementationInfo _$JavaGI$implementationInfo() { ... }

}
// Translation of EQ [ IntLit ]
public class EQ$Dict$IntLit implements EQ$Dict, Dictionary {
public boolean eq(Object this$, Object that) {
IntLit i1 = (IntLit) this$; IntLit i2 = (IntLit) that;
return i1.value == i2.value;

}
public ImplementationInfo _$JavaGI$implementationInfo() { ... }

}
// Translation of EQ [ PlusExpr ]
public class EQ$Dict$PlusExpr implements EQ$Dict, Dictionary {
public boolean eq(Object this$, Object that) {
PlusExpr e1 = (PlusExpr) this$; PlusExpr e2 = (PlusExpr) that;
return EQ$Wrapper.eq$Dispatcher(e1.left, e2.left) &&

EQ$Wrapper.eq$Dispatcher(e1.right, e2.right);
}
public ImplementationInfo _$JavaGI$implementationInfo() { ... }

}
// Translation of EQ [ List<X> ]
public class EQ$Dict$List implements EQ$Dict, Dictionary {

public boolean eq(Object this$, Object that) {
List l1 = (List) this$; List l2 = (List) that;
Iterator thisIt = l1.iterator(); Iterator thatIt = l2.iterator();
while (thisIt.hasNext() && thatIt.hasNext()) {
Object thisX = thisIt.next(); Object thatX = thatIt.next();
if (! EQ$Wrapper.eq$Dispatcher(thisX, thatX)) return false;

}
return !(thisIt.hasNext() || thatIt.hasNext());

}
public ImplementationInfo _$JavaGI$implementationInfo() { ... }

}

131



6 Implementation

J is an interface, the run-time system performs the following steps:

1. Remove a potential wrapper around obj to arrive at object obj’.

2. Check whether the run-time type T of obj’ implements J.

3a. If T implements J retroactively then the result of the cast is obj’ wrapped by a
J-wrapper.

3b. If T implements J non-retroactively then the result of the cast is simply obj’.

3c. If T does not implement J then the cast throws a ClassCastException.

The JavaGI-specific version of instanceof works similarly but evaluates to true in
cases 3a and 3b and to false in case 3c. Performing an identity comparison x == y on
two non-primitive values x and y requires to remove potential wrappers around x and
y (unless their static types are class types different from Object) before performing the
corresponding JVM instruction.

Initialization of the run-time system happens lazily through a static initializer. The ini-
tializer code first searches all available implementation definitions by reading the names
of dictionary classes from extra files generated by the compiler. It then loads the dictio-
nary classes and performs the well-formedness checks described in Section 2.3.4. Finally,
it groups the implementation definitions according to the interface they implement. If
several implementations for the same interface exist, the run-time system orders them
by specificity to ensure correct and efficient method lookup.

Optionally, JavaGI’s run-time system installs a custom class loader, which assists
in checking the “downward closed” and the “completeness” criterion described in Sec-
tion 2.3.4. Without the custom class loader, the run-time system has to resort to conser-
vative approximations of these criteria. The custom class loader could also automatically
load the retroactive implementations whenever java.lang.Class.forName(String name)
is invoked, thus eliminating the need for the custom class loading method provided by
JavaGI’s runtime system.4

6.4 JavaGI Eclipse Plugin

The JavaGI Eclipse Plugin (JEP) allows the development of JavaGI applications using
the familiar Eclipse IDE [60]. The aim of JEP is to provide a drop-in replacement for
Eclipse’s Java Development Toolkit (JDT). JEP’s functionality includes syntax high-
lighting, support for compiling and executing JavaGI programs, interoperability between
JavaGI and Java projects, most of JDT’s refactorings, and Java-specific content assist.5

At the moment, JEP does not support the debugging of JavaGI programs and content
assist for JavaGI-specific constructs. Implementing these features, however, is straight-
forward and does not pose significant challenges.

4The current implementation does not support this feature, though.
5Content assist is an Eclipse feature that enables completion of code fragments.

132



7
Practical Experience

The preceding chapter described the implementation of a compiler and a run-time system
for JavaGI. This chapter reports on practical experience with JavaGI and its implementa-
tion. First, it describes three real-world case studies that go far beyond the toy examples
from Chapter 2. The case studies once again demonstrate the benefits of generalized in-
terfaces and they show that the JavaGI compiler and the run-time system are stable and
mature. Second, the chapter presents benchmark data indicating that the JavaGI com-
piler generates code with good performance: plain Java code compiled with the JavaGI
compiler runs as fast as the same code compiled with a regular Java compiler, but there
is a performance penalty for JavaGI-specific features. The source code of the case studies
and the benchmarks is available online [239].

Chapter Outline. Section 7.1 describes three real-world case studies and contrasts the
solutions in JavaGI with solutions in other languages. Section 7.2 presents benchmarks
and compares the performance of JavaGI with that of plain Java.

7.1 Case Studies

We performed three case studies using the JavaGI implementation described in Chapter 6:
a framework for evaluating XPath [47] expressions (Section 7.1.1), a web application
framework (Section 7.1.2), and a refactoring of the Java Collection Framework [211]
(Section 7.1.3).

7.1.1 XPath Evaluation

For this case study, we implemented a framework for evaluating XPath1 expressions. The
framework is not bound to a specific XML [27] implementation but can be used with and
adapted to many different object models, including object models unrelated to XML. For

1XPath is a language for addressing parts of an XML [27] document [47].

133



7 Practical Experience

Figure 7.1 Jaxen’s Navigator interface (excerpt).

// Java
package org.jaxen;
import java.util.Iterator;
public interface Navigator {

// Returns an Iterator matching the child XPath axis .
Iterator getChildAxisIterator(Object node) throws UnsupportedAxisException;
// Returns the local name of the given element node.
String getElementName(Object element);
// Returns the qual i f ied name of the given attribute node.
String getAttributeQName(Object attr);
// Loads a document from the given URI.
Object getDocument(String uri) throws FunctionCallException;
// Returns a parsed form of the given XPath string .
XPath parseXPath(String xpath) throws SAXPathException;
// omitted 36 methods

}

plain Java, Jaxen [102] already provides such a framework. The goal of the case study
was to compare the JavaGI solution with the one provided by Jaxen.

The Jaxen Approach

Jaxen specifies an interface Navigator, which contains all methods required by its in-
ternal XPath evaluation engine. The interface has methods for accessing the names of
element nodes and attribute nodes, for retrieving the values of attribute and text nodes,
for constructing iterators over the various XPath axis, and so on.2 To stay generic, the
Navigator interface uniformly uses Object as type for the different node kinds. Fig-
ure 7.1 shows an excerpt from this interface.

Using Jaxen requires to implement the Navigator interface for the object model under
consideration. To simplify this task, Jaxen comes with an abstract class DefaultNavigator
that implements the Navigator interface and contains default implementations for roughly
half of the interface’s methods. Jaxen also provides concrete Navigator implementations
for various XML libraries such as dom4j [57] and JDOM [94]. Figure 7.2 shows an excerpt
of Jaxen’s implementation of the Navigator interface for dom4j.

The JavaGI Approach

The JavaGI XPath evaluation framework specifies a model of the XPath node hierarchy
based on interfaces rooted at interface XNode. These interfaces provide the methods
required by the evaluation engine. (Internally, the JavaGI framework relies on Jaxen to
perform the actual evaluation.) Figure 7.3 shows those parts of the node hierarchy that
correspond to the excerpt of the Navigator interface in Figure 7.1.

2The following discussion ignores comment, namespace, and processing instruction nodes. It is straight-
forward to include these additional kinds of nodes.

134



7.1 Case Studies

Figure 7.2 Jaxen’s implementation of the Navigator interface for dom4j (excerpt).

// Java
package org.jaxen.dom4j;
import java.util.Iterator;
import org.jaxen.DefaultNavigator;
import org.jaxen.XPath;
import org.jaxen.JaxenConstants;
import org.jaxen.FunctionCallException;
import org.jaxen.saxpath.SAXPathException;
import org.dom4j.Attribute;
import org.dom4j.Branch;
import org.dom4j.Element;
import org.dom4j.Document;
public class Dom4jNavigator extends DefaultNavigator {

public Iterator getChildAxisIterator(Object node) {
if (node instanceof Branch) return ((Branch)node).nodeIterator();
else return JaxenConstants.EMPTY_ITERATOR;

}
public String getElementName(Object obj) {

return ((Element)obj).getName();
}
public String getAttributeQName(Object obj) {

return ((Attribute)obj).getQualifiedName();
}
public Object getDocument(String uri) throws FunctionCallException {

try { return getSAXReader().read(uri); }
catch (Exception e) {
throw new FunctionCallException("Failed to parse document");

}
}
public XPath parseXPath(String xpath) throws SAXPathException {
return new Dom4jXPath(xpath);

}
// many methods omitted

}
// some auxiliary classes omitted

135



7 Practical Experience

Figure 7.3 XPath node hierarchy (excerpt).

package javagi.casestudies.xpath;
import org.jaxen.UnsupportedAxisException;
import org.jaxen.FunctionCallException;
import org.jaxen.XPath;
import org.jaxen.saxpath.SAXPathException;
public interface XNode {

Iterator<XNode> getChildAxisIterator() throws UnsupportedAxisException;
// omitted 25 methods

}
public interface XElement extends XNode {
String getName();
// omitted 2 methods

}
public interface XAttribute extends XNode {

String getQName();
// omitted 2 methods

}
public interface XDocument extends XNode {
static This getDocument(String uri) throws FunctionCallException;
static XPath parseXPath(String xpath) throws SAXPathException;

}
// omitted interfaces XNamespace and XProcessingInstruction with
// 3 methods in tota l

A JavaGI programmer adapts existing object models to the XPath node hierarchy
through retroactive interface implementations. Similar to Jaxen’s DefaultNavigator
class, the JavaGI version provides an abstract implementation of the XNode interface,
which contains default implementations for 23 out of 26 methods. The rest of the section
shows how we adapted the XML libraries dom4j [57] and JDOM [94] to the XPath node
hierarchy.

dom4j. The dom4j library comes with its own node hierarchy rooted in the interface
org.dom4j.Node. Figure 7.4 shows a diagram illustrating the adaptation of the dom4j
API to the XPath node hierarchy.3 To avoid code duplication, we made use of imple-
mentation inheritance, as shown in the diagram in Figure 7.5.4 The implementation
XNode [XNode] at the top of the diagram is the default implementation of the XNode
interface mentioned before. For concreteness, Figure 7.6 shows some sample code from
the dom4j adaptation. The sample code corresponds to the Java code in Figure 7.2.

3Diagrams use standard UML notation [165] to display packages, classes, interfaces, and inheritance.
Dotted lines (a non-standard notation) represent non-abstract retroactive interface implementations,
where the arrow points to the interface being implemented.

4Boxes with the stereotype �implementation� (or �abstract implementation�) denote (abstract) imple-
mentation definitions. Arrows between implementation definitions denote inheritance links, the arrow
pointing to the super implementation.

136



7.1 Case Studies

Figure 7.4 Adaptation of the dom4j API to the XPath node hierarchy.

package org.dom4j

<<interface>>

package javagi.casestudies.xpath

XDocument
<<interface>> <<interface>>

XElementXAttribute

Attribute
<<interface>>

Branch
<<interface>>

CharacterData

Node
<<interface>>

<<interface>>

Text

XNode

Document
<<interface>>

Element
<<interface>> <<interface>>

CDATA Comment
<<interface>> <<interface>>

<<interface>>

Figure 7.5 Uses of implementation inheritance in the adaptation for dom4j.

package javagi.casestudies.xpath.dom4j

package javagi.casestudies.xpath

XNode [Attribute]
<<implementation>>

XNode [Branch]
<<implementation>> <<implementation>>

XNode [CDATA] XNode [Text]
<<implementation>>

XNode [Node]
<<implementation>>

XNode [XNode]
<<abstract implementation>>

<<implementation>>

XNode [Document] XNode [Element]

<<implementation>>

137



7 Practical Experience

Figure 7.6 Sample code from the dom4j adaptation.

package javagi.casestudies.xpath.dom4j;
import java.util.Iterator;
import org.dom4j.Attribute;
import org.dom4j.Branch;
import org.dom4j.Document;
import org.dom4j.Element;
import org.dom4j.Node;
import org.jaxen.JaxenConstants;
import org.jaxen.XPath;
import org.jaxen.FunctionCallException;
import org.jaxen.saxpath.SAXPathException;
import javagi.casestudies.xpath.dom4j.XAttribute;
import javagi.casestudies.xpath.dom4j.XDocument
import javagi.casestudies.xpath.dom4j.XElement;
import javagi.casestudies.xpath.dom4j.XNode;
implementation XNode [Node] extends XNode [XNode] {

Iterator<XNode> getChildAxisIterator() {
return JaxenConstants.EMPTY_ITERATOR;

} // several methods omitted
}
implementation XNode [Branch] extends XNode [Node] {

Iterator<XNode> getChildAxisIterator() {
return this.nodeIterator();

} // omitted 1 method
}
implementation XElement [Element] {
String getName() { return this.getName(); } // omitted 2 methods

}
implementation XAttribute [Attribute] {
String getQName() { return this.getQualifiedName(); }
// omitted 2 methods

}
implementation XDocument [Document] {
static Document getDocument(String s) throws FunctionCallException

{ return DocumentLoader.load(s); }
static XPath parseXPath(String xpath) throws SAXPathException {
return new GIDom4jXPath(xpath);

}
}
// omitted 9 implementation definitions and some auxiliary classes

138



7.1 Case Studies

Figure 7.7 Adaptation of the JDOM API to the XPath node hierarchy.

Attribute

package javagi.casestudies.xpath.jdom

package org.jdom

package javagi.casestudies.xpath

Document Element Text

CDATA

Content

XAttribute
<<interface>>

XDocument
<<interface>>

XElement
<<interface>>

<<interface>>

XNode

<<interface>>

JDomNode

Parent
<<interface>>

Figure 7.8 Uses of implementation inheritance in the adaptation for JDOM.

package javagi.casestudies.xpath.jdom

package javagi.casestudies.xpath

<<implementation>> <<implementation>> <<implementation>>

<<abstract implementation>>

JDomNode [Element]
<<implementation>>

XNode [Element]

<<implementation>>

XNode [JDomNode]
<<implementation>>

JDomNode [Parent]
<<implementation>>

XNode [Attribute] XNode [Parent] XNode [Text]

XNode [XNode]

JDOM. Figure 7.7 shows the adaptation of JDOM’s API to the XPath node hierarchy.
JDOM uses its own set of classes and interfaces to represent the various XML node kinds.
Unlike dom4j, the classes and interfaces do not form a true hierarchy because they do not
have a designated root class (except Object). This non-hierarchic API is problematic
because it offers no place for putting implementations of methods shared by several node
kinds. (In the dom4j example, we simply placed such methods in the implementation
XNode [org.dom4j.Node]. This approach allowed, for example, the reuse of several
methods between org.dom4j.Attribute, org.dom4j.CDATA, and org.dom4j.Text.)

Despite the non-hierarchic JDOM API, we managed to get by without code duplication
by introducing an interface JDomNode, which serves as the (artificial) root of the JDOM

139



7 Practical Experience

API. Figure 7.7 shows JDomNode and the corresponding implementations at the bottom.
Thanks to the newly introduced root interface, code duplication could be avoided by
implementation inheritance (see Figure 7.8).

Assessment

The JavaGI-based XPath evaluation framework has several advantages over the plain Java
solution. The main advantage is that the JavaGI-based approach requires significantly
fewer cast operations than the solution using Jaxen. Jaxen’s implementation of the
Navigator interface for dom4j requires 28 casts, the one for JDOM even 47 casts. Most
of these casts are caused by the use of Object as the type of nodes in the Navigator
interface (see Figure 7.2). In contrast, the JavaGI solution requires no casts at all to
adapt both dom4j and JDOM to the node hierarchy for XPath evaluation.

An approach to lower the number of casts required by the Jaxen solution would be
to parameterize the Navigator interface by the different node types and use these type
parameters in method signatures. While such a parameterization would lower the number
of casts significantly, it would also limit expressiveness. For instance, in dom4j both
interfaces org.dom4j.CDATA and org.dom4j.Text may serve as text nodes, however,
their least upper bound org.dom4j.CharacterData may not. Thus, there exists no
sensible instantiation for the text node type. Hence, a generic version of the Navigator
interface is not an option.

Another advantage of the JavaGI approach is that it offers a simple and clear specifica-
tion of the requirements an object model has to fulfill to support XPath-based navigation.
The JavaGI solution specifies six interfaces for the different node kinds. The interfaces
have at most three methods, except for the XNode interface, which has 26 methods. Using
different interfaces for different node kinds results in a clear separation of concerns. In
contrast, the Jaxen solution requires clients to implement the 41 methods of the mono-
lithic Navigator interface.

7.1.2 JavaGI for the Web

As a second case study, we developed a web application framework in JavaGI. The frame-
work uses the Java servlet technology [215] and borrows ideas from the Haskell [173]
framework WASH [224]. We applied the framework to implement an application han-
dling workshop registrations. The goal of the case study was to evaluate whether JavaGI
can provide the same static guarantees as WASH and how JavaGI behaves in a servlet
environment where dynamic loading is the default.

WASH is a domain specific language for server-side Web scripting embedded in Haskell.
It supports the generation of HTML [234], guaranteeing well-formedness and adherence to
a Document Type Definition (DTD [27]) . Furthermore, there are operators for defining
typed input widgets and ways to extract the user inputs from them without being exposed
to the underlying string-based protocol. A WASH program automatically redisplays a
form until the user has entered syntactically correct values in all input widgets.

The implementation of WASH relies heavily on Haskell’s type classes. It enforces quasi-
validity of HTML documents by providing type classes specifying the allowed parent-

140



7.1 Case Studies

Figure 7.9 Modeling HTML elements and attributes.

package javagi.casestudies.servlet;
class UL extends Element implements ChildOfBODY, ChildOfLI /* rest omitted */ {
public String getName() { return "ul"; }
public UL add(ChildOfUL... children) {
super.add(children);
return this;

}
}
interface ChildOfUL extends Node {}
interface ChildOfLI extends Node {}
class AttrCLASS extends Attribute

implements ChildOfUL, ChildOfLI /* rest omitted */ {
public String getName() { return "class"; }
public AttrCLASS(String v) { super (v); }

}
class GenHTML {

public static UL ul(ChildOfUL... cs) { return new UL().add(cs); }
public static AttrCLASS attrCLASS(String v) { return new AttrCLASS(v); }
// remaining factory methods omitted

}

child relationships among elements, attributes, and other kinds of HTML nodes. These
type classes are generated from a HTML DTD. Also, the type of an input widget is
parameterized by the expected type of the value. Again, a type class provides type-
specific parsers and error messages.

Much of the core functionality of WASH can be implemented in JavaGI. Briefly put,
plain Java interfaces are sufficient to support generation of quasi-valid HTML documents,
retroactive implementation is useful in many places, the implementation of typed input
widgets relies on static interface methods, and dynamic loading of implementations is
essential for working in a servlet environment.

To generate HTML documents, the JavaGI framework defines a type hierarchy with
a Node interface on top, abstract classes Element and Attribute, and a class Text, all
implementing Node. In addition, there are element- and attribute-specific subclasses and
interfaces: for each kind of attribute, there is a subclass of Attribute; for each kind
of element, there is a subclass of Element and a subinterface of Node that characterizes
potential child nodes of this kind of element. For convenience, there is a class GenHTML
with static factory methods for creating all kinds of nodes. Figure 7.9 contains excerpts
from these classes.

The implementation of typed input fields relies on the Parseable interface already
explained in Section 2.1.4. An input field for a value of type X is represented by an
object of class Field<X>. The method

public <X> Field<X> defineField(String name, String type, X init)
where X implements Parseable;

141



7 Practical Experience

is retroactively attached to javax.servlet.ServletRequest, which contains the internal
data of an HTML-form submission to a servlet. The defineField method parses the
submitted string, detects errors, and creates a Field<X> instance. The latter has methods
INPUT getInput(), which constructs a HTML input element, and X getValue(), which
returns the field’s value.

Figure 7.10 shows parts of a workshop registration application that we implemented
with the JavaGI web framework.5 The Register class inherits from JavaGIServlet,
which extends javax.servlet.http.HttpServlet to perform dynamic loading of imple-
mentation definitions. The doPost method first creates input fields using defineField.
Next, the code applies method fieldsOK() to the ServletRequest object to check
whether all required user entries are present and syntactically correct. If so, the servlet
proceeds to processing the user’s entry. Otherwise, the servlet creates an object structure
representing the HTML page. This structure includes the input elements extracted from
the fields created in the first step. In case of a syntactically invalid input, the elements
contain suitable error notifications. Finally, the code serializes the HTML structure to
the servlet response and terminates. The screenshot in Figure 7.11 shows the registration
page after the user entered an incorrect date string.

Assessment

The JavaGI solution yields the same static guarantees as the WASH system with respect
to well-formedness and validity of the generated HTML and with respect to automatic
form validation. Further, the case study demonstrates that JavaGI integrates seamlessly
into a servlet environment where all application code is loaded dynamically.

WASH also provides a typed submit facility, where submit buttons (e.g. the input
element with type "submit" in Figure 7.10) are created implicitly. In WASH, the con-
structor for a submit button accepts a list of typed fields and a callback function that
accepts an argument list typed according to the fields. On submission of the page, the
submit button invokes the callback function, provided the values of all fields validate cor-
rectly. This facility is not incorporated in the JavaGI version because it seems to require
higher-kind generics [152]. We were, however, able to implement a less flexible approach
that requires programmers to prepare designated classes for storing the submitted data.

A Java implementation of WASH’s core functionality is possible but requires more
work than the solution with JavaGI. Creating class instances from parsed and validated
input data would have to be performed using the Factory pattern [73], thus requiring
an extra parameter for many methods. Moreover, retroactive interface implementations
would have to be emulated either through the Adapter pattern [73] or with static helper
methods.

7.1.3 Java Collection Framework

The Java Collection Framework (JCF [211]) provides interfaces for common data struc-
tures such as Collection, Set, List, and Map as well as various implementations of
these data structures. By default, all collections are modifiable but programmers can

5Some familiarity with servlet programming is assumed.

142



7.1 Case Studies

Figure 7.10 Sample code from the workshop registration application.

package javagi.casestudies.servlet;
import java.io.IOException;
import java.util.Date;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import static javagi.casestudies.servlet.GenHTML.*;
enum Diet { NONE, VEGETARIAN, VEGAN }
public class Register extends JavaGIServlet {

protected void doPost(HttpServletRequest req, HttpServletResponse res) {
Field<String> ln = req.<String>defineField("ln", "text", "");
Field<Date> ad = req.<Date>defineField("ad", "text", null);
// code for remaining input f i e l d s fn , af , dd , and diet omitted
if (req.fieldsOK()) {

processRegistration(res, ln.getValue(), fn.getValue(),
af.getValue(), ad.getValue(),
dd.getValue(), diet.getValue());

} else {
TABLE ptable = table();
TABLE diettable = table();
FORM pform = form(attrMETHOD("post"), attrACTION(""), ptable);
HTML page = html(head(title("Workshop Registration")),

body(h1("Workshop Registration"), pform));
ptable.addRow(text("Last name: "), ln.getInput());
ptable.addRow(text("Arrival date: "), ad.getInput());
// code for remaining input f i e l d s omitted
ptable.addRow(input(attrTYPE("submit")));
try {

res.setContentType("text/html; charset=UTF-8");
page.out(res.getWriter()); res.flushBuffer();

} catch (IOException e) {}
}

}
public void processRegistration(HttpServletResponse res, String ln,

String fn, String af, Date ad,
Date dd, Diet diet) {

// code omitted for brevity
}

}

143



7 Practical Experience

Figure 7.11 Sample page of the workshop registration application.

explicitly mark a collection as unmodifiable. However, unmodifiable collections have the
same interface as modifiable ones, so programmers may call modifying operations on an
unmodifiable collection, resulting in a run-time error.

Huang and colleagues [91] demonstrated how to turn such run-time errors into compile-
time errors using type conditionals as provided by their Java extension cJ. The basic
idea is to parameterize a collection not only over the element type but also over a “mode”
type that specifies further attributes of a collection. Type conditionals then ensure that
operations modifying a collection are only available if the mode parameter indicates that
the collection is indeed modifiable. In a case study, Huang and collaborators refactored
the whole JCF using this idea.

While JavaGI’s type conditionals are slightly less powerful than cJ’s, all features needed
for refactoring the JCF are available. Hence, porting the refactored JCF to JavaGI was
straightforward.

As an example, Figure 7.12 shows JavaGI’s version of the java.util.List inter-
face [212] with type conditionals. As in Java, the type parameter E is the type of the list
elements. The second type parameter M, not present in the original Java version of the
interface, denotes the mode of the collection, where the mode is one of the classes shown
at the bottom of the figure: Modifiable specifies that individual list elements can be
changed, but no elements can be added or removed; Shrinkable specifies that elements
can be removed; Resizable specifies that elements can be added and removed. Mode
Object indicates that the list cannot be modified at all.

For example, the set method of interface List may only be called if M is at least
Modifiable, whereas clear requires that M is (a subtype of) Shrinkable. For in-
stance, assume that list has static type List<String,Modifiable>. Then the call
list.clear() fails at compile time because Modifiable is not a subtype of Shrinkable.

144



7.2 Benchmarks

Figure 7.12 Refactoring of the Java Collection Framework.

package cj.util;
public interface List<E,M> extends Collection<E,M> {
E set(int index, E element) where M extends Modifiable;

void add(int index, E element) where M extends Resizable;
boolean add(E o) where M extends Resizable;
boolean addAll(Collection<? extends E,?> c) where M extends Resizable;

E remove(int index) where M extends Shrinkable;
boolean remove(Object o) where M extends Shrinkable;
boolean removeAll(Collection<?,?> c) where M extends Shrinkable;
boolean retainAll(Collection<?,?> c) where M extends Shrinkable;
void clear() where M extends Shrinkable;

// omitted 16 read−only operations such as size () , isEmpty()
}
// Mode types ( besides Object ) :
public class Modifiable {}
public class Shrinkable extends Modifiable {}
public class Resizable extends Shrinkable {}

In contrast, the corresponding Java code would compile successfully but result in a run-
time exception.

Assessment

The main difference (besides syntactic ones) between the JavaGI and the cJ versions of
the JCF refactoring is that cJ offers a grouping mechanism for type conditionals. This
grouping mechanism allows programmers to specify a type conditional for a whole group
of methods. JavaGI requires restating the conditional for each method.

Furthermore, in cJ superclasses and fields are also subject to type conditionals. How-
ever, these features were not needed for the JCF case study, and the original cJ paper [91]
does not contain realistic examples using them. Hence, we conjecture that most applica-
tions of type conditionals do not need this additional level of expressivity.

7.2 Benchmarks

Several benchmarks were used to compare the performance of JavaGI programs with their
Java counterparts. The results show that the JavaGI compiler generates code with good
performance. Plain Java code compiled with the JavaGI compiler runs as fast as the
same code compiled with a regular Java compiler, but there is a performance penalty for
JavaGI-specific features.

All benchmarks were executed on a Thinkpad x60s with an Intel Core Duo L2400
1.66 GHz CPU and 4GB of RAM, running Linux 2.6.24. The Java Virtual Machine

145



7 Practical Experience

Figure 7.13 Micro benchmarks for different kinds of method call instructions.

Figure 7.14 Micro benchmarks for casts, instanceof tests, and identity comparisons.

Figure 7.15 Performance of JavaGI with respect to Java.

146



7.2 Benchmarks

(JVM [125]) used was the server virtual machine of Sun’s Java SE (version 1.6.0 06 [218]).
The Java code was compiled with the Eclipse Compiler for Java (version 0.883 R34x [62]),
the baseline of the JavaGI compiler. The JavaGI code was compiled with the JavaGI
compiler presented in Chapter 6.

The individual workloads were repeatedly executed, until performance stabilized. The
mean of the last three or five repetitions (depending on the total number of repetitions)
then represents the performance index for a workload. The raw benchmark data is
available online [239].

Figure 7.13 shows performance results of micro benchmarks demonstrating that calls
of retroactively implemented methods are 3.09 times slower than method calls using
the invokevirtual instruction of the JVM and 2.46 times slower than calls using the
invokeinterface instruction. This slowdown is not surprising because the machinery
needed to perform dynamic lookup of retroactively implemented methods is more in-
volved than that required for ordinary class or interface methods (see Section 6.2.2). For
reference, Figure 7.13 also includes the slowdown of method calls via reflection.

Figure 7.14 compares cast operations, instanceof tests, and identity comparisons
(==) in Java and JavaGI. The workload cast1 casts objects to an interface that these
objects implement directly in the Java version but retroactively in the JavaGI version. In
general, casts are complex operations in JavaGI (see Section 6.3), so the JavaGI version
is 9.17 times slower than the Java version.6 The workload cast2 casts objects with
static type Object to a class type. The JavaGI version is 3.68 slower than its Java
counterpart because such casts require unpacking of potential wrappers. The workload
cast3 casts objects whose static types are class types other than Object to some other
class type. In such situations, the JavaGI compiler generates a regular checkcast JVM
instruction, so there is no significant difference between the Java and the JavaGI versions.
The workloads instanceof1, instanceof2, and instanceof3 are similar to cast1, cast2,
and cast3, respectively, but perform instanceof tests instead of cast operations. The
workload identity1 checks whether two objects with static type Object are identical using
the == operator. The JavaGI version is slower because it involves unpacking of potential
wrappers. The workload identity2 is similar but compares objects whose static types are
class types different from Object. In this case, no unpacking is required, so there is no
significant performance difference.

Figure 7.15 compares the performance of JavaGI with that of Java using seven real-
world workloads. The interpreter workload is an interpreter for a language with arith-
metic expressions, variables, conditionals, and function calls, implemented once in plain
Java and once in JavaGI. The Java interpreter uses ordinary virtual methods to perform
expression evaluation, whereas the JavaGI interpreter uses retroactively implemented
methods for this purpose. The JavaGI version is 2.39 times slower than the Java version.
A large number of calls to retroactively implemented methods in the JavaGI version lead
to this slowdown.

6Under a different workload, casts in JavaGI were up to 830 times slower than in Java. However, this
different workload is unrealistic because it performs repeated cast operations always on the same object.
In this scenario, a caching mechanism of the JVM apparently leads to very fast execution times. In
contrast, workload cast1 is more realistic because it uses different objects to measure the performance
of cast operations.

147



7 Practical Experience

The workloads dom4j-perf, dom4j-tests, jdom-perf, and jdom-tests were taken from
the Jaxen [102] distribution (see Section 7.1.1). Dom4j-perf and jdom-perf are perfor-
mance tests for the adaptation of dom4j [57] and JDOM [94] to jaxen’s XPath evaluation
framework, dom4j-tests and jdom-tests are the corresponding unit-test suites. The Java
versions of these workloads directly use the code from the jaxen distribution, whereas
the JavaGI versions replace jaxen’s XPath evaluation framework with the framework
presented in Section 7.1.1.

The JavaGI versions of the dom4j-tests and jdom-tests workloads are 1.08 and 1.57,
respectively, times slower than the Java versions. The domj4-perf and jdom-perf work-
loads for JavaGI are 3.11 and 3.6, respectively, times slower than their Java counterparts.7

Numerous invocations of retroactively implemented methods, the construction of many
wrapper objects, and a large number of cast operations are the main reason for this slow-
down. (Many of the casts are inserted automatically by type erasure, the remaining ones
are part of the internal adaptation layer between the public API of the JavaGI framework
and the evaluation engine provided by jaxen, on which the JavaGI framework builds.)

The workloads antlr and jython in Figure 7.15 are from the DaCapo benchmark suite
(version 2006-10-MR2 [18]). The JavaGI and Java versions of these two workloads use
the same source code, once compiled with the JavaGI and once with the Java compiler.
The results show no significant difference between JavaGI and Java.

7A slight variation of the workloads dom4j-perf and jdom-perf increases the performance of the Java
versions. In this setting, the workloads for JavaGI are 3.59 and 5.73, respectively, times slower than
their Java counterparts. The variation, however, is quite unrealistic because it evaluates an XPath
expression repeatedly on the same object graph. In contrast, the original domj4-perf and jdom-perf
workloads are more realistic because they use different object graphs to evaluate XPath expressions.

148



8
Related Work

This dissertation builds on results from different research areas. The present chapter
summarizes these results and compares them with the contributions of JavaGI.

Chapter Outline. The chapter consists of eleven sections.

� Section 8.1 compares type classes in Haskell with generalized interfaces in JavaGI.

� Section 8.2 reviews work on generic programming.

� Section 8.3 discusses different approaches to family polymorphism.

� Section 8.4 presents solutions to software extension, adaptation, and integration
problems.

� Section 8.5 analyzes systems supporting external methods and multiple dispatch.

� Section 8.6 discusses ways to typecheck binary methods.

� Section 8.7 presents work related to type conditionals.

� Section 8.8 considers traits.

� Section 8.9 summarizes work on advanced subtyping mechanisms.

� Section 8.10 reviews work related to the undecidability results of Chapter 5.

� Section 8.11 compares the current design of JavaGI with an earlier version.

8.1 Type Classes in Haskell

Type classes [236, 107, 104] in the functional programming language Haskell [173] are
closely related to the work of this dissertation. Like a generalized interface, a type class

149



8 Related Work

Figure 8.1 Type classes in Haskell.
The type [a] is the type of lists with elements of type a. The pattern [] matches the empty list, whereas
y:ys matches any non-empty list binding y to the head and ys to the tail of the list. The type Maybe a
denotes an optional value of type a, where Nothing signals absence of a value and Just x signals presence
of value x. (In JavaGI, every value of a reference type is optional in the sense that null signals absence
of a value.)

−− Haskell
class EQ a where −− Type variable ”a” denotes the implementing type

eq :: a→ a→ Bool

−− Optional type signature with constraint ”EQ a” making the
−− ”eq” operation available on values of type ”a”
find :: EQ a => a→ [a]→ Maybe a
find _ [] = Nothing
find x (y:ys) = if eq x y then Just x else find x ys

instance EQ Int where
eq i j = ...

−− Parametric and constrained (type−conditional ) instance definition
instance EQ a => EQ [a] where
eq [] [] = True
eq (x:xs) (y:ys) = eq x y && eq xs ys
eq _ _ = False

declares the signatures of its member functions depending on one or more specified im-
plementing type. (The Haskell 98 standard [173] supports only one implementing type,
but multi-parameter type classes [174] lift this restriction.) Unlike in JavaGI, however,
member functions of type classes are not attached to some receiver object but denote
top-level functions that may be overloaded for different types. Thus, methods of Haskell
type classes are similar to static interface methods in JavaGI. One difference is that
Haskell infers, at least in most cases, the instance from which a method should be taken,
whereas this information has to be specified explicitly in JavaGI. Haskell’s type classes
support multiple inheritance, just as interfaces in JavaGI do. Further, both languages
provide constraint mechanisms to limit possible instantiations of universally quantified
type variables. In contrast to JavaGI, Haskell infers constraints and types automatically.
Like JavaGI’s retroactive interface implementations, Haskell’s instance definitions specify
that one or several types are members of some type class, thereby providing overloaded
versions of the member functions of the class. As in JavaGI, instances are defined in sep-
aration from types, and they can be parametric and subject to constraints. To illustrate
the correspondence between type classes and generalized interfaces, Figure 8.1 recasts
some of the examples from Section 2.1.2 and Section 2.1.3 in Haskell.

Functional dependencies [105], a well-known extension of Haskell type classes, ex-
press dependencies between implementing types. For example, given the declaration
class C a b | a → b ... of a two-parameter type class C, the functional dependency
a → b specifies that in all instances of C the first implementing type uniquely deter-

150



8.2 Generic Programming

mines the second. Such dependencies are to some degree expressible in JavaGI because
its type system (as well as Java’s) requires that a program does not define two implemen-
tations for different instantiations of the same interface (see criterion “unique interface
instantiation and non-dispatch types” in Section 2.3.4 and criterion wf-prog-2 in Sec-
tion 3.5.3). For example, the JavaGI interface interface I<b>[a] ... specifies the
same dependency between the type variables a and b as the type class C just presented.
More complex functional dependencies such as a → b, b → a are not expressible in
JavaGI. Associated types [156, 42, 41] present an alternative to functional dependencies
(see Section 8.2).

Haskell also allows constructor classes [103] (type classes whose implementing types
are in fact type constructors). JavaGI only supports first-order parametric polymorphism
(as Java does). We conjecture that lifting this restriction [152] would allow a mechanism
similar to constructor classes for JavaGI. Definitions of type classes in Haskell may provide
default implementations for the methods of the type class. JavaGI can encode such
default implementations with abstract implementations and implementation inheritance
(see Section 2.1.5).

In comparison with object-oriented languages, Haskell has neither subtyping nor dy-
namic dispatch. Thus, Haskell can construct evidence for type-class instances needed in
a function body statically or from the evidence present at the call sites of the function.
This approach is too limiting for JavaGI because it either prevents dynamic dispatch or
severely restricts the choice of compilation units into which retroactive implementations
can be placed. Hence, one major contribution of JavaGI with respect to Haskell is the
type-safe integration of subtyping and dynamic dispatch. Another difference between
the two languages is that type classes only constrain types but never appear as types on
their own. (There exists, however, an extension [225] that provides exactly this feature.)
In contrast, JavaGI’s single-headed interfaces can be used in constraints and as types.

The OOHaskell project [116] shows how Haskell 98 with common extensions supports
many object-oriented programming idioms such as encapsulation, mutable state, inheri-
tance, and overriding. Essentially, OOHaskell builds on extensible polymorphic records
from the HList library [117] and on a semi-explicit subsumption operation. The ap-
proaches of OOHaskell and JavaGI are different: OOHaskell emulates object-oriented
programming in Haskell, whereas JavaGI extends an object-oriented programming lan-
guage with features influenced by Haskell.

8.2 Generic Programming

Concepts for C++ borrow ideas from Haskell type classes to specify requirements on tem-
plate parameters [156, 139, 100, 184, 84, 16]. The main motivation behind concepts is
to improve error messages caused by malformed template instantiations and to enable
separate compilation for templates. Like type classes and generalized interfaces, con-
cepts can span multiple types, they support some form of inheritance, and they can
appear in constraints. In addition, concepts can also contain type definitions, leading to
the notion of associated types [156]. There are two choices for implementing a concept
with existing types [84]: either programmers provide explicit concept maps (similar to

151



8 Related Work

retroactive interface implementations in JavaGI and instance definitions in Haskell) or
the compiler derives an implicit implementation based on the types and operations in
scope. Like retroactive implementations, concept maps can be parametric and subject
to type conditions. Siek and Lumsdaine [200] provided a formalization of concepts as an
extension to System F [80, 187], which the first author extended [201] to a realistic pro-
gramming language G that allows prototype implementations of the Standard Template
Library [206] and the Boost Graph Library [202]. The main difference between con-
cepts and JavaGI’s generalized interfaces is that concepts are resolved at compile time:
the compiler instantiates a template parameter based on the most specific implementa-
tions of the concepts imposed on the parameter. In contrast, JavaGI resolves methods of
retroactive implementations dynamically through multiple dispatch. Another difference
is that concept maps are lexically scoped whereas retroactive implementations share a
global scope. Further, the concept mechanism as presented by Gregor and colleagues [84]
supports concept-based overloading, same-type and negative constraints, and constraint
propagation [101]. The idea of negative constraints conflicts with JavaGI’s open-world as-
sumption for retroactive implementations. Concept-based overloading is not available in
JavaGI because neither static nor dynamic resolution of overloading based purely on con-
cepts (i.e. implementation constraints) is possible due to JavaGI’s open-world assumption
and its type-erasure semantics, respectively.

For the purpose of illustration, Figure 8.2 shows a concept-based encoding of some of
the examples from Section 2.1.2 and Section 2.1.3. (Figure 8.1 shows the Haskell version
of these examples.)

A comparative study [75, 74] identified eight features that are important to properly
support generic programming. Apart from associated types and the closely related fea-
ture of type aliases, JavaGI supports all of them, including two properties (“multi-type
concepts” and “retroactive modeling”) not supported by Java. Other researchers pro-
posed associated types as extensions of Haskell type classes [42, 41] and C# [101], so we
conjecture that their addition to JavaGI does not pose significant challenges.

8.3 Family Polymorphism

Traditional polymorphism fails to express collaborations between families of types in a
way that is both type safe (mixing objects from different families is rejected at compile
time) and generic (abstraction over the family per se is possible). Ernst [68] suggested
family polymorphism as a solution to the problem. His running example demonstrates
how virtual classes (or, more precisely, virtual patterns) in gbeta [67] allow a type-safe
and generic abstraction over graphs. (A graph can be seen as a collaboration of two
family members “node” and “edge”). Before comparing Ernst’s example to an encoding
in JavaGI, we first explain the general idea behind virtual classes.

Virtual classes [132], originally introduced in the language Beta [133], are class-valued
attributes of objects; that is, virtual classes are accessed relative to an object instance by
using late binding, quite similar to virtual methods. (Virtual classes differ from Java’s
inner classes [95] because the latter are not subject to late binding.) With virtual classes,
types may depend on values, or, more specifically, on paths formed from immutable vari-

152



8.3 Family Polymorphism

Figure 8.2 Concepts in C++.
The code uses the syntax as implemented in ConceptGCC [83].

// C++
concept EQ<typename T> {

bool eq(const T& x, const T& y);
}
template<typename T> requires EQ<T> const T* find(const T& x, const list<T>& l) {

typename list<T>::const_iterator first = l.begin();
typename list<T>::const_iterator end = l.end();
for (; first != end; ++first) {

if (EQ<T>::eq(x, *first)) return &*first;
}
return NULL;

}
concept_map EQ<int> {

bool eq(const int& x, const int& y) { return x == y; }
}
template<typename T> requires EQ<T> concept_map EQ<list<T>> {

bool eq(const list<T>& l1, const list<T>& l2) {
typename list<T>::const_iterator first1 = l1.begin();
typename list<T>::const_iterator first2 = l2.begin();
typename list<T>::const_iterator end1 = l1.end();
typename list<T>::const_iterator end2 = l2.end();
for (; first1 != end1 && first2 != end2; ++first1, ++first2) {

if (! EQ<T>::eq(*first1, *first2)) return false;
}
return (first1 == end1 && first2 == end2);

}
}

ables and fields. There exists an extension of Java with a variation of virtual classes [226].
The extension, however, relies on dynamic type checks to ensure soundness. Two for-
malization [70, 48] demonstrate that such dynamic checks are not necessarily needed to
support virtual classes in a type sound manner. A generalization of virtual classes [76]
expresses similar semantics by parameterization rather than by nesting. Virtual classes
also enable solutions to several software extension and adaptation problems, an aspect
that we discuss in Section 8.4.

We now come back to Ernst’s graph example used to motivate family polymorphism [68].
Figure 8.3 shows an encoding of this example with JavaGI’s multi-headed interfaces. As in
the original example, the encoding expresses the relation between the nodes and edges of
a graph in a type-safe way that nevertheless allows for reusability. However, JavaGI rep-
resents families at the type level, which has several disadvantages compared with Ernst’s
value-level representation: only a fixed number of distinct families can be defined; and
only classes not related by subclassing can form distinct families (e.g., if classes C1, . . . , Cn
belong to some family then C′1, . . . , C

′
n usually belong to the same family in JavaGI if each

C′i is a subclass of Ci). A drawback of the value-level representation is that it complicates

153



8 Related Work

the type system a lot. Ernst’s solution allows the construction of heterogeneous data
structures over families. In general, such data structures are possible in JavaGI but their
encoding is quite complex and hardly usable in practice (it relies on the well-known trick
to simulate existential types through continuations and rank-2 polymorphism).

Other approaches to family polymorphism include Scala’s abstract type members with
self-type annotations [168], OCaml’s object system [122, 192, 185, 186], variant path
types [97], lightweight family polymorphism in the context of Java [194], type parameter
members [108], lightweight dependent classes [109], Helm and coworkers’ contracts [87],
and a generalization of MyType [33, 34] to mutually recursive types [31]. The last approach
bears close resemblance to JavaGI’s multi-headed interfaces but relies on exact types to
prevent unsoundness in the presence of binary methods, whereas JavaGI uses multiple
dispatch instead. (Section 8.6 discusses MyType and exact types in more detail.)

8.4 Software Extension, Adaptation, and Integration

A lot of research projects address better support for software extension, adaptation, and
integration. This section discusses work most relevant to JavaGI.

The Expression Problem

The expression problem, going back to Reynolds [188, 189] and Cook [52] but popular-
ized under its name by Wadler [235], highlights a key problem in the area of software
extensibility: how to extend a given data structure modularly in the dimensions of data
and operation. Torgersen [227] defined a solution to the expression problem as a “combi-
nation of a programming language, an implementation of a Composite structure in that
language, and a discipline for extension which allows both new data types and opera-
tions to be subsequently added any number of times, without modification of existing
source code, without replication of non-trivial code, without risk of unhandled combina-
tions of data and operations.” JavaGI’s approach to the expression problem, as outlined
in Section 2.1.1, fulfills these requirements. Torgersen also evaluated solutions to the
expression problem according to their degree of extensibility: “code-level extensibility”
requires that existing code can be extended without recompilation, and “object-level ex-
tensibility” requires that objects created before introducing an extension remain valid
and compatible afterwards. JavaGI provides both kinds of extensibility. An additional
requirement [167] is that a solution to the expression problem must typecheck statically
and that it must be possible to combine independently developed extensions. JavaGI ful-
fills both of these requirements (assuming that the independently developed extensions
are sufficiently disjoint), although typechecking in JavaGI is not fully modular.

Solutions with Type Classes in Haskell

Lämmel and Ostermann [119] showed how Haskell type classes solve several extensi-
bility, adaptability, and integration problems that have been used to illustrate limita-
tions of object-oriented languages. Their Haskell solutions to the adapter problem [73],

154



8.4 Software Extension, Adaptation, and Integration

Figure 8.3 Ernst’s graph example encoded in JavaGI.

// A multi−headed interface for modeling graphs
interface Graph [Node,Edge] {
receiver Node { boolean touches(Edge e); }
receiver Edge { void setSource(Node n); void setTarget(Node n); }

}
// An abstract default implementation of Graph
abstract class AbstractNode {}
abstract class AbstractEdge { AbstractNode source; AbstractNode target; }
abstract implementation Graph [AbstractNode,AbstractEdge] {
receiver AbstractNode {

public boolean touches(AbstractEdge e) {
return e.source == this || e.target == this;

}}
receiver AbstractEdge {

public void setSource(AbstractNode n) { this.source = n; }
public void setTarget(AbstractNode n) { this.target = n; }

}
}
// First implementation of Graph
class Node extends AbstractNode {}
class Edge extends AbstractEdge {}
implementation Graph [Node,Edge] extends Graph[AbstractNode,AbstractEdge]{}
// Second implementation of Graph
class OnOffNode extends AbstractNode {}
class OnOffEdge extends AbstractEdge { boolean enabled = false; }
implementation Graph [OnOffNode,OnOffEdge]

extends Graph [AbstractNode,AbstractEdge] {
receiver OnOffNode {

boolean touches(OnOffEdge e) { return e.enabled && super.touches(e); }
}

}
// A test class
public class GraphTest {
static <N,E> void build(N n, E e, boolean b) where N*E implements Graph {

e.setSource(n); e.setTarget(n);
if (b == n.touches(e)) System.out.println("OK");

}
public static void main(String[] args) {

build(new Node(), new Edge(), true);
build(new OnOffNode(), new OnOffEdge(), false);
// Fails because ”OnOffNode*Edge implements Graph” does not hold
// build (new OnOffNode() , new Edge() , true)

}
}

155



8 Related Work

the tyranny of the dominant decomposition problem [86, 169], the expression prob-
lem [235, 227], and the framework integration problem [136, 144] can be ported to JavaGI
easily. Further, their graph example used to demonstrate Haskell’s approach to family
polymorphism is expressible in JavaGI as well but leads to a different encoding compared
with the one presented in Section 8.3. As outlined in Section 8.1, translating their three-
parameter type class Graph g n e with the functional dependency g → n e results in
a single-headed interface Graph<n,e>. The JavaGI encoding in Section 8.3 uses a two-
headed interface with explicit implementing types for nodes and edges instead. This
approach leads to more flexibility because implementing types behave covariantly with
respect to subtyping, whereas type parameters are invariant. On the other hand, the
interface Graph<n,e> provides an explicit representation of the graph itself, whereas the
encoding in Section 8.3 leaves the graph implicit. Lämmel and Ostermann’s approach to
multiple dispatch differs from that in JavaGI because Haskell does not support dynamic
dispatch as already discussed in Section 8.1. (See Section 8.5 for an encoding of multiple
dispatch in JavaGI.)

Virtual and Nested Classes

Section 8.3 already discussed virtual classes [132] in general and in the context of family
polymorphism [68]. But virtual classes also enable solutions to a number of extensi-
bility problems. Higher-order hierarchies [69] allow programmers to extend, combine,
and modify existing class hierarchies. The main features enabling this kind of extensi-
bility are furtherbinding (virtual classes are not overridden but enhanced in subclasses)
and virtual superclasses (superclass declarations are subject to late binding). JavaGI’s
retroactive interface implementations also allow the extension of existing class hierar-
chies with new functionality. Although changing existing hierarchies is not possible in
JavaGI, retroactive interface implementations allow to introduce new superinterfaces for
existing classes and interfaces. The combination of extensions is implicit in JavaGI be-
cause retroactive interface implementations perform in-place object adaptation, whereas
higher-order hierarchies create new copies of existing hierarchies and thus need an explicit
combine operator. This copy-based approach prevents extensions from being available
for existing class instances, a limitation not shared by JavaGI. Further, adding function-
ality to existing classes in the style of higher-order hierarchies seems to require a default
implementation for the root of the class hierarchy, whereas JavaGI avoids the need for
such default implementations by allowing abstract methods in retroactive implementa-
tions. Completeness checking for abstract methods requires load-time checks, though.
Higher-order hierarchies support the addition of state (i.e., instance variables) to existing
classes but JavaGI does not.

Nested inheritance [161] also supports the extension of class hierarchies through nesting
and furtherbinding of classes. Unlike virtual classes, nested inheritance treats a nested
class as an attribute of its enclosing class. Nested intersection [162] generalizes nested
inheritance and enables the composition of class hierarchies by some form of multiple
inheritance. As higher-order hierarchies, nested inheritance and nested intersection both
follow a copy-based approach and make extensions not available for instances of exist-
ing classes. Class sharing [183] adds support for in-place object adaptation to nested

156



8.4 Software Extension, Adaptation, and Integration

intersection: a sharing relation between classes implies that shared classes have the same
set of object instances. Each shared class is a distinct view of such an instance, and an
explicit operation may change that view. JavaGI does not require an explicit operation
to combine different extensions. The extension mechanisms of JavaGI and nested inheri-
tance are quite different: the former uses retroactive interface implementations, the latter
inheritance. None of these mechanisms is superior to the other. From a programmers
point of view, the additional complexity introduced by JavaGI seems to be lower than
that of nested inheritance and its successors: JavaGI’s additional features are all driven
by a generalization of interfaces, whereas nested inheritance/intersection and class shar-
ing confronts the programmer not only with a generalization of inheritance but also with
a complex type language making use of exact types, view-dependent types, prefix types,
mask types, and sharing constraints [183].

Collaboration interfaces [143] allow the declaration of types for components as a set of
mutually recursive types by treating nested interface as virtual. Moreover, collaboration
interfaces provide support for expressing not only the provided but also the required
services of a component. While JavaGI addresses to problem of specifying mutually re-
cursive types through multi-headed interfaces, there is no support for expressing required
services. Conversely, collaboration interfaces do not take retroactive implementation into
account, so it might be worthwhile to investigate how a combination of collaboration in-
terfaces and JavaGI’s generalized interfaces would look like. The work on collaboration
interfaces also suggested wrapper recycling to avoid object schizophrenia [198, 89] caused
by wrappers. Essentially, wrapper recycling ensures that there exists at most one wrap-
per for each interface/object combination, thus avoiding object schizophrenia between
two wrapped objects but not between a wrapped and an unwrapped object. JavaGI deals
with object schizophrenia by using special cast operations, instanceof tests, and iden-
tity comparisons (==). This approach avoids object schizophrenia also between wrapped
and unwrapped objects but does not work as soon as a wrapped objects is passed to a
method that has not been compiled with the JavaGI compiler.

Virtual classes express dependencies between classes and objects through nesting.
Hence, a class may depend at most on one object. Dependent classes [76] replace nesting
by parametrization and so allow dependencies between a class and multiple objects. Fur-
ther, the type parameters of a class are subject to dynamic dispatch, so dependent classes
complement multimethods (see Section 8.5) by providing multi-dispatched abstractions.

Advanced Separation of Concerns

Subject-oriented programming [86, 169] and work on multi-dimensional separation of con-
cerns [223] deals with the tyranny of the dominant decomposition problem. This problem
arises because most languages support only one fixed decomposition of a system, even
though other decompositions might be meaningful and appropriate. Hyper/J [170] pro-
vides multi-dimensional separation of concerns for Java. The tool allows an existing
application to be decomposed into hyperslices, and it offers the possibility to define new
hyperslices from scratch. Hyperslices represent different decompositions of a system and
allow developers to view a system from different perspectives. A flexible composition

157



8 Related Work

mechanism then creates a full Java class from several hyperslices. As mentioned before,
Lämmel and Ostermann use Haskell type classes to emulate some of the functionality of
hyperslices [119, Section 2.3]. Their solution also works in JavaGI, so Lämmel and Oster-
mann’s comparison with Hyper/J remains valid in the context of the JavaGI language.

Aspect-oriented programming [115] is another technique for improving separation of
concerns. It allows programmers to express crosscutting concerns (called aspects) in
an explicit and modular manner. AspectJ [114, 7, 6], an aspect-oriented extension of
Java, provides two kinds of crosscutting concerns: dynamic crosscutting supports the
definition of additional code to run at certain points in the execution of a program; and
static crosscutting affects the static type signature of a program. Inter-type member
declarations and the declare parents form, two examples for static crosscutting, offer
functionality similar to JavaGI’s retroactive interface implementations: the former enable
the addition of new members to existing classes, whereas the latter allows changes to
the inheritance structure of a program by inserting new superinterfaces. There is no
notion of dynamic crosscutting in JavaGI. The current implementation of AspectJ relies
on compile-time weaving to support inter-type member declarations and the declare
parents form [6, Chapter 5]. That is, the AspectJ compiler rewrites the byte code
of the relevant classes, so it is not possible to modify classes that are not under the
control of the compiler (e.g., classes from Java’s standard library). In contrast, JavaGI
never changes the byte code of existing classes, so it is possible to update arbitrary
classes. Moreover, AspectJ’s invasive compilation strategy causes changes to be visible
to all clients of a class, whereas JavaGI guarantees that modifications do not change the
behavior of existing clients.

Module Systems for Java

Keris [246] adds a module system to Java that allows for type-safe addition, refinement,
replacement, and specialization of modules without pre-planning. The resulting language
provides composition of modules through nesting and infers module dependencies auto-
matically. As in JavaGI, Keris’ extensibility mechanism does not require source-code
access and preserves the original version of a module being extended. The main differ-
ence between Keris and JavaGI is that the former introduces a new language construct
(modules) whereas the latter makes an existing construct (interfaces) more powerful.

Inspired by MzScheme’s [157] units [72], Jiazzi [138] also enhances Java with module-
like constructs to provide better support for component-based development. Unlike
JavaGI and Keris, however, Jiazzi does not directly extend the Java language but intro-
duces an external language for specifying package signatures and for defining and linking
units. The system supports separate compilation, cyclic linking, and mixins [25], and it
allows the modular addition of new features to existing classes. In contrast to JavaGI,
Jiazzi requires all extensions of a class to be integrated into one module. Further, Jiazzi
does not support dynamic loading of extensions.

Other work on module systems for Java include JavaMod [2], JAM [208, 214], and
Component NextGen [197].

158



8.4 Software Extension, Adaptation, and Integration

Statically Scoped Extension Mechanisms

Classboxes [14, 12, 13] offer scoped refinement of classes. Refining a class either adds
a new feature (i.e., method, field, superinterface, constructor, inner class) or redefines
an existing one, thereby creating a new version of the class. A scoping mechanism en-
sures that refinements are only locally visible so that potentially conflicting refinements
can coexist inside the same program. In contrast, JavaGI’s retroactive interface imple-
mentations can only add new methods and superinterfaces to classes, additions of other
features and redefinitions are not possible. Further, retroactive interface implementa-
tions in JavaGI share a global scope so two implementations of the same interface for the
same class lead to a conflict. In the other hand, the compilation strategy for classboxes
in Java [13] is not modular because the compiler weaves all refinements of a class into
the declaration of the class. The JavaGI compiler, however, supports non-invasive and
modular code generation. Furthermore, classboxes do not provide multiple dispatch and
advanced typing constructs such as explicit implementing types, multi-headed interfaces,
and type conditionals.

Expanders [237] are quite similar to classboxes. They offer statically scoped, retroac-
tive extension of classes with new fields, methods, and superinterfaces. The work on ex-
panders also emphasizes modularity: a class may have multiple, independent extensions
at the same time, but in each scope only explicitly opened extensions are visible. Un-
like classboxes, however, expanders offer modular typechecking and compilation. JavaGI
only offers mostly modular typechecking and fully modular compilation. Different from
JavaGI, expanders impose some restrictions on the placement of extension code. For
example, consider a class hierarchy contained in compilation unit U1, an extension of
the class hierarchy (either through expanders or through retroactive interface implemen-
tations) in U2, and a refinement of the class hierarchy by standard subclassing in U3.
Now suppose that the extension in U2 should be augmented to take the refinement in
U3 into account. With expanders their are two options, neither of which is satisfactory:
either edit the code in U2 to make the augmentation globally effective or provide a locally
overriding expander in some compilation unit U4 to make the augmentation only visible
from within U4. In contrast, JavaGI’s retroactive implementation definitions enable a
globally effective augmentation without touching the code in U2. Moreover, expanders
do not support abstract methods, which may result in unwanted run-time exceptions
because a reasonable default implementation of an operation does not always exist [148].
Last not last, expanders do not provide multiple dispatch and JavaGI’s advanced typing
constructs.

Miscellaneous

Hölzle [89] argued that minor incompatibilities between independently developed com-
ponents are unavoidable. Further, he discussed several mechanism for dealing with such
incompatibilities. JavaGI’s retroactive interface implementations is an realization of his
type adaptation proposal. Binary component adaptation [110] supports the adaptation
and evolution of components in binary form by rewriting component binaries at load-
time. In contrast, JavaGI never changes the byte code of existing classes.

159



8 Related Work

Scala [166] supports implicit parameters and methods, which can be used to define im-
plicit conversions called views. A view from type T to interface I may simulate a retroac-
tive implementation of I for T. However, unlike JavaGI’s multiple dynamic dispatch, view
selection in Scala is based on a single static type. Further, the implementation of a view
often uses explicit wrappers, which suffer from object schizophrenia [198, 89].

Partial classes in C# 2.0 [63] provide a primitive, code-level modularization tool. The
different partial slices of a class (comprising superinterfaces, fields, methods, and other
members) are merged by a preprocessing phase of the compiler. Extension methods in
C# 3.0 [64] support full separate compilation, but the added methods cannot be virtual,
and members other than methods cannot be added.

Smalltalk [81] and Objective-C [4] support the extension of existing classes with new
methods. Smalltalk also supports redefinitions of methods. In contrast to JavaGI,
Smalltalk is a dynamically typed language and the type language of Objective-C is much
weaker than that of JavaGI.

8.5 External Methods and Multiple Dispatch

This section complements the preceding one by discussing work on external methods
in combination with multiple dispatch. External methods allow extensions of existing
classes by defining methods outside of class definitions. Their common motivation is to
supersede the Visitor and the Adapter design patterns [73] and to solve the expression
problem [235, 227]. Multiple dispatch denotes the ability to perform dynamic dispatch not
only on the receiver but also on the arguments of a method call. This generalization of the
traditional object-oriented dispatch mechanism solves the binary-methods problem [29]
and improves code modularity and readability by avoiding double dispatch [98] and
cascades of instanceof tests. (Section 8.6 presents alternative solutions to the problem
of statically typechecking binary methods.)

The combination of external methods and multiple dispatch is found in languages such
as Common Lisp [205], Dylan [199], Cecil [44, 43, 45], as well as in the Java extension
MultiJava [49, 50] and its successor Relaxed MultiJava [148]. JavaGI supports multiple
dispatch through multi-headed interfaces and explicit implementing types. A standard
example [49] for multiple dispatch is to provide an operation for computing the inter-
section of different kinds of geometric shapes such that the “best” intersection algorithm
is automatically chosen based on the run-time type of the two shapes being intersected.
Figure 8.4 shows a JavaGI encoding of this example. The two-headed interface Intersect
defines a multimethod (i.e., a method subject to multiple dispatch) of name intersect
that dispatches on the receiver Shape1 and on its first argument Shape2. Retroactive
implementations of Intersect then provide the intersection algorithms for different com-
binations of shapes. Declaring the signature of a multimethod in an interfaces fixes the
dispatch positions for all implementations of the method in advance. The language Tu-
ple [121] shares this restriction with JavaGI, whereas Common Lisp, Dylan, Cecil, and
(Relaxed) MultiJava allow different dispatch positions for different implementations.

The main problem in fitting multiple dispatch to a typed object-oriented language is
modular typechecking without imposing too many restrictions. Common Lisp and Dy-

160



8.5 External Methods and Multiple Dispatch

Figure 8.4 Multiple dispatch in JavaGI.

// A simple hierarchy of geometric shapes
abstract class Shape { ... }
class Rectangle extends Shape { ... }
class Circle extends Shape { ... }
// Declaration of the intersection operation
interface Intersect [Shape1, Shape2] {

receiver Shape1 { boolean intersect(Shape2 that); }
}
// Implementations of di f ferent intersection algorithms
implementation Intersect [Shape, Shape] {

receiver Shape {
boolean intersect(Shape that) { /* standard algorithm */ }

}
}
implementation Intersect [Rectangle, Rectangle] {
receiver Rectangle {

boolean intersect(Rectangle that) { /* algorithm for rectangles */ }
}

}
// more implementations omitted

lan are both dynamically typed, so the problem does not occur in these languages. Cecil
requires the whole program to perform typechecking. The core language Dubious [149]
investigates what restrictions are necessary to support modular typechecking. The out-
come of this investigation are three different systems: System M supports fully modular
typechecking at the price of losing expressiveness; System E maximizes expressiveness
but requires some regional typechecking and a simple link-time check; System ME lets
programmers decide on a case-by-case basis whether to use System M or System E. All
three systems are type sound; that is, neither “message-not-understood” nor “message-
ambiguous”errors can occur at run time. The core calculus of JavaGI defined in Chapter 3
also enjoys type soundness in this sense.

MultiJava’s design [49, 50] is based on System M. Hence, it supports fully modular
typechecking at the price of several restrictions. JavaGI’s initial design [240] (see also
Section 8.11) followed MultiJava and reformulated the restrictions as follows: (i) retroac-
tively defined methods must not be abstract; and (ii) if an implementation of interface
I in compilation unit U retroactively adds a method to class C, then U must contain
either C’s definition or any implementation of I for a superclass of C. These two restric-
tions allow modular typechecking but also severely limit expressiveness. Thus, JavaGI
takes the same approach as Relaxed MultiJava [148] and defers some checks to link time.
These link-time checks allow JavaGI to drop the two restrictions just mentioned. Relaxed
MultiJava and JavaGI support fully modular code generation.

Dylan, Cecil, (Relaxed) MultiJava, and JavaGI all rely on symmetric multiple dispatch;
that is, they treat all dispatch arguments identically. Only few approaches (e.g., Common
Lisp) use asymmetric dispatch, which avoids ambiguities by preferring certain dispatch

161



8 Related Work

arguments when searching for a method implementation.

Half & Half [10] is a Java extension supporting asymmetric multiple dispatch but no
external methods. Instead, it offers the ability to add new superinterfaces to existing
classes, thereby relying on structural conformance of the existing class with the new
superinterface. JavaGI’s retroactive interface implementations are more powerful because
they allow to compensate for structural non-conformance by providing missing methods
externally.

Nice [21] is a Java-like language supporting external methods and symmetric multiple
dispatch. It has its roots in ML≤ [23], an explicitly typed extension of ML [150] with
subtyping and higher-order multimethods. Nice also provides some form of retroactive
interface implementation. Different from JavaGI, these retroactive implementations are
not available for ordinary interfaces but only for so-called abstract interfaces. Unlike
ordinary interfaces, abstract interfaces are not types but can be used to constrain type
parameters [20], in quite similar ways as JavaGI’s implementation constraints.

Pirkelbauer and colleagues [178] study external methods and multiple dispatch in the
context of C++. Their extension deals with the additional ambiguities arising through
multiple inheritance by employing link-time checks. Allen and coworkers [1] consider a
formalization of external methods and multiple dispatch in the context of Fortress [217].
Their formalization includes multiple inheritance and defines modular restrictions that
rule out ambiguous or undefined method calls.

An empirical study [154] analyzed the use of multiple dispatch in practice and suggested
that “Java programs would have scope to use more multiple dispatch were it supported in
the language.” Predicate dispatch [71, 146, 147] is more expressive than multiple dispatch
because each method may specify a predicate that defines the conditions under which
the method should be invoked. JavaGI does not support predicate dispatch.

8.6 Binary Methods

A binary method [29] is a method requiring the receiver type and some of the argument
types to coincide. Static typechecking of binary methods is challenging because subtyping
treats methods arguments contravariantly, whereas binary methods require arguments to
vary covariantly.

PolyTOIL [34] is a statically typed object-oriented languages supporting a keyword
MyType, which represents the type of this. Using MyType as the type of certain method
arguments provides faithful signatures for binary methods. To avoid the aforementioned
tension between contra- and covariance, PolyTOIL separates subtyping from subclass-
ing. Instead of subtyping, subclassing only induces a matching relation between types.
Matching, written <#, is weaker than subtyping (i.e., relates more types) and can be used
to constrain type parameters of classes and methods, leading to the notion of match-
bounded polymorphism.

Although matching and subtyping are different relations, they are still quite similar. To
avoid confusion between them, the successor LOOM [32] of PolyTOIL completely elim-
inates subtyping in favor of matching. To address some loss of expressiveness, LOOM
introduces hash types. A hash type #T denotes the set of all types matching T; that is,

162



8.7 Type Conditionals

#T can be seen as an abbreviation for the match-bounded existential type ∃ X<#T.X.
The language LOOJ [30] integrates the ideas of MyType into Java. It introduces

ThisClass to capture the class type of this and ThisType to denote the public in-
terface type of the definition where ThisType occurs. LOOJ ensures type safety in the
presence of ThisClass and ThisType through exact types that essentially prohibit sub-
type polymorphism. Self-type constructors [193] integrates the ThisClass construct of
LOOJ with generics, so that ThisClass inside a generic class no longer denotes a specific
instantiation of the class but takes type parameters on its own.

JavaGI provides explicit implementing types to express the signatures of binary meth-
ods in interfaces. To regain type soundness, JavaGI prevents invocations of binary meth-
ods on receivers whose static types are interface types and uses multiple dispatch to select
the most specific implementation of a binary method dynamically. JavaGI also supports
retroactive and constrained interface implementations, as well as static interface methods;
these features have no correspondence in PolyTOIL, LOOM, or LOOJ.

Eiffel’s like Current construct [140] also allows to express signatures of binary meth-
ods. Unfortunately, the construct renders the type system unsound [51]. Attempts to
recover type soundness include a global system validity check [140] and a complex con-
dition preventing “polymorphic catcalls” [141].

Scala [166] supports singleton types of the form this.type, which are similar to (co-
variant uses of) MyType [168]. Moreover, Scala’s self-type annotations allow programmers
to state the type of this explicitly.

8.7 Type Conditionals

JavaGI’s facility to provide methods and retroactive implementations of interfaces de-
pending on the validity of type conditions is related to cJ [91], a Java extension that
provides type-conditional declarations of fields, methods, superclasses, and superinter-
faces. JavaGI does not support type-conditional fields and superclasses. A type condition
in cJ is any subtype constraint on generic parameters, whereas JavaGI additionally allows
implementation constraints. The language cJ concentrates on type conditionals: it does
not support JavaGI’s retroactive implementations, multiple dispatch, explicit implement-
ing types, multi-headed interfaces, and static interface methods.

Constraint-based polymorphism [131, 130] for Cecil [45] offers the possibility to de-
fine classes, subtype relationships, methods, and fields depending on certain type con-
straints. These constraints, expressed in where-clauses as in JavaGI, come in two forms:
isa-constraints specify nominal subtype conditions, whereas method-constraints express
structural subtype conditions. The system also supports external methods and multiple
dispatch but does not provide an interface concept in the sense of JavaGI. The type system
for constraint-based polymorphism is sound and there exists a sound and terminating
but incomplete typechecking algorithm. In contrast, JavaGI’s typechecking algorithm
is sound, terminating, and complete, albeit for a weaker constraint system. Further,
JavaGI is a conservative extension of the class-based language Java, whereas Cecil is an
object-based language.

An extension of C# with type-equation constraints enables cast-free programs for

163



8 Related Work

object-oriented encodings of generalized algebraic datatypes [111]. Further, it allows to
specify generic methods that only apply to certain instantiations of the enclosing class.
While JavaGI does not support type equations in their general form, it is nevertheless
possible to encode several of the examples written with type equations (e.g., the “typed
expressions in typed environments” and the “list flatten” examples [111]) using JavaGI’s
type conditionals. There exist a generalization of type-equation constraints to arbitrary
subtype constraints that also considers variance for generic types [66].

As discussed in Section 8.4, Scala’s views [166] can emulate some functionality of
retroactive interface implementations. This functionality includes type-conditional inter-
face implementations because views may place type conditions on their arguments.

Constrained types [163] in X10 [196] are a form of dependent types [177, Chapter 2]
that allow to enforce conditions on the immutable state of a class. This sort of condition is
quite different from JavaGI’s type conditions, which express subtype and implementation
constraints on type variables.

The idea of separate where-clauses to specify type conditionals goes back to the pro-
gramming language CLU [127, 129]. CLU and its successor Theta [128, 55] support
structural constraints on type parameters, even if the parameters are defined in an en-
closing scope.

8.8 Traits

Originally, a trait is a stateless collection of methods implementing a particular concern,
but separate from a class [59, 58]. Traits can be composed in various ways and have to
be included in a class to attach their methods to objects of that class. Recent work also
addresses stateful traits [15] and integrates traits into statically typed languages [203,
126, 22]. The main difference between traits and generalized interfaces in JavaGI is the
intention behind these two concepts: traits are meant as units of reuse whereas interfaces
describe signatures of objects.

Scala [166] combines these two intentions. As interface in Java, traits specify signa-
tures of objects but they may also contain fields and default implementations of cer-
tain methods. Modular mixin composition [168] integrates traits into classes. Unlike
JavaGI, however, Scala does not support retroactive implementations of traits. Traits in
Fortress [217] are like Java interfaces but they may contain code, properties, and allow
parameterization over values.

Mohnen [151] suggested interfaces with default implementations for Java. JavaGI can
encode such default implementations with abstract implementations and implementation
inheritance (see Section 2.1.5).

8.9 Advanced Subtyping Mechanisms

This section discusses some advanced subtyping mechanisms related to JavaGI.

Most object-oriented languages (e.g., Java, C#, Scala, and also JavaGI) rely on nomi-
nal subtyping; that is, explicit declarations establish the subtyping relation. In contrast,

164



8.10 Subtyping and Decidability

structural subtyping considers type T a subtype of another type U if T matches U struc-
turally; that is, T supports at least the features provided by U. Structural subtyping
enables retroactive interface implementation if the names and signatures of the meth-
ods of a class happen to match the requirements of an interface. In practice, however,
situations where a class does not implement an interface nominally but nevertheless
provides all the interface’s methods with exactly matching signatures seem to be quite
rare. More common appear scenarios where a class provides the methods of an interface
with slight mismatches with respect to method names or argument ordering [89]. Struc-
tural subtyping alone does not help in such situations but JavaGI’s retroactive interface
implementations do. Nevertheless, structural subtyping provides benefits to other prob-
lem areas [135]. Ostermann [171] provided a detailed comparison between nominal and
structural subtyping.

Compound types [35] integrate a form of intersection types [176, Section 15.7] into Java.
They are subject to structural subtyping, but other constructs of the language still rely on
nominal subtyping. Läufer and coworkers considered structural conformance to interface
types in the context of Java [120]. In their work, a type is a subtype of some interface if
it matches the interface structurally. The authors also discussed a renaming mechanism
for methods to make structural conformance more widely applicable. Whiteoak [79] is
an extension of Java that introduces designated struct types. These types are subject
to structural subtyping and support flexible composition operations. Unity [134] is a
language design that integrates nominal and structural subtyping, and also provides
external methods.

The programming language Sather [221, 207] is based on nominal subtyping but al-
lows for some of the flexibility of structural subtyping by supporting not only declara-
tions of sub- but also of supertypes. Further, Sather decouples inheritance from subtyp-
ing [53]. The calculus FJ<: [171] combines Sather’s subtyping mechanism with compound
types [35] to arrive at a non-transitive subtyping relation. Pedersen [172] proposed spe-
cialization (i.e., the possibility to introduce new superclasses) as a technique to improve
reusability of classes.

8.10 Subtyping and Decidability

Chapter 5 discussed two extensions of JavaGI’s type system that both render subtyping
undecidable. This section reviews work related to this topic.

Kennedy and Pierce [113] investigated undecidability of subtyping under multiple in-
stantiation inheritance and declaration-site variance. They proved that the general case
is undecidable and presented three decidable fragments. The undecidability proof for
subtyping in IIT given in Section 5.1 is similar to theirs, although undecidability has
different causes: Kennedy and Pierce’s system is undecidable because of contravariant
generic types, expansive class tables, and multiple instantiation inheritance, whereas un-
decidability of the system in Section 5.1 is due to implementation definitions for interface
types, which cause cyclic interface and multiple instantiation subtyping.

Pierce [175] proved undecidability of subtyping in F≤ [40] by a chain of reductions from
the halting problem for two-counter Turing machines. An intermediate link in this chain

165



8 Related Work

is the subtyping relation of FD≤ , which is also undecidable. The undecidability proof for

subtyping in EXuplo from Section 5.2 works by reduction from FD≤ and is inspired by
a reduction given by Ghelli and Pierce [77], who studied bounded existential types in
the context of F≤ and showed undecidability of subtyping. Crucial to the undecidability
proof of FD≤ is rule d-all-neg (Figure 5.4 on page 120): it extends the typing context
and essentially swaps the sides of a subtyping judgment. In EXuplo, rule exuplo-open

and rule exuplo-abstract (Figure 5.3 on page 118) together with lower bounds on type
variables play a similar role. In an object-oriented setting, it is possible to define a
restricted variant of F≤ by separating subtyping and subclassing such that quantified
type variables are subject to subclassing bounds only [46]. The resulting subtyping and
expression typing relations are decidable.

WildFJ [228] is a model for Java wildcards based on bounded existential types. There
exists no type soundness proof for WildFJ. The calculus ∃J [38] is similar to WildFJ
but comes with a proof of type soundness. However, ∃J is not a full model for Java
wildcards because it does not support lower bounds for type variables. TameFJ [37] is
a type-sound calculus supporting all essential features of Java wildcards. WildFJ’s and
TameFJ’s subtyping rules are similar to the ones of EXuplo defined in Section 5.2, so
we conjecture that subtyping in WildFJ and TameFJ is also undecidable. The rule XS-
Env of TameFJ is roughly equivalent to the rules exuplo-open and exuplo-abstract

(Figure 5.3 on page 118) of EXuplo. Other calculi [36] use existential types to yield a
unified model of subtyping in Java.

Decidability of subtyping for Java wildcards is still an open question [137]. One step
in the right direction might be the work of Plümicke, who solved the problem of finding
a substitution ϕ such that ϕT ≤ ϕU for Java types T,U with wildcards [180, 181]. The
undecidability result for EXuplo does not imply undecidability for Java subtyping with
wildcards. The proof of this claim would require a translation from subtyping derivations
in EXuplo to subtyping derivations in Java with wildcards, which is not addressed in this
dissertation. In general, existentials in EXuplo are strictly more powerful than Java
wildcards. For example, the existential ∃X.C<X,X> cannot be encoded as the wildcard
type C<?, ?> because the two occurrences of ? may denote two distinct types.

Scala [166] supports bounded existential types to provide better interoperability with
Java libraries using wildcards and to address the avoidance problem [177, Chapter 8].
The subtyping rules for Scala’s existentials (Section 3.2.10 and Section 3.5.2 of the spec-
ification [166]) are very similar to the ones for EXuplo. This raises the question whether
Scala’s subtyping relation with existentials is decidable.

8.11 JavaGI’s Initial Design

An article [240] at ECOOP 2007 presented the initial design of JavaGI. The language in-
troduced in that article included full-blown bounded existential types and omitted many
restrictions, thus rendering subtyping and typechecking undecidable. The undecidability
results were first established in two papers [241, 243] at FTfJP 2008 and APLAS 2009;
Chapter 5 of this dissertation builds on and slightly extends the APLAS paper. Apart
from decidability issues, the ECOOP paper did not define a dynamic semantics, so there

166



8.11 JavaGI’s Initial Design

was no implementation and the type soundness proof was not worked out. Furthermore,
the translation scheme sketched in the ECOOP paper was too limiting because it did not
support dynamic loading of implementation definitions and required severe restrictions
on the locations of retroactive implementation definitions (see Section 8.5). In contrast,
JavaGI as presented in this dissertation is fully implemented and integrated with Java, it
supports dynamic loading and implementation inheritance, and it places no restrictions
on the locations of implementation definitions. It comes with a formalization that enjoys
type soundness, decidable subtyping and typechecking, as well as deterministic evalua-
tion. Further, there exists a type- and behavior-preserving translation that demonstrates
how to translate the JavaGI constructs to plain Java.

167





9
Conclusion

JavaGI is a conservative extension of Java based on the notion of generalized interfaces.
It offers a flexible approach to adapting, extending, and integrating existing software
components, even in binary form. Further, JavaGI supersedes tedious applications of
design patterns and offers save and convenient alternatives to unsafe cast operations,
run-time exceptions, and code duplication. The generalization of interfaces serves as
the unifying notion that leads to a coherent and elegant language design. Thus, JavaGI
smoothly integrates features only loosely connected in other language proposals.

Chapter Outline. The last chapter of the dissertation summarizes the content of the
preceding chapters (Section 9.1) and outlines directions for future work (Section 9.2).

9.1 Summary

The introduction of the dissertation set the scene by motivating why component-based
software development in statically-typed, object-oriented programming languages is ben-
eficial to reducing development costs and raising software quality. It also pointed out
a particular problem with software components in object-oriented languages: how to
implement the interfaces required by one component with classes provided by another,
independently developed component?

The introduction also established the main goal of this dissertation: the design, formal-
ization, and implementation of a programming language that enables clean solutions to
software extension, adaptation and integration problems, and that raises the expressive-
ness of the type system to prevent developers from resorting to tedious coding patterns,
unsafe cast operations, run-time exceptions, and code duplication. The new language
should be a conservative extension of Java to reuse as much infrastructure (libraries,
tools, knowledge of developers, etc.) as possible. Further, the design of the language
should be based on a generalization of Java’s interfaces to subsume different concerns
under a single concept.

169



9 Conclusion

Design

Chapter 2 provided a gentle introduction to the design of this new language JavaGI.
It first explained the concept of retroactive interface implementations. This feature
enables developers to provide implementations of interfaces that are not attached to
class definitions. Thus, retroactive interface implementations solve the aforementioned
problem of connecting two independently developed components.

Chapter 2 continued by stepwise unfolding more features of JavaGI. The examples used
to introduce the features demonstrated how

� retroactive interface implementations enable non-invasive and in-place object adap-
tation and thus eliminate the need for the Adapter pattern [73] (Sections 2.1.1
and 2.1.8);

� retroactive interface implementations enable extensibility in the data and opera-
tion dimension and thus supersede the Visitor pattern [73] and solve a restricted
version of the expression problem [235, 227] (Sections 2.1.1 and 2.1.8, but see also
Section 8.4);

� explicit implementing types allow the specification of signatures for binary methods
without resorting to awkward uses of F-bounded polymorphism and Java wildcards
(Sections 2.1.2 and 2.1.8);

� explicit implementing types enable multiple dispatch and thus avoid clumsy coding
patterns (Sections 2.1.2, 2.1.7, and 2.1.8, but see also Section 8.5);

� type conditionals prevent code duplication and unsafe run-time casts (Sections 2.1.3
and 2.1.8);

� static interface methods abstract over class constructors and thus supersede the
Factory pattern [73] (Sections 2.1.4 and 2.1.8);

� inheritance for retroactive interface implementations allows to provide (partial)
default implementations of interfaces and thus avoids code duplication without
restricting the inheritance hierarchy (Section 2.1.5);

� multi-headed interfaces allow to express relationships between multiple types in a
static way and thus eliminate certain run-time casts (Sections 2.1.7 and 2.1.8, but
see also Section 8.3);

� dynamic loading of retroactive implementation definitions provides seamless in-
tegration with Java’s approach of loading all classes and interfaces dynamically
(Section 2.1.6).

Furthermore, Chapter 2 presented JavaGI’s design principles of conservativeness, ex-
tensibility, dynamicity, type safety, modularity, and transparency. It also gave a high-
level overview on the principles of typechecking and executing JavaGI programs. The
overview included the specification of well-formedness criteria that ensure successful and
unambiguous dynamic method lookup without depending on run-time type arguments.

170



9.1 Summary

The JavaGI compiler checks these criteria globally, and JavaGI’s run-time system repeats
the checks whenever a new class or implementation is loaded. Thus, JavaGI gives up
fully modular typechecking in favor of flexibility: checking the criteria modularly and
at compile time only would require severe restrictions on the placement of retroactive
implementations, and it would make support for dynamic loading of implementation
definitions very hard to achieve (see also Section 8.11).

Formalization

The formalization of JavaGI ranged over three chapters. Chapter 3 introduced CoreGI,
a calculus in the spirit of Featherweight Generic Java [96]. CoreGI includes the essential
aspects of generalized interfaces in the full JavaGI language, with the exception that
interfaces cannot be used as implementing types of retroactive implementations.

The formalization of CoreGI in Chapter 3 started with the definition of a dynamic
semantics and a declarative specification of CoreGI’s type system. The type system also
includes the global well-formedness criteria mentioned at the end of the preceding section,
except for the“no implementation chains” and the“completeness” criteria (Section 2.3.4),
which are only relevant if interfaces are allowed as implementing types and if methods
of retroactive implementations may be static, respectively. Next, Chapter 3 verified that
CoreGI’s type system is sound and that its evaluation relation is deterministic. Finally,
the chapter presented constraint entailment, subtyping, and typechecking algorithms for
CoreGI and proved them equivalent to their declarative specification.

Chapter 4 formalized the compilation from JavaGI into standard Java constructs. The
source language of the formal translation is CoreGI[, a subset of CoreGI without support
for generics and some other, minor features. The target language is iFJ, an extension
of Featherweight Java [96] with interfaces, let-expressions, and a primitive operation
for dictionary lookup. The chapter defined a type-directed translation from CoreGI[ to
iFJ and verified that the translation preserves the static and the dynamic semantics of
CoreGI[. It also proved that the type systems of iFJ and CoreGI[ are both sound, and that
the evaluation relation of CoreGI[ is deterministic.

Chapter 5 investigated two extensions of JavaGI’s subtyping relation. The first ex-
tension provides support for interfaces as implementing types of retroactive implementa-
tions. In its most general form, subtyping is undecidable in this setting. However, there
exist several restrictions that ensure decidability. The full JavaGI language uses one
of these restrictions (Restriction 5.9) as well-formedness criterion “no implementation
chains” (Section 2.3.4) to support interfaces as implementing types without rendering
the subtyping relation undecidable.

The second extension looked at bounded existential types with lower and upper bounds.
Existential types of this form are attractive because they subsume and generalize several
other features of JavaGI. Unfortunately, subtyping is undecidable for existentials with
lower and upper bounds. Although there exist two decidable fragments, JavaGI does not
support existentials because both fragments are not powerful enough to be of practical
value. The undecidability result for bounded existential types with lower and upper
bounds also sheds light on the decidability of subtyping in Scala [166] and of subtyping
for Java wildcards [229, 37] (see Section 8.10).

171



9 Conclusion

Implementation

Chapter 6 discussed the implementation of a compiler and a run-time system for JavaGI.
The implementation demonstrates that the typechecking algorithm for CoreGI and the
translation from CoreGI[ to iFJ scales to the full language without major problems. The
JavaGI compiler is based on the Eclipse Compiler for Java [62], so it supports the full
Java 1.5 language and all JavaGI-specific features presented in this dissertation. The type-
checking strategy of the compiler can be described as “mostly modular”: although the
compiler typechecks each compilation unit in isolation, it needs one global pass at the end
to verify the well-formedness criteria mentioned earlier. Code generation, however, works
in a modular way. JavaGI’s run-time system has the following responsibilities: it main-
tains the pool of available implementation definitions, it re-checks the well-formedness
criteria if necessary, it loads new implementation definitions at run time, it performs
dynamic dispatch on retroactively implemented methods, and it carries out certain cast
operations, instanceof tests, and identity comparisons.

Chapter 7 reported on practical experience with JavaGI and its implementation. It
started by describing three real world case studies:

� The first case study implemented a framework for evaluating XPath [47] expressions
and adapted two existing XML libraries written in Java to the framework. It
demonstrated that retroactive interface implementations allow for a straightforward
and elegant adaptation of the XML libraries. Compared with an existing adaptation
of the same libraries to a corresponding framework in plain Java, the JavaGI solution
requires no cast operations at all, whereas the Java solution contains 75 casts.

� The second case study implemented a framework for developing web applications
and used this framework to provide a workshop registration application. The frame-
work is based on the Java servlet technology [215] and on ideas from the WASH
framework [224]. The case study demonstrated the usefulness of retroactive in-
terface implementations and static interface methods. Moreover, it showed that
JavaGI’s support for dynamic loading of implementation definitions is essential when
working within a servlet container such as Tomcat [3].

� The third case study refactored the Java Collection Framework so that invocations
of destructive operations on unmodifiable collections lead to compile-time instead
of run-time errors. Inspired by work on the Java extension cJ [91], the case study
implemented this functionality using JavaGI’s form of type conditionals.

The chapter continued by presenting benchmark data suggesting that the JavaGI com-
piler generates code with good performance. Plain Java code compiled with the JavaGI
compiler runs as fast as the same code compiled with a regular Java compiler, but there
is a performance penalty for JavaGI-specific features.

Related Work

Chapter 8 discussed research related to JavaGI. The discussion covered a broad range:
it compared JavaGI’s generalized interface concept with Haskell’s type class mechanism;

172



9.2 Future Work

it looked at various approaches to generic programming and family polymorphism; it
evaluated JavaGI according to criteria established for solutions to the expression prob-
lem; it considered different solutions to software extension, adaptation, and integration
problems; it reviewed proposals providing external methods in combination with multiple
dispatch; it discussed work on binary methods, type conditionals, traits, and advanced
subtyping mechanisms; it studied subtyping and decidability issues related to the unde-
cidability results of Chapter 5; and it compared the current design of JavaGI with an
earlier version.

9.2 Future Work

Future work addresses support for associated types and proper reflection facilities. More-
over, the following directions may be worthwhile to pursue.

Implementation Families

Currently, all retroactive implementation definitions share a global scope. This approach
may lead to problems composing separately developed parts of an application because it
impedes independent extensibility [219]. For example, different parts of an application
may need to provide different implementations of the same interface with identical im-
plementing types. Unfortunately, JavaGI prevents such overlapping implementations to
rule out ambiguities in dynamic method lookup. Implementation families are a possible
solution to this problem. The idea is to partition the set of implementation definitions
into disjoint families such that JavaGI’s global well-formedness criteria must hold only
within each family and not for all implementation definitions. To avoid run-time ambigu-
ities, an invocation of a retroactively implemented method must specify, either explicitly
or implicitly, the family from which to resolve the implementation.

Better Support for Interfaces as Implementing Types

Currently, JavaGI prevents retroactive implementations of interfaces that are used as
implementing types in other implementations (criterion “no implementation chains” in
Section 2.3.4, Restriction 5.9 in Section 5.1.3). Again, this restriction endangers inde-
pendent extensibility. It is an open question how to lift the restriction in a satisfactory
manner. On the theoretical side, the restriction is important to ensure decidability of con-
straint entailment and subtyping (see Section 5.1). On the practical side, the restriction
allows for efficient run-time lookup of retroactive implementations.

Retroactive Interface Implementations for the Java Virtual Machine

Currently, the JavaGI compiler generates code that is executable on an unmodified Java
Virtual Machine (JVM [125]). It would be worthwhile to explore what modifications to
the JVM are necessary to support retroactive interface implementations directly. Possible
benefits of such an extension include better performance and improved compatibility with
libraries compiled by an ordinary Java compiler. (Libraries compiled by an ordinary Java

173



9 Conclusion

compiler are not aware of wrappers and thus may exhibit unexpected behavior under the
current compilation approach.)

Generalized Interfaces for C#

Currently, generalized interfaces are only available as an extension of the language Java.
What about generalized interfaces for other object-oriented languages such as C#? Al-
though Java and C# are quite similar, there are still enough differences that would make
such an undertaking interesting. For example, Java has a type-erasure semantics; that is,
type arguments of generic classes are not available at run time. In contrast, C# provides
run-time types. As discussed in Section 6.1.3, Java’s type-erasure semantics influenced
the design of JavaGI at several places, so the availability of run-time types may change
some of these design decisions.

174



Appendix

175





A
Syntax of JavaGI

Figures A.1 and A.2 define the syntax of JavaGI, expressed as an extension to the syntax of Java
as defined in the first 17 chapters of The Java Language Specification (JLS) [82]. The syntax
definition shows nonterminal symbols in italic font and terminal symbols in fixed width font.
The subscript “opt” indicates an optional item. Alternative productions for the same nonterminal
are separated by the symbol “|”. A nonterminal already defined in the JLS carries a superscript
annotation specifying the JLS section of its original definition. A JLS section annotation in
parenthesis indicates that the syntax of JavaGI redefines the annotated nonterminal. An ellipsis
“. . . ” represents unmodified JLS productions. The figure highlights changes to other productions
from the JLS.

There are three new keywords in JavaGI: implementation, receiver, and where. The
nonterminal as in the production for ImplName in Figure A.1 is not parsed as a keyword but as
a regular identifier.

177



A Syntax of JavaGI

Figure A.1 Syntax of JavaGI (1/2).

Implementations

TypeDeclaration(§ 7.6) : . . . | ImplDeclaration

ImplDeclaration : ImplModifieropt implementation TypeParameters§ 8.1.2opt

InterfaceType§ 4.3[ ClassOrInterfaceTypeList ]
ImplNameopt ExtendsImplopt ConstraintClauseopt
{ ImplBodyDeclarationsopt }

ImplModifier : one of final abstract

ClassOrInterfaceTypeList : non-empty list of ClassOrInterfaceType§ 4.3 separated by ,

ImplName : as Identifier§ 3.8

ExtendsImpl : extends ImplReference

ImplReference : InterfaceType§ 4.3[ ClassOrInterfaceTypeList ]
| TypeName§ 4.3

ConstraintClause : where ConstraintList

ConstraintList : non-empty list of Constraint separated by ,

Constraint : ReferenceType§ 4.3 TypeBound(§ 4.4)

| ImplTypeList implements InterfaceType§ 4.3

ImplTypeList : non-empty list of ReferenceType§ 4.3 separated by *

ImplBodyDeclarations : possibly empty list of ImplBodyDeclaration

ImplBodyDeclaration : MethodDeclaration§ 8.4 | ReceiverImpl

ReceiverImpl : receiver ClassOrInterfaceType§ 4.3

{ MethodDeclarationsopt }

MethodDeclarations : possibly empty list of MethodDeclaration§ 8.4

Interfaces

NormalInterfaceDeclaration(§ 9.1) : InterfaceModifiers§ 9.1.1opt interface Identifier§ 3.8

TypeParameters§ 8.1.2opt ImplParametersopt
ExtendsInterfaces§ 9.1.3opt ConstraintClauseopt
InterfaceBody§ 9.1.4

ImplParameters : [ IdentifierList ConstraintClauseopt ]

IdentifierList : non-empty list of Identifier§ 3.8 separated by ,

InterfaceMemberDeclaration(§ 9.1.4) : . . . | ReceiverDeclaration

ReceiverDeclaration : receiver Identifier§ 3.8 { AbstractMethodDeclarations§ 9.4opt }

Classes

NormalClassDeclaration(§ 8.1) : ClassModifiers§ 8.1.1opt class Identifier§ 3.8

TypeParameters§ 8.1.2opt Super§ 8.1.4opt Interfaces§ 8.1.5opt

ConstraintClauseopt ClassBody§ 8.1.6

178



Figure A.2 Syntax of JavaGI (2/2).

Methods

MethodHeader(§ 8.4) : MethodModifiers§ 8.4.3opt TypeParameters§ 8.1.2opt ResultType§ 8.4

MethodDeclarator§ 8.4 Throws§ 8.4.6 ConstraintClauseopt

AbstractMethodDeclaration(§ 9.4) : AbstractMethodModifiers§ 9.4opt TypeParameters§ 8.1.2opt

ResultType§ 8.4 MethodDeclarator§ 8.4 Throws§ 8.4.6opt

ConstraintClauseopt

AbstractMethodModifier(§ 9.4) : one of Annotation§ 9.7 public abstract static

Type bounds

TypeBound(§ 4.4) : . . . | implements InterfaceType§ 4.3 AdditionalBoundList§ 4.4opt

WildcardBounds(§ 4.5.1) : . . . | implements InterfaceType§ 4.3

Expressions

MethodInvocation(§ 15.12) : . . .

| MethodName§ 6.5 InterfaceSpecifier ( ArgumentList§ 15.9opt )
| Primary§ 15.8 . NonWildTypeArguments§ 8.8.7.1opt Identifier§ 3.8

InterfaceSpecifier ( ArgumentList§ 15.9opt )

| InterfaceType§ 4.3 [ ClassOrInterfaceTypeList ].
NonWildTypeArguments§ 8.8.7.1opt Identifier§ 3.8

( ArgumentList§ 15.9opt )

InterfaceSpecifier : :: TypeName§ 6.5

179





B
Formal Details of Chapter 3

B.1 Equivalence of Declarative and Quasi-Algorithmic
Entailment and Subtyping

This section proves Theorems 3.11 and 3.12, which state soundness and completeness, respec-
tively, between the declarative and the quasi-algorithmic formulation of constraint entailment
and subtyping. We make the global assumption that the underlying program prog is well-formed;
that is, ` prog ok.

B.1.1 Proof of Theorem 3.11

Theorem 3.11 states that quasi-algorithmic constraint entailment and subtyping is sound with
respect to the declarative formulation.

Lemma B.1.1 (Transitivity of sup). If R3 ∈ sup(R2) and R2 ∈ sup(R1) then R3 ∈ sup(R1).

Proof. Straightforward induction on the height of the derivation of R3 ∈ sup(R2).

Lemma B.1.2. If I <T> Ei K, then U implementsK ∈ sup(U implements I <T>) for any U .

Proof. By induction on the derivation of I <T> Ei K. If the derivation ends with inh-iface-refl,
then I <T> = K and the claim follows trivially.

Now suppose the derivation ends with inh-iface-super:

interface I <X> [Y whereR] . . . Ri = G implementsL [T/X]L Ei K

I <T> Ei K

By applying the induction hypothesis (I.H.) to [T/X]L Ei K, we get

U implementsK ∈ sup(U implements [T/X]L)

for any type U .

181



B Formal Details of Chapter 3

By sup-refl, we have U implements I <T> ∈ sup(U implements I <T>). Thus, by sup-step

also [U/Y, T/X]Ri ∈ sup(U implements I <T>). With criterion wf-iface-2 we have G = Y and
Y /∈ ftv(L). Thus, [U/Y, T/X]Ri = U implements [T/X]L. Hence,

U implements [T/X]L ∈ sup(U implements I <T>)

With Lemma B.1.1 we then get U implementsK ∈ sup(U implements I <T>) as required.

Lemma B.1.3. If ∆  R and S ∈ sup(R) then ∆  S.

Proof. Straightforward induction on the derivation of S ∈ sup(R).

Proof of Theorem 3.11. The proof is by induction on the combined height of the derivations of
∆ q

′ R, ∆ q P, ∆ q̀
′ T ≤ U , and ∆ q̀ T ≤ U , which we call D1,D2,D3, and D4, respectively.

(In general, D ranges over derivations.)

(i) Case distinction on the last rule used in D1.

� Case ent-q-alg-env: We then have S ∈ ∆ and R ∈ sup(S) With ent-env we get
∆  S. Applying Lemma B.1.3 then yields ∆  R.

� Case ent-q-alg-impl: By appeal to part (ii) of the I.H. and rule ent-impl.

� Case ent-q-alg-iface: We then have

R = I <V > implementsK

1 ∈ pol+(I)

non-static(I)

I <V > Ei K

With Lemma B.1.2 we get

I <V > implementsK ∈ sup(I <V > implements I <V >)

Because 1 ∈ pol+(I) and non-static(I) we have with ent-iface

∆  I <V > implements I <V >

Then ∆  R by Lemma B.1.3.

End case distinction on the last rule used in D1.

(ii) Case distinction on the last rule used in D2.

� Case ent-q-alg-extends: Follows by part (iv) of the I.H. and an application of rule
ent-extends.

� Case ent-q-alg-up: We have P = T
n
implements I <V > and

(∀i) ∆ q̀
′ Ti ≤ Ui

(∀i) if Ti 6= Ui then i ∈ pol−(I) ∆ q
′ U implements I <V >

∆ q T
n
implements I <V > (B.1.1)

By part (iii) and (i), we get

(∀i) ∆ ` Ti ≤ Ui (B.1.2)

∆  U
n
implements I <V >

We now show ∆  T
n
implements I <V > by an inner induction on the number m of

indices i with Ti 6= Ui.

182



B.1 Equivalence of Declarative and Quasi-Algorithmic Entailment and Subtyping

– If m = 0 then T = U and the claim follows trivially.

– Assume m > 0. Without loss of generality (w.l.o.g.), suppose Tn 6= Un. We get
by the inner I.H.

∆  T
n−1

Un implements I <V > (B.1.3)

Because Tn 6= Un we have n ∈ pol−(I) by (B.1.1). With (B.1.2), (B.1.3), and
ent-up we then get ∆  T

n
implements I <V > as required.

End case distinction on the last rule used in D2.

(iii) Case distinction on the last rule used in D3.

� Case sub-q-alg-obj: Follows with sub-object.

� Case sub-q-alg-var-refl: Follows with sub-refl.

� Case sub-q-alg-var: Follows by appeal to part (iii) of the I.H. and by applications
of rules sub-var and sub-trans.

� Case sub-q-alg-class: Follows by combining (possibly repeated) applications of rule
sub-class with rule sub-trans.

� Case sub-q-alg-iface: Follows by combining (possibly repeated) applications of rule
sub-iface with rule sub-trans.

End case distinction on the last rule used in D3.

(iv) Case distinction on the last rule used in D4.

� Case sub-q-alg-kernel: Follows from part (iii) of the I.H.

� Case sub-q-alg-impl: We have

∆ q̀
′ T ≤ T ′ ∆ q

′ T ′ implementsK

∆ q̀ T ≤ K︸︷︷︸
=U

By parts (iii) and (i) we get

∆ ` T ≤ T ′

∆  T ′ implementsK

With sub-impl we then have ∆ ` T ′ ≤ K, so sub-trans yields the desired result.

End case distinction on the last rule used in D4.

B.1.2 Proof of Theorem 3.12

Theorem 3.12 states that quasi-algorithmic constraint entailment and subtyping is complete with
respect to the declarative formulations.

Lemma B.1.4 (Transitivity of class and interface inheritance). If N1 Ec N2 and N2 Ec N3 then
N1 Ec N3. If K1 Ei K2 and K2 Ei K3 then K1 Ei K3.

Proof. By straightforward inductions on the derivations of N1 Ec N2 and K1 Ei K2, respectively.

Lemma B.1.5. If N Ec N
′ and N ′ 6= Object then N 6= Object.

Proof. Follows because programs do not define Object explicitly.

183



B Formal Details of Chapter 3

Figure B.1 Transitive and reflexive-transitive containment in type environments.

X extendsT ∈+ ∆

in-trans-base
X extendsT ∈ ∆

X extendsT ∈+ ∆

in-trans-step
X extendsY ∈ ∆ Y extendsT ∈+ ∆

X extendsT ∈+ ∆

X extendsT ∈∗ ∆

in-refl-trans-refl

X extendsX ∈∗ ∆

in-refl-trans-trans
X extendsT ∈+ ∆

X extendsT ∈∗ ∆

Lemma B.1.6 (Reflexivity of kernel of quasi-algorithmic subtyping). For all types T , it holds that
∆ q̀

′ T ≤ T .

Proof. Straightforward.

We let J range over judgments. (Remember that D ranges over derivations.) The notation
D :: J denotes that D is a derivation of judgment J .

Lemma B.1.7 (Transitivity of kernel of quasi-algorithmic subtyping). If D1 :: ∆ q̀
′ T ≤ U and

D2 :: ∆ q̀
′ U ≤ V then ∆ q̀

′ T ≤ V .

Proof. By induction on D1.
Case distinction on the last rule used in D1.

� Case sub-q-alg-obj: Then D2 also ends with sub-q-alg-obj (it cannot end with rule
sub-q-alg-class because of Lemma B.1.5). Hence, V = Object and the claim follows
with sub-q-alg-obj.

� Case sub-q-alg-var-refl: Trivial because T = U .

� Case sub-q-alg-var: By inverting the rule we get T = X, X extendsT ′ ∈ ∆, and ∆ q̀
′

T ′ ≤ U . If V = X or V = Object , then the claim follows directly. Otherwise, we apply the
I.H. to ∆ q̀

′ T ′ ≤ U and get ∆ q̀
′ T ′ ≤ V . The claim now follows with sub-q-alg-var.

� Case sub-q-alg-class: If V = Object , then the claim follows with rule sub-q-alg-obj,
otherwise by applying Lemma B.1.4.

� Case sub-q-alg-iface: Follows from Lemma B.1.4.

End case distinction on the last rule used in D1.

Lemma B.1.8. If ∆ q
′ K implementsL then K Ei L.

Proof. The claim follows directly by inverting rule ent-q-alg-iface (other rules are not applica-
ble).

184



B.1 Equivalence of Declarative and Quasi-Algorithmic Entailment and Subtyping

The notation X extendsT ∈+ ∆ denotes that the constraint X extendsT is transitively
contained in type environment ∆. Correspondingly, X extendsT ∈∗ ∆ denotes that either
X = T or that X extendsT ∈+ ∆. See Figure B.1 for a formal definition of these two relations.

Convention B.1.9. The metavariable B ranges over both class types and interface types. The
notation B Eci B

′ abbreviates that either B = N , B′ = N ′ for class types N and N ′ with
N Ec N

′, or that B = K, B′ = K ′ for interface types K,K ′ with K Ei K
′.

Lemma B.1.10 (Inversion of kernel of quasi-algorithmic subtyping). Suppose ∆ q̀
′ T ≤ U .

(i) If T = X for some X then either U = Y for some Y and X extendsY ∈∗ ∆, or U =
Object, or U = B for some B 6= Object and X extendsB′ ∈+ ∆ for some B′ with
B′ Eci B.

(ii) If U = Y for some Y then T = X for some X and X extendsY ∈∗ ∆.

(iii) If T = N for some N then U = N ′ for some N ′ with N Ec N
′.

(iv) If T = K for some K then either U = K ′ for some K ′ with K Ei K
′ or U = Object.

Proof. Claims (iii) and (iv) follow by inspecting the rules defining the relation · q̀
′ · ≤ ·. Claim

(ii) follows by inspecting the rules defining the relation · q̀
′ · ≤ · and by claim (i).

We now prove claim (i) by induction on the derivation of ∆ q̀
′ T ≤ U . Thereby, we assume

that U 6= Object as the claim holds trivially in this case. Because T = X, the derivation either
ends with sub-q-alg-var-refl or sub-q-alg-var. The first case is trivial. For the second case we
have

X extendsU ′ ∈ ∆ U 6= Object , U 6= X ∆ q̀
′ U ′ ≤ U

∆ q̀
′ X ≤ U

sub-q-alg-var

Case distinction on the form of U ′.

� Case U ′ = Z for some Z: Applying the I.H. to ∆ q̀
′ U ′ ≤ U yields that either U = Y for

some Y and Z extendsY ∈∗ ∆, or that U = B for some B and Z extendsB′ ∈+ ∆ for
some B′ with B′ Eci B. It is easy to verify that claim (i) follows from these facts.

� Case U ′ = B′ for some B′: Using claims (iii) and (iv) we get that U = B for some
B 6= Object with B′ Eci B. The claim now follows trivially.

End case distinction on the form of U ′.

Lemma B.1.11. If ∆ q̀
′ T ≤ U and ∆ q̀ U ≤ V , then ∆ q̀ T ≤ V .

Proof. If the derivation of ∆ q̀ U ≤ V ends with sub-q-alg-kernel, then ∆ q̀
′ U ≤ V so the

claim follows by Lemma B.1.7. Otherwise, we have V = K and

∆ q̀
′ U ≤ U ′ ∆ q

′ U ′ implementsK

∆ q̀ U ≤ K
sub-q-alg-impl

With Lemma B.1.7 we have ∆ q̀
′ T ≤ U ′, so the claim follows with sub-q-alg-impl.

Lemma B.1.12 (Type substitution preserves inheritance). If ` B Eci B
′ then ` ϕB Eci ϕB

′.

Proof. We show the claim for B = K and B′ = K ′ by induction on the derivation of K Ei K
′;

the proof for B = N and B′ = N ′ is similar.
Case distinction on the last rule used in K Ei K

′.

� Case inh-iface-refl: Trivial because K = K ′.

185



B Formal Details of Chapter 3

Figure B.2 Generalization of sup to subtype constraints.

sup-ext-refl

T extendsU ∈ sup(T extendsU)

sup-ext-inh
` K Ei L

T extendsL ∈ sup(T extendsK)

� Case inh-iface-super: Then K = I <T> and

interface I <X> [Y whereR] . . . Ri = G implementsL [T/X]L Ei K
′

I <T> Ei K
′

Applying the I.H. to [T/X]L Ei K
′ yields ϕ[T/X]L Ei ϕK

′. Because the definition of I
does not contain free type variables (we globally assume that the underlying program is
well-formed), we have ϕ[T/X]L = [ϕT/X]L. Hence, ϕK Ei ϕK

′ by inh-iface-super.

End case distinction on the last rule used in K Ei K
′.

Lemma B.1.13 (Type substitution preserves sup). If R ∈ sup(S) then ϕR ∈ sup(ϕS).

Proof. The proof is by induction on the derivation of R ∈ sup(S). The claim holds trivially if this
derivation ends with rule sup-refl. Now suppose the last rule is sup-step:

interface I <X> [Y whereR] . . . U implements I <V > ∈ sup(S)

[V/X,U/Y ]Rk︸ ︷︷ ︸
=R

∈ sup(S)

By the I.H. we have
ϕ(U implements I <V >) ∈ sup(ϕS)

. Thus, by rule sup-step we get [ϕV/X,ϕU/Y ]Rk ∈ sup(ϕS). The definition of I does not contain
free type variables, so ftv(Rk) ⊆ {X,Y }. Hence

[ϕV/X,ϕU/Y ]Rk = ϕ([V/X,U/Y ]Rk) = ϕR

.

Lemma B.1.14. If ∆ q̀ T ≤ U and U 6= K for any K then ∆ q̀
′ T ≤ U .

Proof. Obvious.

Convention B.1.15. The notation sup(∆) denotes the type environment {P | P ∈ sup(Q),Q ∈ ∆},
where Figure B.2 defines the generalization of sup to subtype constraints. Applying a type
substitution ϕ to a type environment ∆, written ϕ∆, yields the type environment {ϕP | P ∈ ∆}.
The notation ∆  ∆′ abbreviates (∀P ∈ ∆′) ∆  P, and ∆ q ∆′ is defined analogously.

Lemma B.1.16. Suppose ∆ q sup(ϕ∆′).

(i) If X extendsY ∈∗ ∆′ then either ∆ q̀
′ ϕX ≤ ϕY or ϕY = K for some K such that

∆ q̀ ϕX ≤ K ′ for all K ′ with K Ei K
′.

(ii) If X extendsB ∈+ ∆′ then either ∆ q̀
′ ϕX ≤ ϕB or ϕB = K for some K such that

∆ q̀ ϕX ≤ K ′ for all K ′ with K Ei K
′.

186



B.1 Equivalence of Declarative and Quasi-Algorithmic Entailment and Subtyping

Proof. We prove both claims separately.

(i) The proof of claim (i) is by induction on the derivation of X extendsY ∈∗ ∆′. If X = Y
then the claim follows with Lemma B.1.6. Otherwise, we have

X extendsY ′ ∈ ∆′ Y ′ extendsY ∈∗ ∆′

X extendsY ∈∗ ∆′

By the assumption we have

∆ q̀ ϕX ≤ ϕY ′ (B.1.4)

and, if ϕY ′ = L for some L, then

∆ q̀ ϕX ≤ L′ for all L′ with L Ei L
′ (B.1.5)

Applying the I.H. to Y ′ extendsY ∈∗ ∆′ yields either

∆ q̀
′ ϕY ′ ≤ ϕY (B.1.6)

or ϕY = K for some K and

∆ q̀ ϕY
′ ≤ K ′ for all K ′ with K Ei K

′ (B.1.7)

Case distinction on the form of ϕY ′ and on whether (B.1.6) or (B.1.7) holds.

� Case ϕY ′ 6= L for any L and (B.1.6) holds: By Lemma B.1.14 and (B.1.4) we get

∆ q̀
′ ϕX ≤ ϕY ′

With (B.1.6) and Lemma B.1.7 we get ∆ q̀
′ ϕX ≤ ϕY as required.

� Case ϕY ′ 6= L for any L and (B.1.7) holds: As in the preceding case, we have
∆ q̀

′ ϕX ≤ ϕY ′. Using (B.1.7) and Lemma B.1.11 we get

∆ q̀ ϕX ≤ K ′ for all K ′ with K Ei K
′

as required.

� Case ϕY ′ = L for some L and (B.1.6) holds: With (B.1.6) and Lemma B.1.10 we get
either that ϕY = Object or that ϕY = K for some K with L Ei K. If ϕY = Object
then ∆ q̀

′ ϕX ≤ ϕY by sub-q-alg-obj. Now assume ϕY = K. With (B.1.5) and
L Ei K we get ∆ q̀ ϕX ≤ K ′ for all K ′ with K Ei K

′.

� Case ϕY ′ = L for some L and (B.1.7) holds: Suppose K Ei K
′ for some K ′.

– If the derivation of ∆ q̀ ϕY
′ ≤ K ′ in (B.1.7) ends with sub-q-alg-kernel, then

we have ∆ q̀
′ ϕY ′ ≤ K ′. Hence, by Lemma B.1.10 L Ei K

′. Using (B.1.5) we
get ∆ q̀ ϕX ≤ K ′.

– If the derivation of ∆ q̀ ϕY
′ ≤ K ′ in (B.1.7) ends with sub-q-alg-impl, we have

∆ q̀
′ ϕY ′ ≤ T ∆ q

′ T implementsK ′

∆ q̀ ϕY
′ ≤ K ′

With Lemma B.1.10 we need to consider two cases for the form of T :

* T = Object . Then we have ∆ q̀
′ ϕX ≤ T , so ∆ q̀ ϕX ≤ K ′.

187



B Formal Details of Chapter 3

* T = L′ and L Ei L
′. With Lemma B.1.8 we get L′ Ei K

′. Thus, L Ei K
′.

Equation (B.1.5) then gives us ∆ q̀ ϕX ≤ K ′.
We now have ∆ q̀ ϕX ≤ K ′ for all K ′ with K Ei K

′ as required.

End case distinction on the form of ϕY ′ and on whether (B.1.6) or (B.1.7) holds.

(ii) We prove claim (ii) by induction on the derivation of X extendsB ∈+ ∆′. We have

X extendsY ∈∗ ∆′ Y extendsB ∈ ∆′

X extendsB ∈+ ∆′

By claim (i) we have that either

∆ q̀
′ ϕX ≤ ϕY (B.1.8)

or that

ϕY = L for some L and
∆ q̀ ϕX ≤ L′ for all L′ with L Ei L

′ (B.1.9)

We have by the assumption

∆ q̀ ϕY ≤ ϕB (B.1.10)

and, if ϕB = K for some K then

∆ q̀ ϕY ≤ K ′ for all K ′ with K Ei K
′ (B.1.11)

Case distinction on the form of ϕB and on whether (B.1.8) or (B.1.9) holds.

� Case ϕB = N for some N and (B.1.8) holds: Then by (B.1.10) and Lemma B.1.14
∆ q̀

′ ϕY ≤ ϕB. With (B.1.8) and Lemma B.1.7 ∆ q̀
′ ϕX ≤ ϕB as required.

� Case ϕB = K for some K and (B.1.8) holds: Assume K ′ such that K Ei K
′.

– If the derivation of ∆ q̀ ϕY ≤ K ′ in (B.1.11) ends with sub-q-alg-kernel,
then ∆ q̀

′ ϕY ≤ K ′, so ∆ q̀
′ ϕX ≤ K ′ by (B.1.8) and Lemma B.1.7. Hence,

∆ q̀ ϕX ≤ K ′

– If the derivation of ∆ q̀ ϕY ≤ K ′ in (B.1.11) ends with sub-q-alg-impl, then
we have

∆ q̀
′ ϕY ≤ T ∆ q

′ T implementsK ′

∆ q̀ ϕY ≤ K ′

By (B.1.8) and Lemma B.1.7 we then have ∆ q̀
′ ϕX ≤ T , thus ∆ q̀ ϕX ≤ K ′.

We now have ∆ q̀ ϕX ≤ K ′ for all K ′ with K Ei K
′ as required.

� Case ϕB = N for some N and (B.1.9) holds: Then by (B.1.10) and Lemma B.1.14:
∆ q̀

′ ϕY ≤ ϕB. With (B.1.9) we know that ϕY = L for some L. Hence, by
Lemma B.1.10 ϕB = Object . We then have ∆ q̀

′ ϕX ≤ ϕB by sub-q-alg-obj.

� Case ϕB = K for some K and (B.1.9) holds: By (B.1.9) we have ϕY = L for some
L. Assume K ′ such that K Ei K

′.

– If the derivation of ∆ q̀ ϕY ≤ K ′ in (B.1.11) ends with sub-q-alg-kernel, then
∆ q̀

′ ϕY ≤ K ′. Hence, L Ei K
′ by Lemma B.1.10. Using (B.1.9) we then have

∆ q̀ ϕX ≤ K ′.

188



B.1 Equivalence of Declarative and Quasi-Algorithmic Entailment and Subtyping

– If the derivation of ∆ q̀ ϕY ≤ K ′ in (B.1.11) ends with sub-q-alg-impl, then
we have

∆ q̀
′ ϕY ≤ T ∆ q

′ T implementsK ′

∆ q̀ ϕY ≤ K ′

With Lemma B.1.10 we need to consider two cases for the form of T :

* T = Object . Then we have ∆ q̀
′ ϕX ≤ T , so ∆ q̀ ϕX ≤ K ′.

* T = L′ and L Ei L
′. With Lemma B.1.8 we get L′ Ei K

′. Thus, L Ei K
′.

Equation (B.1.9) then gives us ∆ q̀ ϕX ≤ K ′.
We now have ∆ q̀ ϕX ≤ K ′ for all K ′ with K Ei K

′ as required.

End case distinction on the form of ϕB and on whether (B.1.8) or (B.1.9) holds.

Lemma B.1.17. If ∆ q
′ R then ∆ q R.

Proof. Obvious with rule ent-q-alg-up.

Lemma B.1.18 (Inheritance preserves polarity). If J<T> Ei I <U> and polπ(J) then 1 ∈ polπ(I).

Proof. Induction on the derivation of J<T> Ei I <U>. If the derivation ends with inh-iface-refl,
then J<T> = I <U> and the claim holds trivially. Otherwise, assume

interface J<X> [Y whereR] . . .

Ri = G
n
implements J ′<V > [T/X]J ′<V > Ei I <U>

J<T> Ei I <U>
inh-iface-super

By criterion wf-iface-2 we have n = 1 and G1 = Y . With 1 ∈ polπ(J) we have Y ∈ polπ(Ri) by
pol-iface, so 1 ∈ polπ(J ′) by pol-constr. We can now apply the I.H. to [T/X]J ′<V > Ei I <U>
and get 1 ∈ polπ(I) as required.

Lemma B.1.19 (Inheritance preserves non-static). Assume J<T> Ei I <U> and non-static(J).
Then also non-static(I).

Proof. Straightforward induction on the derivation of J<T> Ei I <U>.

Lemma B.1.20. If D :: ∆ q
′ T

n
implements I <U> and there exists i ∈ [n] such that Ti = K for

some K, then n = 1, 1 ∈ pol+(I), and non-static(I).

Proof. It is easy to see that D must end with rule ent-q-alg-iface. We then have n = 1,
T1 = J<V > for some J<V >, 1 ∈ pol+(J), non-static(J), and J<V > Ei I <U>. By Lemma B.1.18
1 ∈ pol+(I) and by Lemma B.1.19 non-static(I).

Lemma B.1.21. Suppose ∆ q P for all P ∈ sup(ϕ∆′).

(i) If D1 ::∆′ q̀
′ T ≤ U then either ∆ q̀

′ ϕT ≤ ϕU or ϕU = K for some K and ∆ q̀ ϕT ≤ K ′
for all K ′ with K Ei K

′.

(ii) If D2 :: ∆′ q̀ T ≤ U then ∆ q̀ ϕT ≤ ϕU .

(iii) If D2 :: ∆′ q
′ R then ∆ q ϕR.

(iv) If D4 :: ∆′ q Q then ∆ q ϕQ.

Proof. We proceed by induction on the combined height of D1,D2,D3,D4.

189



B Formal Details of Chapter 3

(i) Case distinction on the last rule used in D1.

� Case sub-q-alg-obj: Trivial.

� Case sub-q-alg-var-refl: Follows with Lemma B.1.6.

� Case sub-q-alg-var: We have T = X. Thus, by Lemma B.1.10, we can distinguish
three different cases:

– U = Y for some Y and X extendsY ∈∗ ∆′. Then the claim follows with
Lemma B.1.16.

– U = Object . In this case, ∆ q̀
′ ϕT ≤ ϕU holds by sub-q-alg-obj.

– U = B for some B 6= Object and X extendsB′ ∈+ ∆′ for some B′ with B′ Eci

B. Then ϕB′ Ei ϕB by Lemma B.1.12. By Lemma B.1.16, we either have
∆ q̀

′ ϕX ≤ ϕB′ or ϕB′ = L for some L and ∆ q̀ ϕX ≤ L′ for all L′ with
L Ei L

′.

* For the first case, we note that ϕB′ Ei ϕB implies ∆ q̀
′ ϕB′ ≤ ϕB. The

claim now follows with Lemma B.1.7.

* For the second case, we have with ϕB′ = L for some L that ϕB = K for
some K such that L Ei K. If now K Ei K

′ then L Ei K
′ (by Lemma B.1.4),

so ∆ q̀ ϕX ≤ K ′ as required.

� Case sub-q-alg-class: Follows with Lemma B.1.12.

� Case sub-q-alg-iface: Follows with Lemma B.1.12.

End case distinction on the last rule used in D1.

(ii) Case distinction on the last rule used in D2.

� Case sub-q-alg-kernel: We have

∆′ q̀
′ T ≤ U

∆′ q̀ T ≤ U

By part (i) of the I.H., we have either ∆ q̀
′ ϕT ≤ ϕU (which implies ∆ q̀ ϕT ≤ ϕU)

or ∆ q̀ ϕT ≤ ϕU , so the claim holds.

� Case sub-q-alg-impl: We have U = I <W> for some I <W> and

∆′ q̀
′ T ≤ V ∆′ q

′ V implements I <W>

∆′ q̀ T ≤ I <W>

Applying parts (i) and (iii) of the I.H. yields

∆ q̀
′ ϕV ≤ V ′

if ϕV 6= V ′ then 1 ∈ pol−(I)
∆ q

′ V ′ implementsϕI <W>

∆ q ϕV implementsϕI <W>
ent-q-alg-up

(B.1.12)

and either

∆ q̀
′ ϕT ≤ ϕV (B.1.13)

or

ϕV = L for some L and
∆ q̀ ϕT ≤ L′ for all L′ with L Ei L

′ (B.1.14)

190



B.1 Equivalence of Declarative and Quasi-Algorithmic Entailment and Subtyping

– Suppose (B.1.13). Then we have by the first premise in (B.1.12), by (B.1.13),
and by Lemma B.1.11 that ∆ q̀

′ ϕT ≤ V ′. With the last premise in (B.1.12)
and with rule sub-q-alg-impl, we then get ∆ q̀ ϕT ≤ ϕI <W> as required.

– Suppose (B.1.14). Then we have by the first premise in (B.1.12), by the fact
that ϕV = L, and by Lemma B.1.10 that either V ′ = Object or that V ′ = L′ for
some L′ with L Ei L

′.

* If V ′ = Object then ∆ q̀
′ ϕT ≤ V ′, so the claim follows with the last

premise in (B.1.12) and with rule sub-q-alg-impl.

* Otherwise, V ′ = L′ and L Ei L
′. From the last premise in (B.1.12), we

have ∆ q̀
′ L′ implementsϕI <W>, so we get with Lemma B.1.8 that L′ Ei

ϕI <W>. Hence, L Ei ϕI <W> by Lemma B.1.4. By (B.1.14) we then have
∆ q̀ ϕT ≤ ϕI <W> as required (note that ϕI <W> = ϕU).

End case distinction on the last rule used in D2.

(iii) Case distinction on the last rule used in D3.

� Case ent-q-alg-env: We have S ∈ ∆′ and R ∈ sup(S) such that R = R. With
Lemma B.1.13 we get ϕR ∈ sup(ϕS). Clearly, ϕS ∈ ϕ∆′, so the assumption gives us
∆ q ϕR as required.

� Case ent-q-alg-impl: We have

implementation<X> I <T> [N ] where P . . . ∆′ q [V/X]P

∆′ q
′ [V/X](N implements I <T>)︸ ︷︷ ︸

=R

Applying part (iv) of the I.H. yields

∆ q ϕ[V/X]P

Because implementation definitions do not contain free type variables, we have

ϕ[V/X]P = [ϕV/X]P

ϕ[V/X](N implements I <T>) = [ϕV/X](N implements I <T>)

By ent-q-alg-impl we then have ∆ q
′ ϕ[V/X](N implements I <T>), thus ∆ q ϕR

by Lemma B.1.17.

� Case ent-q-alg-iface: We have

1 ∈ pol+(I) non-static(I) I <V > Ei K

∆′ q
′ I <V > implementsK︸ ︷︷ ︸

=R

By Lemma B.1.12, we have ϕI <V > Ei ϕK. Thus, with ent-q-alg-iface, we get
∆ q

′ ϕR, so ∆ q ϕR by Lemma B.1.17.

End case distinction on the last rule used in D3.

(iv) Case distinction on the last rule used in D4.

� Case ent-q-alg-extends: Follows from part (ii) of the I.H.

191



B Formal Details of Chapter 3

� Case ent-q-alg-up: We have

(∀i) ∆′ q̀
′ Ti ≤ Ui if Ti 6= Ui then i ∈ pol−(I) ∆′ q

′ U implements I <V >

∆′ q T
n
implements I <V >︸ ︷︷ ︸

=Q (B.1.15)

We get by part (iii) of the I.H.:

(∀i) ∆ q̀
′ ϕUi ≤ U ′i if ϕUi 6= U ′i then i ∈ pol−(I)
∆ q

′ U ′ implements I <ϕV >

∆ q ϕU implements I <ϕV >
ent-q-alg-up

(B.1.16)

Suppose i ∈ [n]. If i ∈ pol−(I) does not hold, then we have Ti = Ui and ϕUi = U ′i .
Hence,

ϕTi = U ′i or i ∈ pol−(I) (B.1.17)

Moreover, by part (i) of the I.H. applied to the first premise in (B.1.15) we get that
either

∆ q̀
′ ϕTi ≤ ϕUi (B.1.18)

or

ϕUi = Ki for some Ki and
∆ q̀ ϕTi ≤ K ′i for all K ′i with Ki Ei K

′
i

(B.1.19)

We now partition [n] = M1 ∪̇M2 such that

M1 = {j ∈ [n] | Equation (B.1.18) holds for j}
M2 = {l ∈ [n] | Equation (B.1.19) holds for l}

– If j ∈ M1, then we have with (B.1.18), the first premise in (B.1.16), and
Lemma B.1.7 that ∆ q̀

′ ϕTj ≤ U ′j .
– If l ∈ M2, then ϕUl = Kl for some Kl. By Lemma B.1.10 applied to the

first premise in (B.1.16), we then have that either U ′l = K ′l for some K ′l or
U ′l = Object .

Now we further partition M2 into M21 ∪̇M22 such that

M21 = {l ∈M2 | U ′l = K ′l for some K ′l}
M22 = {l ∈M2 | U ′l = Object}

Case distinction on whether or not M21 = ∅.
– Case M21 = ∅: Then we have [n] = M1 ∪̇M22, so ∆ q̀

′ ϕTi ≤ U ′i for all i ∈ [n].
Thus, with (B.1.17) and the last premise in (B.1.16) we can apply ent-q-alg-up

and get ∆ q ϕT implements I <ϕV > as required.

– Case M21 6= ∅: With Lemma B.1.20 applied to the last premise in (B.1.16), we
get that n = 1 and that

1 ∈ pol+(I) (B.1.20)

non-static(I) (B.1.21)

192



B.1 Equivalence of Declarative and Quasi-Algorithmic Entailment and Subtyping

In the following, we may assume

1 ∈ pol−(I) (B.1.22)

Otherwise, we have ϕT1 = U ′1 with (B.1.17) and the claim then follows with the
last premise in (B.1.16) and ent-q-alg-up.

With n = 1 and M21 6= ∅, we have 1 ∈ M21. Hence, U ′1 = K ′1 for some
K ′1. With the last premise in (B.1.16) and Lemma B.1.8 we then have K ′1 Ei

I <ϕV >. Because 1 ∈ M21 ⊆ M2, we have we have ϕU1 = K1 for some K1.
The first premise in (B.1.16) and Lemma B.1.10 then gives us K1 Ei K

′
1. With

Lemma B.1.4: K1 Ei I <ϕV >. Equation (B.1.19) holds because 1 ∈M2, so

∆ q̀ ϕT1 ≤ I <ϕV > (B.1.23)

Case distinction on the last rule used in the derivation of (B.1.23).

* Case sub-q-alg-kernel: Then ∆ q̀
′ ϕT1 ≤ I <ϕV >. With (B.1.20), (B.1.21),

and (B.1.22) we then have

∆ q̀
′ ϕT1 ≤ I <ϕV > 1 ∈ pol−(I)

ent-q-alg-iface
1 ∈ pol+(I) non-static(I) I <ϕV > Ei I <ϕV >

∆ q
′ I <ϕV > implements I <ϕV >

∆ q ϕT1 implements I <ϕV >
ent-q-alg-up

* Case sub-q-alg-impl: We then have

∆ q̀
′ ϕT1 ≤W ∆ q

′ W implements I <ϕV >

∆ q̀ ϕT1 ≤ I <ϕV >

With (B.1.22) we get

∆ q̀
′ ϕT1 ≤W 1 ∈ pol−(I) ∆ q

′ W implements I <ϕV >

∆ q ϕT1 implements I <ϕV >
ent-q-alg-up

End case distinction on the last rule used in the derivation of (B.1.23).

End case distinction on whether or not M21 = ∅.
This finishes the proof of ∆ q ϕQ.

End case distinction on the last rule used in D4.

Lemma B.1.22. If R ∈ sup(T implementsL) then R = T implementsL′ with L Ei L
′.

Proof. We proceed by induction on the derivation of R ∈ sup(T implementsL).
Case distinction on the last rule of the derivation of R ∈ sup(T implementsL).

� Case rule sup-refl: Obvious.

� Case rule sup-step: We have

interface I <X> [Y whereS] . . . U implements I <V > ∈ sup(T implementsL)

[V/X,U/Y ]Sj ∈ sup(T implementsL)

193



B Formal Details of Chapter 3

with R = [V/X,U/Y ]Sj . Applying the I.H. yields

U implements I <V > = T implements I <V >

L Ei I <V >

Hence,

Y = Y

By criterion wf-iface-2 we have

Sj = Y implementsK

Y /∈ ftv(K)

Hence,

[V/X,U/Y ]Sj = T implements [V/X]K

Moreover,

I <V > Ei [V/X]K

Hence, with Lemma B.1.4

L Ei [V/X]K

End case distinction on the last rule of the derivation of R ∈ sup(T implementsL).

Lemma B.1.23. If S ∈ sup(R) then there exists an implements constraint S with S = S.

Proof. By induction on the derivation of S ∈ sup(R). The case where the derivation ends with
rule sup-refl is trivial because S = R. Now suppose that the derivation ends with an application
of rule sup-step:

interface I <X> [Y whereS] . . . U implements I <V > ∈ sup(R)

[V/X,U/Y ]Sk︸ ︷︷ ︸
=S

∈ sup(R)

Suppose Sk = G implementsK. By using the I.H., we get that there exists H such that
U = H. From criterion wf-iface-2 we then know that {[V/X,U/Y ]G} ⊆ {H}. Thus, there
exists S = S.

Lemma B.1.24. If R ∈ sup(ϕS) then there exists a R′ ∈ sup(S) with ϕR′ = R.

Proof. By induction on the derivation of R ∈ sup(ϕS). The case where the derivation ends with
rule sup-refl is trivial because R = ϕS. Now suppose that the derivation ends with an application
of rule sup-step:

interface I <X> [Y whereR] . . . U implements I <V > ∈ sup(ϕS)

[V/X,U/Y ]Rk︸ ︷︷ ︸
=R

∈ sup(ϕS)

194



B.1 Equivalence of Declarative and Quasi-Algorithmic Entailment and Subtyping

From the I.H. we get the existence of U ′ and V ′ such that U ′ implements I <V ′> ∈ sup(S) and
ϕU ′ = U , ϕV ′ = V . By rule sup-step we then have

[V ′/X,U ′/Y ]Qk ∈ sup(S)

Define R′ = [V ′/X,U ′/Y ]Rk. We then get

ϕR′ = ϕ[V ′/X,U ′/Y ]Rk
ftv(Rk)⊆{X,Y }

= [ϕV ′/X,ϕU ′/Y ]Rk = [V/X,U/Y ]Rk = R

as required.

Lemma B.1.25 (Inversion of quasi-algorithmic entailment). Suppose ∆ q T
n
implements I <V >.

Then there exist U
n

such that ∆ q
′ U implements I <V >, and for all i ∈ [n], ∆ q̀

′ Ti ≤ Ui and
i ∈ pol−(I) unless Ti = Ui.

Proof. The derivation of ∆ q T
n
implements I <V > must end with ent-q-alg-up. The claim

now follows from the premises of this rule.

Lemma B.1.26. Suppose D ::V implements J<W> ∈ sup(T implements I <U>) and ∆ q̀
′ Ti ≤

T ′i with Ti = T ′i unless i ∈ pol−(I) for all i. Then there exist V ′ such that V ′ implements J<W> ∈
sup(T ′ implements I <U>) and ∆ q̀

′ Vi ≤ V ′i with Vi = V ′i unless i ∈ pol−(J) for all i.

Proof. By induction on D. If the last rule of this derivation is sup-refl, then choose V ′ = T ′

and the claim holds trivially. Now suppose the last rule of the derivation is sup-step:

interface I ′<X> [Y
n
whereR] . . . T ′′

n
implements I ′<U ′> ∈ sup(T implements I <U>)

[U ′/X, T ′′/Y ]Rk ∈ sup(T implementsU)

with

[U ′/X, T ′′/Y ]Rk = V implements J<W>

Rk = G
m
implements J<W ′> (B.1.24)

Applying the I.H. to T ′′
n
implements I ′<U ′> ∈ sup(T implements I <U>) yields the existence

of T ′′′
n

such that

T ′′′ implements I ′<U ′> ∈ sup(T ′ implements I <U>)

(∀j ∈ [n]) ∆ q̀
′ T ′′j ≤ T ′′′j

(∀j ∈ [n]) T ′′j = T ′′′j or j ∈ pol−(I ′)

We then have by sup-step

[U ′/X, T ′′′/Y ]Rk ∈ sup(T ′ implements I <U>) (B.1.25)

Suppose j ∈ [n] such that T ′′′j 6= T ′′j . Then we have j ∈ pol−(I ′). By examining the definition of

pol−, we get Yj ∈ pol−(Rk). The definition of pol− now gives us

Yj /∈ ftv(W ′) (B.1.26)

(∀i ∈ [m]) (Yj = Gi and i ∈ pol−(J)) or Yj /∈ ftv(Gi) (B.1.27)

Thus, we have with (B.1.26) that

[U ′/X, T ′′′/Y ]W ′ = [U ′/X, T ′′/Y ]W ′ = W (B.1.28)

195



B Formal Details of Chapter 3

Now define

V ′
m

= [U ′/X, T ′′′/Y ]G

Then we have with (B.1.24), (B.1.25), and (B.1.28) that

V ′ implements J<W> ∈ sup(T ′ implements I <U>)

Suppose i ∈ [m] and Vi 6= V ′i . Then there exists j ∈ [n] such that Yj ∈ ftv(Gi) and T ′′′j 6= T ′′j .

By (B.1.27) we then have Yj = Gi and i ∈ pol−(J). Hence, Vi = T ′′j and V ′i = T ′′′j , so ∆ q̀
′ Vi ≤

V ′i .

Lemma B.1.27.

(i) If D1 :: ∆ q P and Q ∈ sup(P), then ∆ q Q.

(ii) If D2 :: ∆ q
′ R and S ∈ sup(R), then ∆ q S.

(iii) If D3 :: ∆ q̀ T ≤ K and K Ei L, then ∆ q̀ T ≤ L.

Proof. We proceed by induction on the combined height of D1,D2,D3.

(i) Case distinction on the last rule used in D1.

� Case ent-q-alg-extends: Then

∆ q̀ T ≤ U
∆ q T extendsU︸ ︷︷ ︸

=P

If U is not an interface type, the Q = P and the claim holds trivially. Otherwise
U = K for some K and Q = T extendsL for some L with K Ei L. By part (iii) of
the I.H., we get ∆ q̀ T ≤ L. Hence, ∆ q Q by ent-q-alg-extends.

� Case ent-q-alg-up: Then we have

(∀i) ∆ q̀
′ Ti ≤ T ′i if Ti 6= T ′i then i ∈ pol−(I)

∆ q
′ T ′ implements I <U>

∆ q T implements I <U>︸ ︷︷ ︸
=P

(B.1.29)

Assume Q = V implements J<W>. With Lemma B.1.26 we get the existence of V ′

such that

V ′ implements J<W> ∈ sup(T ′ implements I <U>) (B.1.30)

(∀i) ∆ q̀
′ Vi ≤ V ′i (B.1.31)

(∀i) if Vi 6= V ′i then i ∈ pol−(J) (B.1.32)

Applying part (ii) of the I.H. to (B.1.30) and the last premise in (B.1.29) yields

∆ q V ′ implements J<W>

Hence

(∀i) ∆ q̀
′ V ′i ≤ V ′′i

(∀i) if V ′i 6= V ′′i then i ∈ pol−(J)
∆ q

′ V ′′ implements J<W>

∆ q V ′ implements J<W>
ent-q-alg-up

196



B.1 Equivalence of Declarative and Quasi-Algorithmic Entailment and Subtyping

With (B.1.31) and Lemma B.1.7 we get ∆ q̀
′ Vi ≤ V ′′i for all i. Moreover, if Vi 6= V ′′i

then either Vi 6= V ′i or V ′i 6= V ′′i . Hence, noting (B.1.32), we have i ∈ pol−(J) for
those i with Vi 6= V ′′i . By rule ent-q-alg-up we then get ∆ q V implements J<W>
as required.

End case distinction on the last rule used in D1.

(ii) Case distinction on the last rule used in D2.

� Case ent-q-alg-env: Then R = R for some R and R′ ∈ ∆ and R ∈ sup(R′). With
Lemma B.1.23 we know that there exists S = S. Thus, we also have S ∈ sup(R).
With Lemma B.1.1 we then get S ∈ sup(R′). Hence, ∆ q

′ S.

� Case ent-q-alg-impl: We have

implementation<X> I <V > [N ] where Q . . . ∆ q ϕQ dom(ϕ) = X

∆ q ϕ(N implements I <V >)︸ ︷︷ ︸
=R (B.1.33)

From Lemma B.1.24 we know that there exists S′ ∈ sup(N implements I <V >) such
that ϕS′ = S. Let S′ = T implements J<U>. By criterion wf-impl-1 we get that

Q q S′

Applying part (i) of the I.H. to ∆ q ϕQ in (B.1.33) yields

∆ q Q′ for all Q′ ∈ sup(ϕQ)

Using this equation together with Lemma B.1.21 yields

∆ q ϕS
′

as required.

� Case ent-q-alg-iface: We have

1 ∈ pol+(I) non-static(I) I <V > Ei K

∆ q
′ I <V > implementsK︸ ︷︷ ︸

=R

With Lemma B.1.22 we get S = I <V > implementsL with K Ei L. Lemma B.1.4
yields I <V > Ei L. Hence, with ent-q-alg-iface, we have ∆ q

′ S.

End case distinction on the last rule used in D2.

(iii) Case distinction on the last rule used in D3.

� Case sub-q-alg-kernel: Then we have ∆ q̀
′ T ≤ K and from K Ei L we get

∆ q̀
′ K ≤ L. Using Lemma B.1.7 we get ∆ q̀

′ T ≤ L, from which we get ∆ q̀ T ≤ L
by rule sub-q-alg-kernel.

� Case sub-q-alg-impl: We have

∆ q̀
′ T ≤ U ∆ q

′ U implementsK

∆ q̀ T ≤ K

With K Ei L and Lemma B.1.2, we get

U implementsL ∈ sup(U implementsK)

197



B Formal Details of Chapter 3

Thus, with part (ii) of the I.H. we get

∆ q U implementsL

By Lemma B.1.25 we get the existence of U ′ such that

∆ q̀
′ U ≤ U ′

∆ q
′ U ′ implementsL

By Lemma B.1.7 we then get ∆ q̀
′ T ≤ U ′, so the claim follows by using rule

ent-q-alg-impl.

End case distinction on the last rule used in D3.

Corollary B.1.28. Suppose ∆ q ϕ∆′.

(i) If ∆′ q̀ T ≤ U then ∆ q̀ ϕT ≤ ϕU .

(ii) If ∆′ q P then ∆ q ϕP.

Proof. Combine Lemma B.1.21 and Lemma B.1.27.

Lemma B.1.29 (Transitivity of quasi-algorithmic subtyping). If D1 :: ∆ q̀ T ≤ U and D2 :: ∆ q̀

U ≤ V then ∆ q̀ T ≤ V .

Proof. Case distinction on the last rules used in the derivations D1 and D2.

� Case sub-q-alg-kernel and sub-q-alg-kernel: Then the claim follows with Lemma B.1.7.

� Case sub-q-alg-kernel and sub-q-alg-impl: Then the claim follows with Lemma B.1.11.

� Case sub-q-alg-impl and sub-q-alg-kernel: Then we have U = K for some K. With
Lemma B.1.10 we get that either V = Object or V = L for some L with K Ei L.

If V = Object , then the claim follows with sub-q-alg-obj and sub-q-alg-kernel. Other-
wise, V = L for some L with K Ei L. The claim now follows with Lemma B.1.27.

� Case sub-q-alg-impl and sub-q-alg-impl: We then have U = K for some K and V = L
for some L. Moreover,

∆ q̀
′ T ≤ T ′ ∆ q

′ T ′ implementsK

∆ q̀ T ≤ K
∆ q̀

′ K ≤ U ′ ∆ q
′ U ′ implementsL

∆ q̀ K ≤ L

With ∆ q̀
′ K ≤ U ′ and Lemma B.1.10 we know that either U ′ = Object or U ′ = K ′

for some K ′ with K Ei K
′. If U ′ = Object , then ∆ q̀

′ T ≤ U ′ by sub-q-alg-obj, so
∆ q̀ T ≤ L follows by sub-q-alg-impl.

Now suppose U ′ = K ′ for some K ′ with K Ei K
′. By Lemma B.1.8 and the fact that

∆ q
′ U ′ implementsL we have K ′ Ei L. Hence, with Lemma B.1.4 K Ei L. With

∆ q̀ T ≤ K and Lemma B.1.27 we then get ∆ q̀ T ≤ L as required.

End case distinction on the last rules used in the derivations D1 and D2.

Lemma B.1.30. If ∆ q̀
′ T ≤ U and ∆ q

′ U implementsK and K Ei I <V > and 1 ∈ pol−(I),
then ∆ q T implements I <V >.

198



B.1 Equivalence of Declarative and Quasi-Algorithmic Entailment and Subtyping

Proof. With K Ei I <V > and Lemma B.1.2 we have

U implements I <V > ∈ sup(U implementsK)

Hence, with Lemma B.1.27 we have

∆ q U implements I <V >

By Lemma B.1.25 we then get the existence of U ′ with

∆ q̀
′ U ≤ U ′

∆ q
′ U ′ implements I <V >

By Lemma B.1.7 we have ∆ q̀
′ T ≤ U ′, so with 1 ∈ pol−(I) and rule ent-q-alg-up, we get

∆ q T implements I <V >.

Lemma B.1.31. If ∆ q T
n−1

U ′ V implements I <W> and n ∈ pol−(I) and ∆ q̀
′ U ≤ U ′, then

∆ q T
n−1

U V implements I <W>.

Proof. From ∆ q T
n−1

U ′ V implements I <W> we get with Lemma B.1.25 the existence of

T ′
n−1

U ′′ V ′ such that

(∀i) ∆ q̀
′ Ti ≤ T ′i

(∀i) if Ti 6= T ′i then i ∈ pol−(I)

(∀i) ∆ q̀
′ Vi ≤ V ′i

(∀i) if Vi 6= V ′i then n+ i ∈ pol−(I)

∆ q̀
′ U ′ ≤ U ′′

∆ q
′ T ′

n−1
U ′′ V ′ implements I <W>

With Lemma B.1.7 we then have

∆ q̀
′ U ≤ U ′′

Because n ∈ pol−(I) we can apply rule ent-q-alg-up and get

∆ q T
n−1

U V implements I <W>

as required.

Lemma B.1.32. Suppose ∆ q T
n
implements I <W> and [n] = N1 ∪̇N2 such that Ti = Ki for

all i ∈ N1 and Ti = Gi for all i ∈ N2. Then one of the following holds:

� ∆ q U
n
implements I <W> for any U with Ui = Gi for all i ∈ N2. Moreover, i ∈ pol−(I)

for all i ∈ N1.

� N1 = {1}, N2 = ∅, 1 ∈ pol+(I), and K1 Ei I <W>. Moreover, if 1 /∈ pol−(I) then, if
K1 = J<W ′>, 1 ∈ pol+(J)

199



B Formal Details of Chapter 3

Proof. From ∆ q T
n
implements I <W> we get with Lemma B.1.25 the existence of T ′

n
such

that

(∀i ∈ [n]) ∆ q̀
′ Ti ≤ T ′i

(∀i ∈ [n]) if Ti 6= T ′i then i ∈ pol−(I) (B.1.34)

∆ q
′ T ′

n
implements I <W> (B.1.35)

With Lemma B.1.10 we know for all i ∈ N1 that either T ′i = K ′i for some K ′i with Ki Ei K
′
i or

T ′i = Object .

� Assume there exists some i ∈ N1 such that T ′i = K ′i for some K ′i. Then the derivation of
∆ q

′ T ′
n
implements I <W> must end with rule ent-q-alg-iface. Hence:

[n] = {1}
N1 = {1}
N2 = ∅

T ′1 = J<W ′> (= K ′1)

J<W ′> Ei I <W>

1 ∈ pol+(J)

With K1 Ei K
′
1 we then also have K1 Ei I <W>. With Lemma B.1.18 then 1 ∈ pol+(I).

� Assume T ′i = Object for all i ∈ N1. Because Ti = Ki 6= Object we have i ∈ pol−(I) by
(B.1.34). Let U

n
be given with Ui = Gi for all i ∈ N2. Then

(∀i ∈ [n]) ∆ q̀
′ Ui ≤ T ′i

(∀i ∈ [n]) if Ui 6= T ′i then i ∈ pol−(I)

With (B.1.35) and rule ent-q-alg-up we then have ∆ q U
n
implements I <W>.

Finally, suppose 1 /∈ pol−(I). Then T1 = T ′1 by (B.1.34), so K1 = K ′1 = J<W ′> and
1 ∈ pol+(J) as required.

Proof of Theorem 3.12. We proceed by induction on the combined height of the derivations of
∆  P and ∆ ` T ≤ U .

(i) Case distinction on the last rule used in the derivation of ∆  P.

� Case ent-extends: Follows with part (ii) of the I.H.

� Case ent-env: With rules sup-refl and ent-q-alg-env we have ∆ q
′ P. The claim

then follows from Lemma B.1.17.

� Case ent-super: Then we have

interface I <X> [Y whereR] . . . ∆  U implements I <T>

∆  [T/X,U/Y ]Ri︸ ︷︷ ︸
=P

We get by part (i) of the I.H.

∆ q U implements I <T>

By looking at the rules defining sup, we also have

P ∈ sup(U implements I <T>)

The claim ∆ q P now follows from Lemma B.1.27.

200



B.1 Equivalence of Declarative and Quasi-Algorithmic Entailment and Subtyping

� Case ent-impl: We have

implementation<X> I <T> [N ] where P . . . ∆  [U/X]P

∆  [U/X](N implements I <T>)︸ ︷︷ ︸
=P

By part (i) of the I.H. we get ∆ q [U/X]P . With rule ent-q-alg-impl we then have
∆ q

′ P. The claim now follows with Lemma B.1.17.

� Case ent-up: We have

∆ ` U ≤ U ′ ∆  T U ′ V implements I <W> n ∈ pol−(I)

∆  T
n−1

U V
m
implements I <W>︸ ︷︷ ︸

=P (B.1.36)

Applying part (i) of the I.H. yields

∆ q T U
′ V implements I <W> (B.1.37)

and part (ii) yields

∆ q̀ U ≤ U ′ (B.1.38)

Case distinction on the last rule used in the derivation of (B.1.38).

– Case rule sub-q-alg-kernel: Then ∆ q̀
′ U ≤ U ′. Lemma B.1.31 now yields

∆ q P as required.

– Case rule sub-q-alg-impl: Then we have U ′ = K for some K such that

∆ q̀
′ U ≤ U ′′ ∆ q

′ U ′′ implementsK

∆ q̀ U ≤ K

Applying Lemma B.1.32 to (B.1.37) with U ′ = K yields that either ∆ q P

(we are done in this case) or that n = 1, m = 0, and K Ei I <W>. With
∆ q̀

′ U ≤ U ′′, ∆ q
′ U ′′ implementsK, K Ei I <W>, 1 ∈ pol−(I) (follows

from (B.1.36)), and Lemma B.1.30 we get

∆ q U implements I <W>

as required.

End case distinction on the last rule used in the derivation of (B.1.38).

� Case ent-iface: We then have P = I <T> implements I <T>, 1 ∈ pol+(I), and
non-static(I). Hence, the claim follows with rule ent-q-alg-iface.

End case distinction on the last rule used in the derivation of ∆  P.

(ii) Case distinction on the last rule used in the derivation of ∆ ` T ≤ U .

� Case sub-refl: Follows with Lemma B.1.6 and rule sub-q-alg-kernel.

� Case sub-object: Follows with rules sub-q-alg-obj and sub-q-alg-kernel.

� Case sub-trans: Follows with Lemma B.1.29.

� Case sub-var: Then we have T = X for some X and X extendsU ∈ ∆. If U = X or
U = Object , then the claim follows using rules sub-q-alg-var-refl or sub-q-alg-obj,
respectively, together with rule sub-q-alg-kernel. Otherwise, rule sub-q-alg-var is
applicable (note Lemma B.1.6), so the claim follows with sub-q-alg-kernel.

201



B Formal Details of Chapter 3

� Case sub-class: Follows with sub-q-alg-class or sub-q-alg-obj.

� Case sub-iface: Follows with sub-q-alg-iface.

� Case sub-impl: Then

∆  T implementsK

∆ ` T ≤ K︸︷︷︸
=U

Applying the I.H. yields ∆ q T implementsK. With Lemma B.1.25 we get the
existence of T ′ such that

∆ q̀
′ T ≤ T ′

∆ q
′ T ′ implementsK

Using rule sub-q-alg-impl we now can derive ∆ ` T ≤ K.

End case distinction on the last rule used in the derivation of ∆ ` T ≤ U .

B.2 Type Soundness for CoreGI

This section contains the proofs of Theorem 3.14 (progress), Theorem 3.15 (preservation for top-
level evaluation), and Theorem 3.16 (preservation for proper evaluation), which are necessary to
complete the type soundness proof for CoreGI (see Section 3.6.1). The section implicitly assumes
that the underlying CoreGI program prog is well-formed; that is, ` prog ok.

B.2.1 Proof of Theorem 3.14

Theorem 3.14 is the progress theorem for CoreGI.

Lemma B.2.1. N Ec M if, and only if, ∅ ` N ≤M .

Proof. The two implications are verified separately.

“⇒”: The claim is obvious if M = Object . Otherwise, it follows using rule sub-q-alg-class,
rule sub-q-alg-kernel, and Theorem 3.11.

“⇐”: By Theorem 3.12 ∆ q̀ N ≤ M , so ∆ q̀
′ N ≤ M by Lemma B.1.14. The claim now

follows with Lemma B.1.10.

From now on, we use Lemma B.2.1 implicitly.

Lemma B.2.2. If ∅ ` T ≤ N then either N = Object or N 6= Object and T = N ′ for some N ′

with N ′ Ec N .

Proof. If N = Object then we are done. Thus, assume N 6= Object . With Theorem 3.12 we have
∅ q̀ T ≤ N , so ∅ q̀

′ T ≤ N with Lemma B.1.14. The claim now follows with Lemma B.1.10.

Lemma B.2.3. If mtype∅(m
c, N) = <X

n
>U x

m → U where P and N ′ Ec N then it holds that

getmdefc(mc, N ′) = <Y
n
>V y

m → V where Q {e}.

Proof. We proceed by induction on the derivation of N ′ Ec N .
Case distinction on the last rule used in the derivation of N ′ Ec N .

202



B.2 Type Soundness for CoreGI

� Case rule inh-class-refl: Then N ′ = N and the claim follows with criterion wf-class-2
and rule dyn-mdef-class-base.

� Case rule inh-class-super: Then

class C<X> extends M where P ′ { . . . m : mdef } [T/X]M Ec N

C<T> Ec N
inh-class-super

with N ′ = C<T>.

– Assume mc /∈ m. We get by the I.H.

getmdefc(mc, [T/X]M) = <Y
n
>V y

m → V where Q {e}

With mc /∈ m we then have

getmdefc(mc,C<T>) = <Y
n
>V y

m → V where Q {e}

by rule dyn-mdef-class-super.

– Assume mc ∈ m. Then

getmdefc(mc,C<T>) = <Y
n′

>V y
m′

→ V where Q {e}

and, by rule mtype-class,

mtype∆(mc,C<T>) = <Y
n′

>V y
m′

→ V where Q {e}

Because the underlying program is well-typed, we know that method mc of class C
correctly overrides method mc of class D, where N = D<W>. But this implies n = n′

and m = m′ as required.

End case distinction on the last rule used in the derivation of N ′ Ec N .

Lemma B.2.4. If N Ec C<T> and class C<X> . . . {U f . . . } and fields(N) = V g, then V g =
V ′ g′ ([T/X]U f)V ′′ g′′ for some V ′, g′, V ′′, g′′.

Proof. Straightforward induction on the derivation of N Ec C<T>.

Lemma B.2.5. If fields(N) = U f
n

and i, j ∈ [n] with i 6= j, then fi 6= fj.

Proof. Follows by induction on the derivation of fields(N) = U f , using criterion wf-class-1.

Definition B.2.6. The depth of a type T , written depth(T ), is defined as follows:

depth(Object) = 0

depth(C<T>) = 1 + depth(N)

where class C<X> extends N . . .

depth(I <T>) = 1

where interface I <X> [Y where •] . . .
depth(I <T>) = 1 + max({depth(J<U>) | G implements J<U> ∈ R})

where interface I <X> [Y where R] . . .

depth(X) = 1

Criterion wf-prog-5 ensures that this definition is proper (i.e., terminates).

203



B Formal Details of Chapter 3

Lemma B.2.7. For all N , there exist U and f such that fields(N) = U f .

Proof. The claim follows by induction on the depth of N .

Lemma B.2.8. If ∅  T implements I <V > then one of the following holds:

� There exists an implementation definition

implementation<X> I <V ′> [N ] where P . . .

and a substitution [U/X] such that ∅  [U/X]P , V = [U/X]V ′, and (∀i) ∅ ` Ti ≤ [U/X]Ni
with Ti 6= [U/X]Ni implying i ∈ pol−(I).

� T = T such that ∅ ` T ≤ J<U>, J<U> Ei I <V >, 1 ∈ pol+(J), non-static(J), and 1 ∈
pol−(I) unless T = J<U>.

Proof. From ∅  T implements I <V > we get ∅ q T implements I <V > by Theorem 3.11. By
Lemma B.1.25 we then get the existence of T ′ such that

∅ q
′ T ′ implements I <V >

(∀i) ∅ q̀
′ Ti ≤ T ′i

(∀i) i ∈ pol−(I) unless Ti = T ′i (B.2.1)

By Theorem 3.12 and rule sub-q-alg-kernel we have

(∀i) ∅ ` Ti ≤ T ′i (B.2.2)

Case distinction on the last rule of the derivation of ∅ q
′ T ′ implements I <V >.

� Case rule ent-q-alg-env: Impossible.

� Case rule ent-q-alg-impl: Then

implementation<X> I <V ′> [N ] where P . . .

∅ q [U/X]P

with V = [U/X]V ′ and T ′ = [U/X]N . By Theorem 3.12 we get ∅  [U/X]P . Thus, with
(B.2.1) and (B.2.2), we conclude that the first proposition of the lemma holds.

� Case rule ent-q-alg-iface: Then T ′ = J<U>, 1 ∈ pol+(J), non-static(J), and J<U> Ei

I <V >. With (B.2.1) and (B.2.2), it is now easy to see that the second proposition of the
lemma holds.

End case distinction on the last rule of the derivation of ∅ q
′ T ′ implements I <V >.

Lemma B.2.9. If ∅ ` N ≤ I <V > then N Ec M for some M and there exists an

implementation<X> I <V ′> [M ′ ] where P . . .

and a substitution [U/X] such that ∅  [U/X]P , V = [U/X]V ′, and M = [U/X]M ′.

Proof. From ∅ ` N ≤ I <V > we get ∅ q̀ N ≤ I <V > by Theorem 3.12.
Case distinction on the last rule of the derivation of ∅ q̀ N ≤ I <V >.

� Case rule sub-q-alg-kernel: Then ∅ q̀
′ N ≤ I <V >, which contradicts Lemma B.1.10.

204



B.2 Type Soundness for CoreGI

� Case rule sub-q-alg-impl: Hence

∅ q̀
′ N ≤ T

∅ q
′ T implements I <V >

By Lemma B.1.10 we have T = M for some M with N Ec M . Moreover, the derivation
of ∅ q

′ M implements I <V > must end with rule ent-q-alg-impl. Inverting this rule and
using Theorem 3.11 finishes this case.

End case distinction on the last rule of the derivation of ∅ q̀ N ≤ I <V >.

Lemma B.2.10. If ∅  T implements I <V > and there exists j with ∅ ` M ≤ Tj for some M ,
then there exists a definition

implementation<X> I <V ′> [N ] where P . . .

and a substitution [U/X] such that

(i) ∅  [U/X]P ;

(ii) V = [U/X]V ′;

(iii) ∅ `M ≤ [U/X]Nj;

(iv) if j /∈ pol+(I) then ∅ ` Tj ≤ [U/X]Nj with Tj 6= [U/X]Nj implying j ∈ pol−(I);

(v) if j ∈ pol+(I) and j /∈ pol−(I) and Tj 6= [U/X]Nj, then T = Tj = J<W> with J<W> Ei

I <V > and 1 ∈ pol+(J);

(vi) (∀i 6= j) ∅ ` Ti ≤ [U/X]Ni with Ti 6= [U/X]Ni implying i ∈ pol−(I).

Proof. By Lemma B.2.8, there are two possibilities. The first of these possibilities implies the
existence of a definition

implementation<X> I <V ′> [N ] where P . . .

and a substitution [U/X] such that

� ∅  [U/X]P

� V = [U/X]V ′

� (∀i) ∅ ` Ti ≤ [U/X]Ni with Ti 6= [U/X]Ni implying i ∈ pol−(I).

With ∅ ` M ≤ Tj we then also have ∅ ` M ≤ [U/X]Nj by transitivity of subtyping. Claim (v)

also holds because it is impossible to have j /∈ pol−(I) and Tj 6= [U/X]Nj at the same time.
Now assume that the second possibility of Lemma B.2.8 holds. That is,

T = T

∅ ` T ≤ J<W>

J<W> Ei I <V >

1 ∈ pol+(J)

1 ∈ pol−(I) unless T = J<W>

205



B Formal Details of Chapter 3

This implies j = 1. By transitivity of subtyping, we have ∅ ` M ≤ I <V > Hence, with
Lemma B.2.9, we know that there exists M ′ such that

M Ec M
′

implementation<X> I <V ′> [N ] where P . . .

∅  [U/X]P

V = [U/X]V ′

M ′ = [U/X]N

We then have ∅ ` M ≤ [U/X]N , so claim (iii) holds. Moreover, we get from 1 ∈ pol+(J) and
Lemma B.1.18 that 1 ∈ pol+(I), so claim (iv) holds. Now assume 1 /∈ pol−(I). Then T = J<W>,
so claim (v) holds. Claim (vi) holds trivially. Setting N = N finishes the proof.

Lemma B.2.11. If ∅  T implements I <V > and interface I contains at least one static method,
then there exists a definition

implementation<X> I <V ′> [N ] where P . . .

such that

� ∅  [U/X]P

� V = [U/X]V ′

� (∀i) ∅ ` Ti ≤ [U/X]Ni with Ti 6= [U/X]Ni implying i ∈ pol−(I)

Proof. By Lemma B.2.8, there are two possibilities. The first of these possibilities directly implies
the claim. Now assume that the second possibility holds. That is, T = T , ∅ ` T ≤ J<W>,
J<W> Ei I <V >, and non-static(J). With Lemma B.1.19 we then get non-static(I). But this
contradicts the assumption that I contains at least one static method.

Lemma B.2.12. If N Ec N1 and N Ec N2 then either N1 Ec N2 or N2 Ec N1.

Proof. By straightforward induction on the combined height of the derivations of N Ec N1 and
N Ec N2.

Lemma B.2.13. Let

M = {(ϕ, implementation<X> I <V > [N
l
] . . . )

| dom(ϕ) = X, (∀i ∈ [l]) M?
i = nil or M?

i Ec ϕNi}

If M 6= ∅, M finite, and i ∈ disp(I) implies M?
i 6= nil for all i ∈ [l], then there exist (ϕ, impl)

such that least-implM = (ϕ, impl).

Proof. Assume

M = {(ϕ1, impl1), . . . , (ϕn, impln)}

(∀i ∈ [n]) impl i = implementation<Xi> I <Vi> [Ni
l
] . . .

We then need to show that there exists some k ∈ [n] such that

(∀i ∈ [n]) ϕkNk
l
Ec ϕiNi

l

We proceed by induction on n.

206



B.2 Type Soundness for CoreGI

� n = 1. Obvious because class inheritance is reflexive.

� n > 1. Assume

M ′ = {(ϕ1, impl1), . . . , (ϕn−1, impln−1)}

such that that M = M ′∪{(ϕn, impln)}. By the I.H. we know that there exists k′ ∈ [n−1]
such that

(∀i ∈ [n− 1]) ϕk′Nk′ Ec ϕiNi (B.2.3)

Now consider impln. We partition [l] into [l] = L1 ∪̇L2 ∪̇L3 (where ∪̇ denotes the disjoint
union of two sets) such that

(∀j ∈ L1) ϕnNnj Ec ϕk′Nk′j
(∀j ∈ L2) ϕnNnj 6Ec ϕk′Nk′j but ϕk′Nk′j Ec ϕnNnj
(∀j ∈ L3) ϕnNnj 6Ec ϕk′Nk′j and ϕk′Nk′j 6Ec ϕnNnj

(B.2.4)

We first show that j ∈ L3 implies j /∈ disp(I). For the sake of a contradiction, assume
j ∈ L3 and j ∈ disp(I). Then M?

j 6= nil, so we have

M?
j Ec ϕnNnj

M?
j Ec ϕk′Nk′j

By Lemma B.2.12 we then have either ϕnNnj Ec ϕk′Nk′j or ϕk′Nk′j Ec ϕNNnj . But this
is a contradiction to the definition of L3. Thus, we have shown that

j ∈ L3 implies j /∈ disp(I) (B.2.5)

Next, we define for j ∈ L1 ∪L2 ∪L3:

Mj =


ϕnNnj if j ∈ L1

ϕk′Nk′j if j ∈ L2

ϕnNnj if j ∈ L3

(B.2.6)

We then have by definition of L1 and L2 that

(∀j ∈ L1 ∪L2) ∅ ` ϕnNnj u ϕk′Nk′j = Mj

Moreover, from (B.2.5) we have that j ∈ disp(I) implies j /∈ L3 which in turn implies
j ∈ L1 ∪L2. Thus, criterion wf-prog-2 yields ϕnNnj = ϕk′Nk′j for all j /∈ disp(I), so we
have with (B.2.5) that

(∀j ∈ L3) ϕnNnj = ϕk′Nk′j (B.2.7)

Thus, we have

∅ ` ϕnNn
l u ϕk′Nk′

l
= M

l

By criterion wf-prog-3 we get the existence of a definition

impl = implementation<Y > I <V ′> [M ′ ] . . .

207



B Formal Details of Chapter 3

and a substitution ψ with dom(ψ) = Y such that ψM ′ = M . By construction of M , we
know that

(ψ, impl) ∈M (B.2.8)

Moreover, we have for all i ∈ [n− 1], j ∈ [l] = L1 ∪̇L2 ∪̇L3 that

ψM ′j = Mj
(B.2.6)

=


ϕnNnj

(B.2.4)

Ec ϕk′Nk′j
(B.2.3)

Ec ϕiNij if j ∈ L1

ϕk′Nk′j
(B.2.3)

Ec ϕiNij if j ∈ L2

ϕnNnj
(B.2.7)

= ϕk′Nk′j
(B.2.3)

Ec ϕiNij if j ∈ L3

But we also have for all j ∈ [l] that

ψM ′j = Mj
(B.2.6)

=


ϕnNnj if j ∈ L1

ϕk′Nk′j
(B.2.4)

Ec ϕnNnj if j ∈ L2

ϕnNnj if j ∈ L3

Thus,

(∀i ∈ [n], j ∈ [l]) ψM ′j Ec ϕiNij

Finally, with (B.2.8) and rule least-impl, we get

least-implM = (ψ, impl)

Lemma B.2.14. Let

M = {(ϕ, implementation<X> I <V > [N
l
] . . . )

| dom(ϕ) = X, (∀i ∈ [l]) Ni = Object or Mi Ec ϕNi}

If M 6= ∅ and M finite, then there exist (ϕ, impl) such that least-implM = (ϕ, impl).

Proof. Assume

M = {(ϕ1, impl1), . . . , (ϕn, impln)}

(∀i ∈ [n]) impl i = implementation<Xi> I <Vi> [Ni
l
] . . .

Then we have for all i ∈ [n] and all j ∈ [l] that

Nij = Object or Mj Ec ϕiNij

Now define

L1 := {j ∈ [l] | there exists i ∈ [n],Mj Ec ϕiNij}
L2 := [l] \L1 = {j ∈ [l] | for all i ∈ [n], Nij = Object}

(∀j ∈ [l]) M ′j =

{
Mj if j ∈ L1

Object if j ∈ L2

We now show for

M ′ = {(ϕ, implementation<X> I <V > [N
l
] . . . )

| dom(ϕ) = X, (∀i ∈ [l]) M ′i Ec ϕNi}

that M = M ′. The claim then follows with Lemma B.2.13.

208



B.2 Type Soundness for CoreGI

� “M ⊆M ′”. Assume (ϕ, impl) ∈M , that is, (ϕ, impl) = (ϕi, impl i) for some i ∈ [n]. Then

(∀j ∈ [l]) M ′j Ec ϕiNij

by construction of M ′j . Then (ϕ, impl) ∈M ′.

� “M ⊇M ′”. Assume (ϕ, impl) ∈M ′ with

impl = implementation<X> I <V > [N
l
] . . .

Then (∀i ∈ [l]) M ′i Ec ϕNi. Suppose j ∈ [l]. If M ′j = Object then Nj = Object . Otherwise,
M ′j = Mj , so Mj Ec ϕNj . Hence, (ϕ, impl) ∈M .

Lemma B.2.15. If ∆; Γ ` e : T then D :: ∆; Γ ` e : T ′ with ∆ ` T ′ ≤ T such that derivation D
does not end with an application of rule exp-subsume.

Proof. Straightforward induction on the derivation of ∆; Γ ` e : T .

Lemma B.2.16. If ∆; Γ ` newN (e) : T then ∆ ` N ≤ T and ∆ ` N ok.

Proof. By Lemma B.2.15 we have D :: ∆; Γ ` newN (e) : T ′ such that ∆ ` T ′ ≤ T and D does
not end with rule exp-subsume. Thus, D must end with rule exp-new. Inverting the rule yields
T ′ = N and ∆ ` N ok

Lemma B.2.17. If M1 Ec N and M2 Ec N then M1 tM2 Ec N .

Proof. By induction on the derivation of M1 Ec N .
Case distinction on the last rule of the derivation of M1 Ec N .

� Case rule inh-class-refl: Then M1 = N and M1 tM2 = M1 by rule lub-left, so the
claim holds with rule inh-class-refl.

� Case rule inh-class-super: Then

class C<X> extends M ′1 . . . [T/X]M ′1 Ec N

C<T> Ec N
inh-class-super

with M1 = C<T>. The claim holds obviously if M1 Ec M2 or M2 Ec M1. Otherwise, we
have

M1 tM2 = [T/X]M ′1 tM2

by rule lub-super. Applying the I.H. yields

[T/X]M ′1 tM2 Ec N

Hence, the claim also holds.

End case distinction on the last rule of the derivation of M1 Ec N .

Lemma B.2.18. If Mi Ec N for all i ∈ [n] with n > 0, then
⊔
{M1, . . . ,Mn} Ec N .

Proof. We proceed by induction on n.

� n = 1. Then
⊔
{M1, . . . ,Mn} = M1 and the claim is obvious.

209



B Formal Details of Chapter 3

� n > 1. By the I.H. we know that⊔
{M1, . . . ,Mn−1} Ec N

By inverting rule lub-set-multi we get⊔
{M1, . . . ,Mn−1} tMn =

⊔
{M1, . . . ,Mn}

The claim now follows from the assumption Mn Ec N and Lemma B.2.17.

Proof of Theorem 3.14. The proof is by induction on the derivation of ∅; ∅ ` e : T .
Case distinction on the last rule of the derivation of ∅; ∅ ` e : T .

� Case rule exp-var: Impossible.

� Case rule exp-field: Then

∅; ∅ ` e0 : C<T> class C<X> extends N where P {U f . . . }
∅; ∅ ` e0.fj : [T/X]Uj

exp-field

with T = [T/X]Uj . Applying the I.H. to ∅; ∅ ` e0 : C<T> leaves us with three cases:

1. e0 = v for some v. Then v = newD<V >(v) and ∅ ` D<V > ≤ C<T> by Lemma B.2.15.
By Lemma B.2.2 then D<V > Ec C<T>. By Lemma B.2.7, there exists W and g such
that fields(D<V >) = W g. By Lemma B.2.4 and Lemma B.2.5 we know that there
exists a unique i such that Wi gi = [T/X]Uj fj . Hence, v.fj −→ vi by rule dyn-field

and rule dyn-context.

2. e0 −→ e′0 for some e′0. It is easy to see that in this case also e0.fj −→ e′0.fj .

3. e0 is stuck on a bad cast. Then e0.fj is also stuck on a bad cast.

� Case rule exp-invoke: Then

∅; ∅ ` e0 : T0 mtype∅(m,T0) = <X>U x→ U where P

(∀i ∈ [n]) ∅; ∅ ` ei : [V/X]Ui ∅  [V/X]P ∅ ` V ok

∅; ∅ ` e0.m<V >(en)︸ ︷︷ ︸
=e

: [V/X]U︸ ︷︷ ︸
=T

exp-invoke

(B.2.9)

We now apply to I.H. to ∅; ∅ ` ei : Ti (for i = 0, . . . , n). This leaves us with three
possibilities:

1. There exist v0, . . . , vn such that ei = vi for all i = 0, . . . , n. We deal with this case
shortly.

2. There exist some m < n and some v0, . . . , vm such that ei = vi for all i = 0, . . . ,m,
and em+1 −→ e′m+1. It is easy to see that in this case e also makes an evaluation
step.

3. There exist some m < n and some v0, . . . , vm such that ei = vi for all i = 0, . . . ,m,
and em+1 is stuck on a bad cast. In this case, e is also stuck on a bad cast.

We now deal with the case that there exist v0, . . . , vn such that ei = vi for all i = 0, . . . , n.
Assume

ei = vi = newNi(wi) for i = 0, . . . , n (B.2.10)

Define ϕ1 = [V/X]. By Lemma B.2.15 and (B.2.9) we get

∅ ` N0 ≤ T0

(∀i ∈ [n]) ∅ ` Ni ≤ ϕ1Ui

Case distinction on the form of m.

210



B.2 Type Soundness for CoreGI

– Case m = mc: From (B.2.9) we get by inverting rule mtype-class that T0 = C<T>
with C 6= Object . By Lemma B.2.2 we have N0 Ec C<T>. Hence, with Lemma B.2.3

getmdefc(m,N0) = <X ′>U ′ x′ → U ′ where Q {e′′}

such that X and X ′ as well as U x and U ′ x′ have the same length. But then by rule
dyn-invoke-class

e0.m<V >(en) −→ [e0/this, e/x′][V/X ′]e
′′

– Case m = mi: Then we can invert rule mtype-iface and get

interface I <Z ′> [Z
l
whereR ] where P { . . . rcsig }

rcsigj = receiver {m : msig}
∅  T implements I <T ′′> mk = m Tj = T0

mtype∅(m,T0) = [T/Z, T ′′/Z ′]msigk︸ ︷︷ ︸
=<X

p
>U x

n→U where P

mtype-iface

(B.2.11)

Define ϕ2 = [T/Z, T ′′/Z ′]. By Lemma B.2.10, we get

implementation<Z ′′> I <T ′′′> [M ] where Q . . . (B.2.12)

dom(ϕ3) = Z ′′

∅  ϕ3Q

T ′′ = ϕ3T ′′′

∅ ` N0 ≤ ϕ3Mj (B.2.13)

j ∈ pol+(I) or ∅ ` Tj ≤ ϕ3Mj (B.2.14)

(∀i 6= j) ∅ ` Ti ≤ ϕ3Mi (B.2.15)

Assume

msigk = <X>U ′ x→ U ′ where P (B.2.16)

Suppose i ∈ [l]. Then define

M?
i =

{
resolveZi

(U ′, N) if i 6= j

resolveZj
(ZjU ′, N0N) otherwise

(B.2.17)

Our goal is now to prove

(∀i ∈ [l]) M?
i = nil or M?

i Ec ϕ3Mi (B.2.18)

Assume i ∈ [l] and M?
i 6= nil. We then show M?

i Ec ϕ3Mi. First, we define

Ci = {Np | p ∈ [n], U ′p = Zi}

and show that Np Ec ϕ3Mi for all Np ∈ Ci. Assume Np ∈ Ci. Then p ∈ [n] and
U ′p = Zi. Hence,

Up = ϕ2U
′
p = ϕ2Zi = Ti

211



B Formal Details of Chapter 3

From (B.2.9), we then have

∅; ∅ ` ep : ϕ1Ti

W.l.o.g., X ∩ ftv(T ) = ∅, so ϕ1Ti = Ti. From (B.2.10) we have ep = newNp(wp).
Thus, with Lemma B.2.16 we get

∅ ` Np ≤ Ti

If i = j then U ′p = Zj , so j /∈ pol+(I). With (B.2.14) and (B.2.15) we thus have
∅ ` Ti ≤ ϕ3Mi. Hence, by transitivity of subtyping ∅ ` Np ≤ ϕ3Mi, so

Np Ec ϕ3Mi for all Np ∈ Ci (B.2.19)

Now we show M?
i Ec ϕ3Mi depending on whether or not i = j.

* If i 6= j, then, by (B.2.17) and the definition of resolve

M?
i =

⊔
Ci

The claim follows from (B.2.19) and Lemma B.2.18.

* If i = j, then, by (B.2.17) and the definition of resolve

M?
i =

⊔
({N0} ∪ Ci)

The claim follows from (B.2.19), (B.2.13), and Lemma B.2.18.

This finishes the prove of (B.2.18)

We now define

M := (B.2.20)

{(ϕ4, implementation<Z ′′′> I <W ′> [M ′ ] where Q′ . . . )
| dom(ϕ4) = Z ′′′, (∀i ∈ [l]) M?

i = nil or M?
i Ec ϕ4M

′
i}

With (B.2.18) we have (ϕ3, impl) ∈ M where impl is the implementation definition
from (B.2.12). Clearly, M is also finite because a program has only finitely many
implementation definitions. Moreover, suppose i ∈ [l], i ∈ disp(I). Then either i = j
or there exists some argument type Ui′ with Ui′ = Zi. In any case, we have with
(B.2.17) that M?

i 6= nil. With Lemma B.2.13 we then get that there exists (ϕ, impl ′)
such that

least-implM = (ϕ, impl ′) (B.2.21)

Assume impl ′ = implementation . . . {. . . rcdef } Because the underlying program
is well-formed, it is easy to check that

rcdef j = receiver {mdef } (B.2.22)

mdef k = <X ′
p
>U ′′ x′′

n → U ′′ where P ′ {e′′}

With (B.2.11), (B.2.16), (B.2.17), (B.2.20), (B.2.21), (B.2.22), and an application of
rule dyn-mdef-iface, we get

getmdef i(m,N0, N) = ϕmdef k

Hence, with rule dyn-invoke-iface and dyn-context

e0.m<V >(en) −→ [e0/this, e/x′′][V/X ′]e
′′

212



B.2 Type Soundness for CoreGI

End case distinction on the form of m.

� Case rule exp-invoke-static: Then

smtype∅(m, I <V >[T ]) = <X
p
>U x

n → U where P

(∀i) ∅; ∅ ` ei : [W/X]Ui ∅  [W/X]P ∅ ` T ,W ok

∅; ∅ ` I <V >[T
l
].m<W>(e)︸ ︷︷ ︸
=e

: [V/X]U︸ ︷︷ ︸
=T

exp-invoke-static

(B.2.23)

We now apply the I.H. to ∅; ∅ ` ei : [W/X]Ui, for i = 1, . . . , n. As in the case for rule
exp-invoke, the only interesting case is the one where

(∀i) ei = vi = newNi(wi)

Define ϕ1 = [W/X]. With Lemma B.2.16 we have

(∀i) ∅ ` Ni ≤ ϕ1Ui

Inverting rule mtype-static yields

interface I <Z ′
l
> [ZwhereR ] where Q {m : staticmsig . . . }

∅  T implements I <V > m = mk

smtype∅(m, I <V >[T ]) = [V/Z ′, T/Z]︸ ︷︷ ︸
=ϕ2

msigk
mtype-static

With Lemma B.2.11 we get

impl = implementation<Y > I <V ′> [N
l
] where Q′ . . .

dom(ϕ3) = Y

∅  ϕ3Q′

V = ϕ3V ′

(∀i ∈ [l]) ∅ ` Ti ≤ ϕ3Ni

With Lemma B.2.2 we then get for all i ∈ [l]

Ni = Object or Ti = Mi for some Mi with Mi Ec ϕ3Ni

Now define

M = {(ϕ4, implementation<Y ′> I <V ′′> [N ′
l
] where Q′′ . . . )

| dom(ϕ4) = Y ′, (∀i ∈ [l]) N ′i = Object or Ti Ec ϕ4Ni}

Clearly, (ϕ3, impl) ∈ M . Moreover, M is finite because programs contain only finitely
many implementation definitions. Hence, by Lemma B.2.14 we know that there exists
(ϕ, impl ′) such that

least-implM = (ϕ, impl ′)

Suppose that staticmdef are the static methods of impl ′. Because the underlying program
is well-typed, we know mdef k = <X ′

p
>U ′ x′

n → U ′ where P ′ {e′′}. Hence, we have

getsmdef(m, I <V >[T ]) = ϕmdef k

by rule dyn-mdef-static and so

I <V >[T ].m<W>(e) −→ [e/x′][W/X ′]e′′

by rule dyn-invoke-static and rule dyn-context.

213



B Formal Details of Chapter 3

� Case rule exp-new: Then e = newN (en) and (∀i) ∅; ∅ ` ei : Ti. Applying the I.H. yields
three possibilities:

– All ei are values. Then e is a value.

– The first m expressions are values (m < n) and em+1 −→ e′m+1. Then e −→
newN (e1, . . . , em, e

′
m+1, em+2, . . . , en).

– The first m expressions are values (m < n) and em+1 is stuck on a bad cast. Then e
is stuck on a bad cast as well.

� Case rule exp-cast: Then

∅ ` U ok ∅; ∅ ` e0 : T

∅; ∅ ` (U) e0 : U
exp-cast

with e = (U) e0. Applying the I.H. leaves us with three possibilities:

– e0 is a value. Then e0 = newM (v). If ∅ ` M ≤ U then e −→ e0 by rules dyn-cast

and dyn-context. Otherwise, ∅ ` U ok ensures that U is not a type variable, so e is
stuck on a bad cast.

– e0 −→ e′0. Then e −→ (U) e′0 by rule dyn-context.

– e0 is stuck on a bad cast. Then e is also stuck on a bad cast.

� Case rule exp-subsume: In this case, the claim follows directly from the I.H.

End case distinction on the last rule of the derivation of ∅; ∅ ` e : T .

B.2.2 Proof of Theorem 3.15

Theorem 3.15 states that CoreGI’s top-level evaluation relation preserves the types of expressions.

Lemma B.2.19. If N1 tN2 = M then Ni Ec M for i = 1, 2.

Proof. Straightforward induction on the derivation of N1 tN2 = M .

Lemma B.2.20. If N ∈ N and M =
⊔

N then N Ec M .

Proof. Straightforward induction on the derivation of M =
⊔

N , making use of Lemma B.2.19.

Lemma B.2.21 (Well-formedness for subterms).

(i) If ∆ ` [U/X]T ok and X ∈ ftv(T ) then ∆ ` U ok.

(ii) If ∆ ` [U/X]P ok and X ∈ ftv(P) then ∆ ` U ok.

Proof. We prove both parts by routine inductions on the derivations given.

Lemma B.2.22 (Type substitution preserves entailment and subtyping). Suppose ∆  ϕ∆′.

(i) If ∆′ ` T ≤ U then ∆ ` ϕT ≤ ϕU .

(ii) If ∆′  P then ∆  ϕP.

Proof. Follows with Corollary B.1.28, Theorem 3.12, and Theorem 3.11.

Lemma B.2.23 (Weakening). Assume ∆ ⊆ ∆′.

(i) If ∆  P then ∆′  P.

214



B.2 Type Soundness for CoreGI

(ii) If ∆ ` T ≤ U then ∆′ ` T ≤ U .

(iii) If ∆ ` P ok then ∆′ ` P ok.

(iv) If ∆ ` T ok then ∆′ ` T ok.

Proof. We prove the first two parts by induction on the combined height of the derivations of
∆  P and ∆ ` T ≤ U . Similarly, we prove the last two parts by induction on the combined
height of the derivations of ∆ ` P ok and ∆ ` T ok.

In the following, the notation dom([T/X]) denotes the domain of the type substitution [T/X]
defined as the set {X}.

Lemma B.2.24 (Type substitution preserves well-formedness). Suppose ∆  ϕ∆′ and ∆ ` ϕX ok
for all X ∈ dom(ϕ) and dom(∆) ⊇ dom(∆′) \ dom(ϕ).

(i) If ∆′ ` T ok then ∆ ` ϕT ok

(ii) If ∆′ ` P ok then ∆ ` ϕP ok

Proof. We proceed by induction on the combined height of the two derivations given.

(i) Case distinction on the last rule used in the derivation of ∆′ ` T ok.

� Case rule ok-tvar: Then T = X and X ∈ dom(∆′).

– If X ∈ dom(ϕ) then ∆ ` ϕX ok by assumption.

– If X /∈ dom(ϕ) then X ∈ dom(∆) by assumption. Hence, ∆ ` ϕX ok.

� Case rule ok-object: Trivial.

� Case rule ok-class: Follows from the I.H., Lemma B.2.22, and the assumption that
classes of the underlying program are closed.

� Case rule ok-iface: Then

interface I <X> [Y whereR] where P . . .

∆′ ` T ok Y /∈ ftv(T ,∆′) ∆′, Y implements I <T>  [T/X]R,P

∆′ ` I <T> ok

with T = I <T>. By the I.H. we have ∆ ` ϕT ok. W.l.o.g., Y /∈ ftv(ϕT ,∆)∪ dom(ϕ).
We get with the assumption ∆  ϕ∆′, an application of Lemma B.2.23, and rule
ent-env that

∆, Y implements I <ϕT>  ϕ(∆′, Y implements I <T>)

Lemma B.2.22 now yields

∆, Y implements I <ϕT>  ϕ[T/X]R,P︸ ︷︷ ︸
=[ϕT/X]R,P

Hence, by rule ok-iface, ∆ ` ϕI <T> ok.

End case distinction on the last rule used in the derivation of ∆′ ` T ok.

(ii) We proceed by case distinction on the last rule used in the derivation of ∆′ ` P ok. For rule
ok-impl-constr, the claim follows with Lemma B.2.22 and the I.H. For rule ok-ext-constr

the claim follows directly from the I.H.

215



B Formal Details of Chapter 3

Lemma B.2.25 (Class inheritance propagates well-formedness). If N Ec M and ∆ ` N ok then
∆ `M ok.

Proof. We proceed by induction on the derivation of N Ec M .
Case distinction on the last rule of the derivation of N Ec M .

� Case rule inh-class-refl: Obvious.

� Case rule inh-class-super: Then

class C<X> extends N ′ where P . . . [V/X]N ′ Ec M

∆ ` C<V > ≤M

with N = C<V >. Because ∆ ` N ok, we have ∆  [V/X]P and ∆ ` V ok. The underlying
program is well-typed, so P ,X ` N ′ ok. With Lemma B.2.24 then ∆ ` [V/X]N ′ ok.
Applying the I.H. now yields ∆ `M ok.

End case distinction on the last rule of the derivation of N Ec M .

Lemma B.2.26. If implementation<X> I <V > [N
l
] . . . and M?

i 6= nil for all i ∈ disp(I) and,

for all i ∈ [l] with M?
i 6= nil, ∆ `M?

i ok and M?
i Ec [U/X]Ni, then ∆ ` U ok.

Proof. Suppose i ∈ [l] such that M?
i 6= nil. Then we get with Lemma B.2.25 that ∆ ` [U/X]Ni ok.

By Lemma B.2.21 we know that ∆ ` Uj ok for all j with Xj ∈ ftv(Ni). Moreover, by crite-
rion wf-impl-2 we have that X ⊆ ftv{Ni | i ∈ disp(I)}. Hence, ∆ ` U ok.

Lemma B.2.27. If implementation<X> I <V > [N
l
] . . . and for all i ∈ [l] either Ni = Object

or Mi Ec [U/X]Ni for some Mi with ∅ `Mi ok, then ∆ ` U ok.

Proof. The proof is similar to that of Lemma B.2.26.

Lemma B.2.28. If
⊔

N = M and ∆ ` N ok for some N ∈ N , then ∆ `M ok.

Proof. From Lemma B.2.20, we have N Ec M . Because ∆ ` N ok we then have ∆ ` M ok by
Lemma B.2.25.

Lemma B.2.29 (Type substitution preserves method types). If mtype∆′(m,T ) = msig and ∆ 
ϕ∆′ then mtype∆(m,ϕT ) = ϕmsig.

Proof. Follows by case distinction on the rule used to derive mtype∆′(m,T ) = msig . The case
where this rule is mtype-iface relies on Lemma B.2.22. Moreover, we use the assumption that
classes and interfaces of the underlying program are closed.

Lemma B.2.30 (Type substitution preserves static method types). If smtype∆′(m,K[T ]) = msig
and ∆  ϕ∆′ then smtype∆(m,ϕK[ϕT ]) = ϕmsig.

Proof. Follows immediately from Lemma B.2.22 and the assumption that interfaces of the un-
derlying program are closed.

Lemma B.2.31 (Type substitution preserves fields). If fields(N) = T f then fields(ϕN) = ϕT f .

Proof. Straightforward induction on the derivation of fields(N) = T f .

Lemma B.2.32 (Type substitution preserves expression typing). Assume
that ∆  ϕ∆′ and ∆ ` ϕX ok for all X ∈ dom(ϕ) and dom(∆) ⊇ dom(∆′) \ dom(ϕ). If
∆′; Γ ` e : T then ∆;ϕΓ ` ϕe : ϕT .

216



B.2 Type Soundness for CoreGI

Proof. We proceed by induction on the derivation of ∆′; Γ ` e : T .
Case distinction on the last rule of the derivation of ∆′; Γ ` e : T .

� Case rule exp-var: Obvious.

� Case rule exp-field: Then

∆′; Γ ` e′ : C<T> class C<X> extends N where P {U f . . . }
∆′; Γ ` e′.fj : [T/X]Uj

exp-field

with e = e′.fj and T = [T/X]Uj . Applying the I.H. yields ∆;ϕΓ ` ϕe′ : C<ϕT>. With

rule exp-field we then get ∆;ϕΓ ` ϕ(e′.fj ) : [ϕT/X]Uj . Because the underlying program

is well-typed, we have ftv(Uj) ⊆ X. Hence, [ϕT/X]Uj = ϕ[T/X]Uj = ϕT as required.

� Case rule exp-invoke: Then

∆′; Γ ` e′ : T ′ mtype∆′(m,T ′) = <X>U x→ U where P

(∀i) ∆′; Γ ` ei : [V/X]Ui ∆′  [V/X]P ∆′ ` V ok

∆′; Γ ` e′.m<V >(e) : [V/X]U
exp-invoke

with e = e′.m<V >(e) and T = [V/X]U . From the I.H. we get

∆;ϕΓ ` ϕe′ : ϕT ′

(∀i) ∆;ϕΓ ` ϕei : ϕ[V/X]Ui

By Lemma B.2.22 we get

∆  ϕ[V/X]P

By Lemma B.2.24 we get

∆ ` ϕV ok

W.l.o.g., X fresh, so with Lemma B.2.29

mtype∆(m,ϕT ′) = <X>ϕU x→ ϕU where ϕP

With X fresh we have ϕ[V/X](U,U,P) = [ϕV/X]ϕ(U,U,P), so applying rule exp-invoke

yields ∆;ϕΓ ` ϕe : [ϕV/X]ϕU . But [ϕV/X]ϕU = ϕT as required.

� Case rule exp-invoke-static: Then

smtype∆′(m, I <W>[T ]) = <X>U x→ U where P

(∀i) ∆′; Γ ` ei : [V/X]Ui ∆′  [V/X]P ∆′ ` T , V ok

∆′; Γ ` I <W>[T ].m<V >(e) : [V/X]U
exp-invoke-static

with e = I <W>[T ].m<V >(e) and T = [V/X]U . W.l.o.g., X fresh. Hence, by Lemma B.2.30

smtype∆(m,ϕI <W>[T ]) = <X>ϕU x→ ϕU where ϕP

Moreover, ϕ[V/X](U,U,P) = [ϕV/X]ϕ(U,U,P). Applying the I.H. then yields

(∀i) ∆;ϕΓ ` ϕei : [ϕV/X]ϕUi

217



B Formal Details of Chapter 3

With Lemma B.2.22 we also have

∆  [ϕV/X]ϕP

Moreover, with Lemma B.2.24

∆ ` ϕ(T , V ) ok

We now get with rule exp-invoke-static that ∆;ϕΓ ` ϕe : [ϕV/X]ϕU . Noting that
[ϕV/X]ϕU = ϕT finishes this case.

� Case rule exp-new: Follows from the I.H., Lemma B.2.24, and Lemma B.2.31.

� Case rule exp-cast: Follows from the I.H. and Lemma B.2.24.

� Case rule exp-subsume: Follows from the I.H. and Lemma B.2.22.

End case distinction on the last rule of the derivation of ∆′; Γ ` e : T .

Lemma B.2.33. If C<T> Ec D<U> then, for fresh and pairwise distinct type variables X,
C<X> Ec D<U ′> with [T/X]D<U ′> = D<U>.

Proof. By induction on the derivation of C<T> Ec D<U>.
Case distinction on the last rule in the derivation of C<T> Ec D<U>.

� Case inh-class-refl: Obvious with U ′ = X.

� Case inh-class-super: Then

class C<Y > extends C ′<V > . . . [T/Y ]C ′<V > Ec D<U>

C<T> Ec D<U>

By the I.H. there exists Z,U ′′ with

C ′<Z> Ec D<U ′′>

[[T/Y ]V/Z]D<U ′′> = D<U>

We also have for ϕ = [X/Y ] that C<X> Ec ϕC ′<V >. From C ′<Z> Ec D<U ′′> we get with
Lemma B.1.12 that [ϕV/Z]C ′<Z> Ec [ϕV/Z]D<U ′′>. With [ϕV/Z]C ′<Z> = ϕC ′<V > and
Lemma B.1.4 we then have

C<X> Ec [ϕV/Z]D<U ′′>

Moreover,

[T/X][ϕV/Z]D<U ′′>
X fresh

= [[T/Y ]V/Z]D<U ′′> = D<U>

Define U ′ = [ϕV/Z]U ′′ to finish the proof.

End case distinction on the last rule in the derivation of C<T> Ec D<U>.

Lemma B.2.34.

(i) If ∆ ` T ok then ftv(T ) ⊆ dom(∆).

(ii) If ∆ ` P ok then ftv(P) ⊆ dom(∆).

218



B.2 Type Soundness for CoreGI

Proof. We prove the first claim by induction on the derivation of ∆ ` T ok. The second claim
follows from the first one by inverting the last rule in the derivation of ∆ ` P ok.

Lemma B.2.35. If ∆; Γ, x : T ` e : U and ∆ ` T ′ ≤ T then ∆; Γ, x : T ′ ` e : U .

Proof. Straightforward induction on the derivation of ∆; Γ, x : T ` e : U .

Lemma B.2.36. Suppose

mtype∅(m
c, N) = <X>U x→ U where P

getmdefc(mc, N ′) = <X ′>U ′ x′ → U ′ where P′ {e}

Moreover, assume ∅ ` N ′ ok and N ′ Ec N and ∅  ϕP for some substitution ϕ with dom(ϕ) = X
and ∅ ` ϕX ok for all X ∈ dom(ϕ). Then X = X ′, x = x′, and ∅; this : N ′, x : ϕU ` ϕe : ϕU .

Proof. In the following, we write simply m instead of mc. The proof is by induction on the
derivation of getmdefc(m,N ′) = <X ′>U ′ x′ → U ′ where P′ {e}.
Case distinction on the last rule used in the derivation of getmdefc(m,N ′).

� Case rule dyn-mdef-class-base: Then

class C<Z> extends M where Q { . . . m : mdef } m = mk

getmdefc(m,C<T>︸ ︷︷ ︸
=N ′

) = [T/Z]mdef k︸ ︷︷ ︸
=<X′>U ′ x′→U ′ where P′ {e}

dyn-mdef-class-base

(B.2.24)

Assume

mdef k = <X ′>U ′′ x′ → U ′′ where P ′′︸ ︷︷ ︸
=msig

{e′} (B.2.25)

The underlying program is well-typed, so we have

Q,Z ` mk : mdef k ok in C<Z>

Hence,

Q,P ′′, Z,X ′︸ ︷︷ ︸
=∆

; this : C<X>, x′ : U ′′︸ ︷︷ ︸
=Γ

` e′ : U ′′ (B.2.26)

override-okQ,Z(mk : msig ,C<Z>) (B.2.27)

Assume N = D<V >. From C<T> Ec D<V > we get with Lemma B.2.33 that

C<Z> Ec D<W>

[T/Z]D<W> = D<V > (B.2.28)

for some W . From mtype∅(m,D<V >) = <X>U x→ U where P we get

class D<Z ′> . . . {. . . m′ : msig{e′′}}
m = m′j

msigj = <X>U ′′′ x→ U ′′′ where P ′′′ (B.2.29)

<X>U x→ U where P = [V/Z ′]msigj (B.2.30)

219



B Formal Details of Chapter 3

Hence, with criterion wf-class-2

mtypeQ,Z(m,D<W>) = [W/Z ′]msigj

From (B.2.24), (B.2.27), and rule ok-override

Q,Z ` msig ≤ [W/Z ′]msigj (B.2.31)

Define

ϕ1 = [T/Z]

ϕ2 = [V/Z ′]

ϕ3 = [W/Z ′]

We then have from (B.2.25), (B.2.29) and (B.2.31) that

X = X ′

x = x′

U ′′ = ϕ3U ′′′ (B.2.32)

P ′′ = ϕ3P ′′′ (B.2.33)

∆ ` U ′′ ≤ ϕ3U
′′′ (B.2.34)

From the assumption ∅ ` C<T> ok we get that ∅  ϕ1Q (by inverting rule ok-class) and
that ftv(T ) = ∅. (by Lemma B.2.34). The underlying program is well-typed, so ftv(Q) ⊆ Z.
Hence, ϕϕ1Q = ϕ1Q by definition of ϕ1.1 Thus

∅  ϕϕ1Q (B.2.35)

We have ∅  ϕP by assumption. Moreover,

ϕP
(B.2.29),(B.2.30)

= ϕϕ2P ′′′
(B.2.28)

= ϕ[ϕ1W/Z ′]P ′′′
w.l.o.g.,Z∩ftv(P ′′′)=∅

=

ϕϕ1ϕ3P ′′′
(B.2.33)

= ϕϕ1P ′′

Hence,

∅  ϕϕ1P ′′ (B.2.36)

Noting that ftv(T ) = ∅, we see that ϕϕ1 = [ϕX/X, T/Z]. Thus, with X = X ′

dom(∆) \ dom(ϕϕ1) = ∅

Moreover, from ∅ ` C<T> ok we have ∅ ` T ok, so with the assumptions we get

∅ ` ϕϕ1Y ok for all Y ∈ dom(ϕϕ1)

Hence, we may apply Lemma B.2.32 to (B.2.26) and get

∅;ϕϕ1Γ ` ϕϕ1e
′ : ϕϕ1U

′′ (B.2.37)

1For two type substitutions ϕ and ψ, the notation ϕψ denotes the composition of ϕ and ψ where the
application of ϕψ to some ξ is defined as ϕψξ := ϕ(ψξ).

220



B.2 Type Soundness for CoreGI

With ftv(T ) = ∅, we have ϕϕ1N
′ = N ′. Moreover,

ϕϕ1U
′′
i

(B.2.32)
= ϕϕ1ϕ3U

′′′
i

w.l.o.g.,Z∩ftv(U ′′′)=∅
=

ϕ[ϕ1W/Z ′]U
′′′
i

(B.2.28)
= ϕϕ2U

′′′
i

(B.2.30)
= ϕUi

Hence,

ϕϕ1Γ = this : N ′, x : ϕU (B.2.38)

We also have from (B.2.24) and (B.2.25)

ϕϕ1e
′ = ϕe (B.2.39)

With (B.2.34), (B.2.35), (B.2.36) and Lemma B.2.22 we get

∅ ` ϕϕ1U
′′ ≤ ϕϕ1ϕ3U

′′′

We also have

ϕϕ1ϕ3U
′′′ w.l.o.g.,Z∩ftv(U ′′′)=∅

= ϕ[ϕ1W/Z ′]U
′′ (B.2.28)

= ϕϕ2U
′′′ (B.2.30)

= ϕU

Hence,

∅ ` ϕϕ1U
′′ ≤ ϕU

With (B.2.37), (B.2.38), (B.2.39), and rule exp-subsume then

∅; this : N ′, x : ϕU ` ϕe : ϕU

as required.

� Case rule dyn-mdef-class-super: Then

class C<Z> extends M where Q { . . . m : mdef }
m /∈ m getmdefc(m, [T/Z]M) = <X ′>U ′ x′ → U ′ where P′ {e}

getmdefc(m,C<T>) = <X ′>U ′ x′ → U ′ where P′ {e}
dyn-mdef-class-super

with N ′ = C<T>. Assume [T/Z]M 6Ec N . Then, because N ′ Ec N , we must have
N ′ = N . But with mtype∅(m

c, N) = <X>U x→ U where P we then have m ∈ m, which
is a contradiction.

Thus, [T/Z]M Ec N . Obviously also N ′ Ec [T/Z]M , so with Lemma B.2.25 ∅ `
[T/Z]M ok. Hence, we may apply the I.H. and get

X = X ′

x = x′

∅; this : [T/Z]M,x : ϕU ` ϕe : ϕU

An application of Lemma B.2.35 finishes this case.

End case distinction on the last rule used in the derivation of getmdefc(m,N ′).

Lemma B.2.37. If fields(N) = T f and fields(N) = U g then T = U and f = g.

221



B Formal Details of Chapter 3

Proof. Straightforward induction on the derivation of fields(N) = T f .

Lemma B.2.38 (Expression substitution preserves expression typing). If
∆; Γ, x : T ` e : U and ∆; Γ : e′ : T then ∆; Γ ` [e′/x]e : U .

Proof. By induction on the derivation of ∆; Γ, x : T ` e : U . Assume that the derivation ends with
rule exp-var. If e = x then T = U and [e′/x]e = e′, so the claim follows from the assumptions.
Otherwise, e = y for some y 6= x with (Γ, x : T )(y) = U . Hence, Γ(y) = U , so the claim follows
with rule exp-var.

If the derivation ends with some other rule, the claim follows from the I.H.

Proof of Theorem 3.15. The proof is by induction on the derivation of ∅; ∅ ` e : T .
Case distinction on the last rule of the derivation of ∅; ∅ ` e : T .

� Case rule exp-var: Impossible.

� Case rule exp-field: Then

∅; ∅ ` e0 : C<T> class C<X> extends M where P {U f . . . }
∅; ∅ ` e0.fj : [T/X]Uj

exp-field

with T = [T/X]Uj and e = e0.fj . From e 7−→ e′ we get

e0 = newN (v)

fields(N) = V f ′

e′ = vi

f ′i = fj

We have by Lemma B.2.15, inspection of the expression typing rules, and Lemma B.2.37
that

∅; ∅ ` N ok fields(N) = V f ′ (∀i) ∅; ∅ ` vi : Vi

∅; ∅ ` newN (v) : N
exp-new

such that N Ec C<T>. From Lemma B.2.4 we get Vi = [T/X]Uj , so ∅; ∅ ` e′ : T as
required.

� Case rule exp-invoke: Then

∅; ∅ ` v0 : T0 mtype∅(m,T0) = <X>U x→ U where P

(∀i ∈ [n]) ∅; ∅ ` vi : [V/X]Ui ∅  [V/X]P ∅ ` V ok

∅; ∅ ` v0.m<V >(vn)︸ ︷︷ ︸
=e

: [V/X]U︸ ︷︷ ︸
=T

exp-invoke

(B.2.40)

Case distinction on the rule used to reduce e.

– Case rule dyn-invoke-class: Then

v0 = newN (w)

getmdefc(m,N) = <X ′>U ′ x′ → U ′ where P′ {e′′}

e′ = [v0/this, v/x][V/X ′]e′′

m = mc

222



B.2 Type Soundness for CoreGI

By definition of mtype, we know that T0 = N ′ for some N ′. By Lemma B.2.16 we get

N Ec N
′

∅ ` N ok

We now get with Lemma B.2.36 that

X = X ′

x = x′

∅; this : N, x : [V/X]U ` [V/X]e : [V/X]U

Possibly repeated applications of Lemma B.2.38 yield

∅; ∅ ` e′ : T

– Case rule dyn-invoke-iface: Then m = mi, e′ = [v0/this, v/x][V/X]ϕ1e
′′, and

interface I <Z ′> [Z
l
whereR ] where Q′ { . . . rcsig }

rcsigj = receiver {m : msig} m = mk msigk = <X ′′>W x′′ →W where Q

(∀i ∈ [l], i 6= j) resolveZi
(W,N) = M?

i resolveZj
(ZjW,N0N) = M?

j

(ϕ1, implementation<Z ′′> I <W ′′> [M ′ ] where Q′′ { . . . rcdef })
= least-implM

rcdef j = receiver {mdef }
getmdef i(m,N0, N) = ϕ1mdef k (B.2.41)

where

mdef k = <X ′>U ′ x′ → U ′ where P ′ {e′′}
(∀i ∈ {0, . . . , n}) vi = newNi(wi) (B.2.42)

M = {(ϕ, implementation<Z ′′> I <W ′′> [M ′ ] . . .)
| dom(ϕ) = Z ′′, (∀i ∈ [l]) M?

i = nil or ∅ `M?
i ≤ ϕM ′i}

By definition of mtype and Convention 3.5, we have from (B.2.40) that

interface I <Z ′> [Z
l
whereR ] where Q′ { . . . rcsig }

rcsigj = receiver {m : msig}
m = mk ∅  T implements I <T ′′> Tj = T0

mtype∅(m,T0) = [T ′′/Z ′, T/Z]msigk︸ ︷︷ ︸
=<X>U x→U where P

mtype-iface

(B.2.43)

With ϕ2 = [T ′′/Z ′, T/Z] we then get

X = X ′′ (B.2.44)

x = x′′ (B.2.45)

ϕ2(W,W,Q) = U,U,P (B.2.46)

The underlying program is well-typed, so we have

Q′′, Z ′′; this : M ′j ` rcdef j implements [W ′′/Z ′,M ′/Z]︸ ︷︷ ︸
=ϕ3

rcsigj

223



B Formal Details of Chapter 3

This especially implies

Q′′, Z ′′; this : M ′j ` mdef k implements ϕ3msigk

which in turn implies

Q′′, Z ′′, P ′, X ′︸ ︷︷ ︸
=∆

` U ′, U ′, P ′ ok (B.2.47)

∆; this : M ′j , x
′ : U ′︸ ︷︷ ︸

=Γ

` e′′ : U ′ (B.2.48)

X ′ = X ′′ (B.2.49)

x′ = x′′ (B.2.50)

U ′ = ϕ3W (B.2.51)

P ′ = ϕ3Q (B.2.52)

∆ ` U ′ ≤ ϕ3W (B.2.53)

By (B.2.40) we get ∅; ∅ ` v0 : T0, so with (B.2.42) and Lemma B.2.16

∅ ` N0 ≤ T0 (B.2.54)

Using (B.2.43) we get ∅  T implements I <T ′′> with Tj = T0. Lemma B.2.10 yields

impl = implementation<Z3> I <W3> [M3 ] where Q3 { . . . rcdef ′ }
∅  ϕ4Q3 (B.2.55)

dom(ϕ4) = Z3

T ′′ = ϕ4W3 (B.2.56)

∅ ` N0 ≤ ϕ4M3j (B.2.57)

if j /∈ pol+(I) then ∅ ` Tj ≤ ϕ4M3j with
Tj 6= ϕ4M3j implying j ∈ pol−(I)

(B.2.58)

(∀i 6= j) ∅ ` Ti ≤ ϕ4M3i with Ti 6= ϕ4M3i implying i ∈ pol−(I) (B.2.59)

if j ∈ pol+(I) and j /∈ pol−(I) and Tj 6= ϕ4M3j then
T = Tj = J<W4> and J<W4> Ei I <W3> and 1 ∈ pol+(J)

(B.2.60)

We now show that (ϕ4, impl) ∈ M . To do so, we prove that (∀i ∈ [l])M?
i = nil or

M?
i Ec ϕ4M3i. Suppose i ∈ [l] and assume M?

i 6= nil. By definition of M?
i in (B.2.41)

and by Lemma B.2.18, it suffices to show that Np Ec ϕ4M3i for all p ∈ [n] with
Wp = Zi, and that N0 Ec ϕ4M3j . The latter follows directly from (B.2.57). Now
assume p ∈ [n] with Wp = Zi. Then

ϕ2Wp = Ti

From (B.2.40) we have ∅; ∅ ` vp : [V/X]Up, so with (B.2.46)

∅; ∅ ` vp : [V/X]Ti

W.l.o.g., X ∩ ftv(Ti) = ∅, so [V/X]Ti = Ti. Thus, with (B.2.42) and Lemma B.2.16

∅ ` Np ≤ Ti

224



B.2 Type Soundness for CoreGI

Because Wp = Zi, we have i /∈ pol+(I). Hence, we get from (B.2.58) and (B.2.59)
that ∅ ` Ti ≤ ϕ4M3i. By transitivity of subtyping we then get Np Ec ϕ4M3i as
required. We now have established the fact that

(ϕ4, impl) ∈M

From (B.2.41) and the definition of least-impl, we get that

(∀i ∈ [l]) ϕ1M
′
i Ec ϕ4M3i (B.2.61)

We then get from (B.2.55) and criterion wf-prog-4 that

∅  ϕ1Q′′ (B.2.62)

By criterion wf-prog-2 we get ϕ1W ′′ = ϕ4W3, so with (B.2.56)

ϕ1W ′′ = T ′′ (B.2.63)

By criterion wf-iface-3 we have Z ∩ ftv(Q) = ∅. Then ftv(Q) ⊆ Z ′ because the
underlying program is well-typed. W.l.o.g., Z ′′ ∩ ftv(Q) = ∅, so

ϕ1ϕ3Q = ϕ1[W ′′/Z ′]Q = [ϕ1W ′′/Z ′]Q = [T ′′/Z ′]Q = ϕ2Q

From (B.2.40) and (B.2.46) we get ∅  [V/X]ϕ2Q. Thus,

∅  [V/X]ϕ1ϕ3Q (B.2.64)

We have v0 = newN0 (w0) by (B.2.42). By (B.2.41), the definition of resolve, and
Lemma B.2.20 N0 Ec M

?
j . Moreover, M?

j Ec ϕ1M
′
j by definition of M and least-impl.

Then with exp-subsume ∅; ∅ ` v0 : ϕ1M
′
j . We have ∅ ` V ok by (B.2.40) so ∅; ∅ `

[V/X]v0 : [V/X]ϕ1M
′
j by Lemma B.2.32. W.l.o.g., X ∩ ftv(v0) = ∅, so

∅; ∅ ` v0 : [V/X]ϕ1M
′
j (B.2.65)

Next, we prove that ∅; ∅ ` vi : [V/X]ϕ1U
′
i for all i ∈ [n]. Assume i ∈ [n]. By crite-

rion wf-iface-3 we have either Z ∩ ftv(Wi) = ∅ or Wi ∈ Z. Because the underlying
program is well-typed, we have ftv(Wi) ⊆ {Z,Z ′}. W.l.o.g., Z ′′ ∩ ftv(Wi) = ∅.

* Assume Z ∩ ftv(Wi) = ∅. Then

ϕ1ϕ3Wi = ϕ1[W ′′/Z ′]Wi = [ϕ1W ′′/Z ′]Wi
(B.2.63)

= [T ′′/Z ′]Wi = ϕ2Wi

Hence,

Ui
(B.2.46)

= ϕ2Wi = ϕ1ϕ3Wi
(B.2.51)

= ϕ1U
′
i

From (B.2.40) we have ∅; ∅ ` vi : [V/X]Ui. Thus, ∅; ∅ ` vi : [V/X]ϕ1U
′
i .

* Assume Wi = Zk for some k ∈ [l]. We have vi = newNi(wi) by (B.2.42). By
(B.2.41), the definition of resolve, and Lemma B.2.20 M?

k 6= nil and Ni Ec M
?
k .

Moreover, M?
k Ec ϕ1M

′
k by definition of M . By rule exp-new, Lemma B.1.4,

and rule exp-subsume we then have ∅; ∅ ` vi : ϕ1M
′
k. We also have

ϕ1M
′
k = ϕ1ϕ3Zk = ϕ1ϕ3Wi

(B.2.51)
= ϕ1U

′
i

We have ∅ ` V ok by (B.2.40) so ∅; ∅ ` [V/X]vi : [V/X]ϕ1U
′
i by Lemma B.2.32.

W.l.o.g., X ∩ ftv(v0) = ∅, so ∅; ∅ ` vi : [V/X]ϕ1U
′
i .

225



B Formal Details of Chapter 3

This finishes the proof of

(∀i ∈ [n]) ∅; ∅ ` vi : [V/X]ϕ1U
′
i (B.2.66)

Next, we prove ∅ ` ϕ1ϕ3W ≤ ϕ2W . Note that ftv(W ) ⊆ {Z,Z ′} because the
underlying program is well-typed. W.l.o.g., Z ′′ ∩ ftv(W ) = ∅.
Case distinction on whether or not Z ∩ ftv(W ) = ∅.

* Case Z ∩ ftv(W ) = ∅: Then

ϕ1ϕ3W = ϕ1[W ′′/Z ′]W = [ϕ1W ′′/Z ′]W
(B.2.63)

= [T ′′/Z ′]W = ϕ2W

By reflexivity of subtyping then

∅ ` ϕ1ϕ3W ≤ ϕ2W

* Case Z ∩ ftv(W ) 6= ∅: By criterion wf-iface-3 then W = Zk for some k ∈ [l].
Then

k /∈ pol−(I) (B.2.67)

We first concentrate on the case where k 6= j or j /∈ pol+(I) or ϕ4M3k = Tk.
Then we have

ϕ1ϕ3W = ϕ1ϕ3Zk = ϕ1M
′
k

(B.2.61)

Ec ϕ4M3k

(B.2.58) or (B.2.59) or assumption
= Tk

definition of ϕ2
= ϕ2Zk = ϕ2W

Thus, we get

∅ ` ϕ1ϕ3W ≤ ϕ2W

Now we consider the case k = j and j ∈ pol+(I) and ϕ4M3k 6= Tk. From (B.2.60)
we get

j = k = l = 1 (B.2.68)

T = Tj = J<W4> (B.2.69)

J<W4> Ei I <W3> (B.2.70)

1 ∈ pol+(J) (B.2.71)

With (B.2.54) and (B.2.43) we then get ∅ ` N0 ≤ J<W4>. Lemma B.2.2 yields

implementation<Z4> J<W ′4> [N ′0 ] where Q4 . . . (B.2.72)

dom(ψ) = Z4

∅  ψQ4 (B.2.73)

ψW ′4 = W4 (B.2.74)

N0 Ec ψN
′
0 (B.2.75)

With (B.2.70) and Lemma B.1.2 we get

ψN ′0 implements I <W3> ∈ sup(ψN ′0 implements J<W4>)

226



B.2 Type Soundness for CoreGI

With Lemma B.1.24 and (B.2.74) we get the existence of N ′′0 and I <W ′3> such
that

N ′′0 implements I <W ′3> ∈ sup(N ′0 implements J<W ′4>)

ψN ′′0 = ψN ′0 (B.2.76)

ψI <W ′3> = I <W3>

Now by criterion wf-impl-1, (B.2.67), and (B.2.68)

impl ′ = implementation<Z5> I <W ′′3 > [N ′′′0 ] . . .

dom(ψ′) = Z5

N ′′0 = ψ′N ′′′0 (B.2.77)

I <W ′3> = ψ′I <W ′′3 >

With (B.2.76) we then get ψN ′0 = ψψ′N ′′′0 . Hence, with (B.2.75)

N0 Ec ψψ
′N ′′′0

From (B.2.71) it is easy to see that Zj /∈ ftv(W ). Thus, from (B.2.41) and the
definition of resolve, we have M?

j = N0. With (B.2.68) and the definition of M
we then have

(ψψ′, impl ′) ∈M

From (B.2.41) and the definition of least-impl we then have

ϕ1M
′
j Ec ψψ

′N ′′′0

From (B.2.72), (B.2.73), (B.2.74), and rule ent-impl, we have

∅  ψN ′0 implements J<W4>

Hence, with rule sub-impl then ∅ ` ψN ′0 ≤ J<W4>. With (B.2.76) and (B.2.77)
ψN ′0 = ψψ′N ′′′0 , and with (B.2.69) J<W4> = Tj . With transitivity of subtyping,
and (B.2.68) we then have

∅ ` ϕ1M
′
k ≤ Tk

Moreover, we have

ϕ1ϕ3W = ϕ1ϕ3Zk = ϕ1M
′
k

Tk
definition of ϕ2

= ϕ2Zk = ϕ2W

Thus, we get

∅ ` ϕ1ϕ3W ≤ ϕ2W

End case distinction on whether or not Z ∩ ftv(W ) = ∅.
We now have proved ∅ ` ϕ1ϕ3W ≤ ϕ2W . Using Lemma B.2.22 we conclude

∅ ` [V/X]ϕ1ϕ3W ≤ [V/X]ϕ2W (B.2.78)

227



B Formal Details of Chapter 3

W.l.o.g., ftv(ϕ1Q′′) ∩ X = ∅, so with (B.2.62) ∅  [V/X]ϕ1Q′′. From (B.2.64) and
(B.2.52) we get ∅  [V/X]ϕ1P ′. Hence, with (B.2.47)

∅  [V/X]ϕ1∆ (B.2.79)

Assume ϕ1 = [V ′/Z ′′]. W.l.o.g., ftv(V ′) ∩ X = ∅. With (B.2.44) and (B.2.49) then
[V/X]ϕ1 = [V/X ′, V ′/Z ′′]. Hence, with (B.2.47)

dom(∆) \ dom([V/X]ϕ1) = ∅

From (B.2.40) we have ∅ ` V ok. From Lemma B.2.16, (B.2.40), and (B.2.42) we
get ∅ ` Ni ok for all i = 0, . . . , n. By definition of resolve and Lemma B.2.28 we
then get ∅ ` M?

i ok unless M?
i = nil. Moreover, by definition of resolve and disp,

we get M?
i 6= nil for all i ∈ disp(I). Hence, with (B.2.41), the definition of M , and

Lemma B.2.26 we get ∅ ` ϕ1X ok for all X ∈ dom(ϕ1). Thus,

∅ ` [V/X]ϕ1Z for all Z ∈ dom([V/X]ϕ1)

We now get with (B.2.48) and Lemma B.2.32 that

∅; [V/X]ϕ1Γ ` [V/X]ϕ1e
′′ : [V/X]ϕ1U

′

We have with (B.2.45), (B.2.50), and (B.2.48) that Γ = this : M ′j , x : U ′. Thus, with
(B.2.65), (B.2.66), and repeated applications of Lemma B.2.38, we get

∅; ∅ ` [v0/this, v/x][V/X]ϕ1e
′′︸ ︷︷ ︸

=e′

: [V/X]ϕ1U
′

To finish the case where e is reduced using rule dyn-invoke-iface, we still need to
show that ∅ ` [V/X]ϕ1U

′ ≤ T . (The claim then follows with rule exp-subsume.)
From (B.2.53) we get with (B.2.79) and Lemma B.2.22 that

∅ ` [V/X]ϕ1U
′ ≤ [V/X]ϕ1ϕ3W

Moreover, with (B.2.78) and transitivity of subtyping we then get

∅ ` [V/X]ϕ1U
′ ≤ [V/X]ϕ2W

Ultimately, we have

[V/X]ϕ2W
(B.2.46)

= [V/X]U
(B.2.40)

= T

– Case other rules: Impossible.

End case distinction on the rule used to reduce e.

� Case rule exp-invoke-static: Then

smtype∅(m, I <W>[T ]) = <X>U x→ U where P

(∀i) ∅; ∅ ` ei : [V/X]Ui ∅  [V/X]P ∅ ` T , V ok

∅; ∅ ` I <W>[T ].m<V >(e)︸ ︷︷ ︸
=e

: [V/X]U︸ ︷︷ ︸
=T

exp-invoke-static

(B.2.80)

228



B.2 Type Soundness for CoreGI

Expanding the definition of smtype yields:

interface I <Y ′> [Y whereR ] where Q′ {m : staticmsig . . . }
∅  T implements I <W> m = mk

smtype∅(m, I <W>[T ]) = [W/Y ′, T/Y ]msigk︸ ︷︷ ︸
=<X>U x→U where P

mtype-static

(B.2.81)

Define ϕ2 = [W/Y ′, T/Y ] and assume

msigk = <X ′′>U ′′ x′′ → U ′′ where P

Then

X ′′ = X (B.2.82)

x′′ = x (B.2.83)

ϕ2(U ′′, U ′′, P ) = (U,U,P) (B.2.84)

By looking at the form of e, we see that e 7−→ e′ must have been performed by rule
dyn-invoke-static. Thus,

getsmdef(m, I <W>, T ) = <X ′>U ′ x′ → U ′ where P′ {e′′}
I <W>[T ].m<V >(v) 7−→ [v/x][V/X]e′′︸ ︷︷ ︸

=e′

dyn-invoke-static

(B.2.85)

v = e (B.2.86)

Expanding the definition of getsmdef (i.e. inverting rule dyn-mdef-static) yields together
with criterion wf-iface-1 that

interface I <Y ′> [Y whereR ] where Q′ {m : staticmsig . . . }
m = mk (ϕ1, implementation<Z> I <W ′> [N ′

l
] where Q { staticmdef . . . })

= least-implM

getsmdef(m, I <W>, T
l
) = ϕ1mdef k︸ ︷︷ ︸

=<X′>U ′ x′→U ′ where P′ {e′′} (B.2.87)

where

M = {(ϕ, implementation<X> I <U> [N
l
] . . . )

| dom(ϕ) = X, (∀i ∈ [l]) Ni = Object or Ti Ec ϕNi}

Assume

mdef k = <X ′>U ′′′ x′ → U ′′′ where P ′ {e′′′}

Then

ϕ1(U ′′′, U ′′′, P ′, e′′′) = U ′, U ′,P′, e′′ (B.2.88)

Because the underlying program is well-typed, we have by inverting rule ok-impl and
criterion wf-iface-1

Q,Z; ∅ ` mdef k implements [W ′/Y ′, Y/N ′]︸ ︷︷ ︸
=ϕ3

msigk

229



B Formal Details of Chapter 3

We then have

Q,Z, P ′, X ′︸ ︷︷ ︸
=∆

` U ′′′, U ′′′, P ′ ok (B.2.89)

∆;x′ : U ′′′︸ ︷︷ ︸
=Γ

` e′′′ : U ′′′ (B.2.90)

X ′ = X ′′ (B.2.91)

U ′′′ = ϕ3U ′′ (B.2.92)

x′ = x′′ (B.2.93)

P ′ = ϕ3P (B.2.94)

∆ ` U ′′′ ≤ ϕ3U
′′ (B.2.95)

From (B.2.80) and (B.2.81) we have ∅  T implements I <W>. With Lemma B.2.11 we
get

impl = implementation<Z ′> I <W ′′> [N ′′ ] where Q′′ . . .

dom(ϕ4) = Z ′

∅  ϕ4Q′′ (B.2.96)

W = ϕ4W ′′ (B.2.97)

(∀i) ∅ ` Ti ≤ ϕ4N
′′
i with Ti 6= ϕ4N

′′
i implying i ∈ pol−(I) (B.2.98)

With Lemma B.2.2 and by looking at the definition of M , we see that

(ϕ4, impl) ∈M (B.2.99)

Thus, with (B.2.87) and the definition of least-impl

(∀i) ϕ1N
′
i Ec ϕ4N

′′
i (B.2.100)

With (B.2.96) and criterion wf-prog-4 we get ∅  ϕ1Q. With Lemma B.2.22 then

∅  [V/X]ϕ1Q (B.2.101)

From (B.2.99), (B.2.87), (B.2.100), and criterion wf-prog-2 we get ϕ4W ′′ = ϕ1W ′, so
with (B.2.97)

W = ϕ1W ′ (B.2.102)

We get from criterion wf-iface-3 that Y ∩ ftv(P ) = ∅. W.l.o.g., dom(ϕ1) = Z∩ ftv(P ) = ∅.
Hence,

ϕ2P = [W/Y ′]P
(B.2.102)

= [ϕ1W ′/Y ′]P = ϕ1[W ′/Y ′]P = ϕ1ϕ3P

From (B.2.80) we have ∅  [V/X]P and from (B.2.81) we have [V/X]P = [V/X]ϕ2P . Thus,
∅  [V/X]ϕ1ϕ3P , so with (B.2.94) ∅  [V/X]ϕ1P ′. With (B.2.101) and (B.2.89) then

∅  [V/X]ϕ1∆ (B.2.103)

Next, we show that (∀i) ∅; ∅ ` vi : [V/X]ϕ1U
′′′
i . Fix some i. W.l.o.g., dom(ϕ1) = Z ∩

ftv(U ′′i ) = ∅.
Case distinction on whether or not Y ∩ ftv(U ′′i ) = ∅.

230



B.2 Type Soundness for CoreGI

– Case Y ∩ ftv(U ′′i ) = ∅: Then

Ui
(B.2.84)

= ϕ2U
′′
i = [W/Y ′]U ′′i

(B.2.102)
= [ϕ1W ′/Y ′]U

′′
i = ϕ1[W ′/Y ′]U ′′i =

ϕ1ϕ3U
′′
i

(B.2.92)
= ϕ1U

′′′
i

Using reflexivity of subtyping, we get

∅ ` Ui ≤ ϕ1U
′′′
i

– Case Y ∩ ftv(U ′′i ) 6= ∅: By criterion wf-iface-3 we than have U ′′i = Yj for some
j ∈ [l]. Then

Ui
(B.2.84)

= ϕ2U
′′
i = ϕ2Yj = Tj

We also have

ϕ1N
′
j

definition of ϕ3
= ϕ1ϕ3Yj = ϕ1ϕ3U

′′
i

(B.2.92)
= ϕ1U

′′′
i

By definition of M we have that either ϕ1N
′
j = Object or Tj Ec ϕ1N

′
j . In both cases

we get

∅ ` Ui ≤ ϕ1U
′′′
i

End case distinction on whether or not Y ∩ ftv(U ′′i ) = ∅.
We now have established that ∅ ` Ui ≤ ϕ1U

′′′
i . With Lemma B.2.22 we get ∅ ` [V/X]Ui ≤

[V/X]ϕ1U
′′′
i . From (B.2.80) and (B.2.86) we have (∀i) ∅; ∅ ` vi : [V/X]Ui, so we get with

rule exp-subsume that

(∀i) ∅; ∅ ` vi : [V/X]ϕ1U
′′′
i (B.2.104)

Our next goal is to show that ∅ ` [V/X]ϕ1U
′′′ ≤ [V/X]U . W.l.o.g., dom(ϕ1) = Z ∩

ftv(U ′′) = ∅.
Case distinction on whether or not Y ∩ ftv(U ′′) = ∅.

– Case Y ∩ ftv(U ′′) = ∅: Then

U
(B.2.84)

= ϕ2U
′′ = [W/Y ′]U ′′

(B.2.102)
= [ϕ1W ′/Y ′]U

′′ =

ϕ1[W ′/Y ′]U ′′ = ϕ1ϕ3U
′′

Hence,

∅ ` ϕ1ϕ3U
′′ ≤ U

– Case Y ∩ ftv(U ′′) 6= ∅: By criterion wf-iface-3 we than have U ′′ = Yj for some
j ∈ [l]. Moreover, j /∈ pol−(I). Then

ϕ1ϕ3U
′′ = ϕ1ϕ3Yj

definition of ϕ3
= ϕ1N

′
j

(B.2.99),definition of least-impl

Ec ϕ4N
′′
j

(B.2.98)
= Ti = ϕ2Yj = ϕ2U

′′ (B.2.84)
= U

We then get

∅ ` ϕ1ϕ3U
′′ ≤ U

231



B Formal Details of Chapter 3

End case distinction on whether or not Y ∩ ftv(U ′′) = ∅.
In both cases, we have shown ∅ ` ϕ1ϕ3U

′′ ≤ U so with Lemma B.2.22

∅ ` [V/X]ϕ1ϕ3U
′′ ≤ [V/X]U

From (B.2.95), (B.2.103), and Lemma B.2.22 we have

∅ ` [V/X]ϕ1U
′′′ ≤ [V/X]ϕ1ϕ3U

′′

With transitivity of subtyping, we then get

∅ ` [V/X]ϕ1U
′′′ ≤ [V/X]U (B.2.105)

Now we combine the various results. Assume ϕ1 = [V ′/Z]. W.l.o.g., ftv(V ′) ∩ ftv(X) = ∅.
Thus, with (B.2.82) and (B.2.91) we have [V/X]ϕ1 = [V/X, V ′/Z]. With (B.2.89) then

dom(∆) \ dom([V/X]ϕ1) = ∅

From (B.2.80) we get ∅ ` T , V ok. With Lemma B.2.27 and the definition of M we then
get ∅ ` ϕ1X ok for all X ∈ dom(ϕ1). Thus,

∅ ` [V/X]ϕ1Z for all Z ∈ dom([V/X]ϕ1)

With (B.2.103), (B.2.90), and Lemma B.2.32 we now get

∅; [V/X]ϕ1Γ ` [V/X]ϕ1e
′′′ : [V/X]ϕ1U

′′′

With (B.2.104), the definition of Γ, and possibly repeated applications of Lemma B.2.38
we then get

∅; ∅ ` [v/x][V/X]ϕ1e
′′′ : [V/X]ϕ1U

′′′

With (B.2.85) and (B.2.88) we get [v/x][V/X]ϕ1e
′′′ = e′. Thus, with (B.2.80), (B.2.105),

and rule exp-subsume we get

∅; ∅ ` e′ : T

as required.

� Case rule exp-new: Then e = newN (e). But this is a contradiction to e 7−→ e′.

� Case rule exp-cast: Then

∅ ` T ok ∅; ∅ ` e0 : T ′

∅; ∅ ` (T ) e0 : T
exp-cast

with e = (T ) e0. The reduction step e 7−→ e′ must have been performed through rule
dyn-cast. Thus,

e′ = e0

e0 = newM (w)

∅ `M ≤ T

By Lemma B.2.15 and a case analysis on the form of e0, we know that

∅; ∅ ` e0 : M

Hence, the claim ∅; ∅ ` e′ : T follows with rule exp-subsume.

� Case rule exp-subsume: In this case, the claim follows directly from the I.H. and rule
exp-subsume.

End case distinction on the last rule of the derivation of ∅; ∅ ` e : T .

232



B.3 Determinacy of Evaluation for CoreGI

B.2.3 Proof of Theorem 3.16

Theorem 3.16 states that CoreGI’s proper evaluation relation preserves the types of expressions.

Proof of Theorem 3.16. By inverting rule dyn-context we know that there exists an evaluation
context E and expressions e0, e

′
0 such that e = E [e0] and e0 7−→ e′0 and E [e′0] = e′. Hence, it

suffices to show the following claim:

If ∅; ∅ ` E [e] : T and e 7−→ e′ then ∅; ∅ ` E [e′] : T .

The proof of this claim is by induction on E . If E = �, then the claim holds by Theorem 3.15. In
all other cases, we first use Lemma B.2.15 to obtain a derivation D for ∅; ∅ ` E [e] : T ′ such that
∅ ` T ′ ≤ T and D does not end with rule exp-subsume. Then the form of E uniquely determines
the last rule r used in D. In each case, the claim then follows by the I.H. and applications of rules
r and exp-subsume.

B.3 Determinacy of Evaluation for CoreGI

This section shows that CoreGI’s evaluation relation is deterministic.

Lemma B.3.1. If least-implM = (ϕ1, impl1) and least-implM = (ϕ2, impl2) then ϕ1 = ϕ2 and
impl1 = impl2.

Proof. Assume

impl1 = implementation<X> I <T> [M ] . . .

impl2 = implementation<Y > I <U> [N ] . . .

Then dom(ϕ1) = X, dom(ϕ2) = Y , and, by definition of least-impl, ϕ1M Ec ϕ2N and ϕ2N Ec

ϕ1M . The class graph is acyclic by criterion wf-prog-5, so ϕ1M = ϕ2N . Criterion wf-prog-1
then yields impl1 = impl2. Hence, X = Y and M = N . We have X ⊆ ftv(M) by crite-
rion wf-impl-2, so with ϕ1M = ϕ2N also ϕ1 = ϕ2.

Lemma B.3.2 (Determinacy of method lookup).

(i) If getmdefc(m,N) = mdef and getmdefc(m,N) = mdef ′ then mdef = mdef ′.

(ii) If getmdefi(m,N,N) = mdef and getmdefi(m,N,N) = mdef ′ then mdef = mdef ′.

(iii) If getsmdef(m,K,N) = mdef and getsmdef(m,K,N) = mdef ′ then mdef = mdef ′.

Proof. We prove the three claims separately.

(i) It is easy to see that both derivations must end with the same rule. The claim now follows
with a routine rule induction.

(ii) We first prove that N1 t N2 = M and N1 t N2 = M ′ imply M = M ′. This proof is by
induction on the derivations of N1 t N2 = M and N1 t N2 = M ′. If both derivations
end with the same rule then the claim follows directly (rules lub-right and lub-left) or
via the I.H. (rule lub-super). Otherwise, one derivation ends with rule lub-right and the
other with rule lub-left. Then N1 Ec N2 and N2 Ec N1, so M = N2 = N1 = M ′ as the
class graph is acyclic by criterion wf-prog-5.

We then get that
⊔

N = M and
⊔

N = M ′ imply M = M ′. From this we have that
resolveX(T ,N) = M and resolveX(T ,N) = M ′ imply M = M ′.

The claim now follows with Lemma B.3.1.

233



B Formal Details of Chapter 3

(iii) Follows with Lemma B.3.1.

Lemma B.3.3 (Determinacy of top-level evaluation). If e 7−→ e′ and e 7−→ e′′ then e′ = e′′.

Proof. Case distinction on the form of e.

� Case e = x: Impossible.

� Case e = e0.f : Then both reductions are due to rule dyn-field. Hence, e0 = newN (v),
fields(N) = U f , f = fj , and e′ = vj . By Lemma B.2.37, fields is deterministic. Moreover,
field shadowing is not allowed (criterion wf-class-1), so f occurs exactly once in f . Thus,
e′′ = vj = e′.

� Case e = e0.m<T>(e): Identifier sets for class and interface methods are disjoint (see
Convention 3.4), so the two reductions are either both due to rule dyn-invoke-class or
both due to rule dyn-invoke-iface. In any case, the claim follows with Lemma B.3.2.

� Case e = K[T ].m<U>(e): The claim follows from Lemma B.3.2.

� Case e = newN (e): Impossible.

� Case e = (T ) e0: Obvious.

End case distinction on the form of e.

Lemma B.3.4. Assume E1[e1] = E2[e2]. If e1 7−→ e′1 and e2 7−→ e′2 then E1 = E2.

Proof. We prove the claim by induction on the combined size of E1 and E2. A case distinction
on the form of E1[e1] reveals that either E1 = � = E2 or that E1 and E2 are identical up to
sub-contexts E ′1 and E ′2 with E ′1[e1] = E ′2[e2]. In the first case, the claim is immediate. In the
second case, we get by the I.H. that E ′1 = E ′2. But then also E1 = E2.

Proof of Theorem 3.20. By rule dyn-context, we have that e = E [ẽ], ẽ 7−→ ẽ′, e′ = E [ẽ′], and
that e = E ′[ê], ê 7−→ ê′, e′′ = E ′[ê′]. By Lemma B.3.4 we get E = E ′, so we have ẽ = ê. By
Lemma B.3.3 we then get ẽ′ = ê′. Hence, e′ = e′′.

B.4 Deciding Constraint Entailment and Subtyping

This section proves Theorem 3.24 (termination of unify≤), Theorem 3.25 (soundness of algorith-
mic entailment and subtyping with respect to their quasi-algorithmic variants), Theorem 3.26
(completeness of algorithmic entailment and subtyping with respect to their quasi-algorithmic
variants), and Theorem 3.27 (termination of entailment and subtyping).

B.4.1 Proof of Theorem 3.24

Theorem 3.24 states that unify≤ terminates.

Definition B.4.1. The weight of a type T with respect to a type environment ∆, written weight∆(T ),
is defined as follows:

weight∆(X) = 1 + max({weight∆(T ) | X extendsT ∈ ∆})
weight∆(N) = 1

weight∆(K) = 1

By convention, max(∅) = 0. The definition of weight is proper (i.e., terminates) because ∆ is
contractive by criterion wf-tenv-1.

234



B.4 Deciding Constraint Entailment and Subtyping

Proof of Theorem 3.24. Because syntactic unification is known to terminate [8], we only need to
show that the rewrite rules in Figure 3.26 terminate. We define the following measure for a set
of equations {T1 ≤? U1, . . . , Tn ≤? Un}:

(

n∑
i=1

weight∆(Ti),

n∑
i=1

depth(Ti)) ∈ N× N

It is easy to see that each transformation rule from Figure 3.26 decreases this measure with
respect to the usual lexicographic ordering on N× N.

B.4.2 Proof of Theorem 3.25

Theorem 3.25 states that algorithmic entailment and subtyping are sound with respect to quasi-
algorithmic entailment and subtyping.

Lemma B.4.2. If ∆ q
′ U implements I <V > and ∆; false; I à T ↑ U then it holds that ∆ q

T implements I <V >.

Proof. From the assumption ∆; false; I à T ↑ U we get

(∀i) ∆ q̀
′ Ti ≤ Ui

(∀i) if Ti 6= Ui then i ∈ pol−(I)

The claim now follows with rule ent-q-alg-up.

Lemma B.4.3.

(i) If D1 :: ∆; G ;β a T implements I <V > then ∆ q
′ U implements I <V > for some U with

∆;β; I à T ↑ U .

(ii) If D2 :: ∆; G à T ≤ U then ∆ q̀ T ≤ U .

Proof. We proceed by induction on the combined height of D1 and D2.

(i) Case distinction on the last rule used in D1.

� Case ent-alg-extends: Impossible.

� Case ent-alg-env: Inverting the rule yields

R ∈ ∆

G implements I <V > ∈ sup(R)

∆;β; I à T ↑ G

With rule ent-q-alg-env we have ∆ q
′ G implements I <V >. Defining U = G

finishes this case.

� Case ent-alg-impl: Inverting the rule yields

implementation<X> I <V ′> [N ] where P . . . (B.4.1)

∆;β; I à T ↑ [W/X]N (B.4.2)

V = [W/X]V ′

∆; G ∪ {[W/X]N implements I <V >}; false a [W/X]P (B.4.3)

Case distinction on the form of [W/X]Pi.

235



B Formal Details of Chapter 3

– Case [W/X]Pi = T ′ implements J<U ′>: Assume Applying part (i) of the I.H.
to (B.4.3) gives us the existence of T ′′ such that

∆ q
′ T ′′ implements J<U ′>

∆; false; J à T ′ ↑ T ′′

With Lemma B.4.2 we then have

∆ q T ′ implements J<U ′>

– Case [W/X]Pi = T ′ extendsU ′: Inverting the derivation in (B.4.3) yields

∆; G ∪ {[W/X]N implements I <V >} à T
′ ≤ U ′

Applying part (ii) of the I.H. yields ∆ q̀ T
′ ≤ U ′. Thus

∆ q T
′ extendsU ′

with rule ent-q-alg-extends.

End case distinction on the form of [W/X]Pi. Thus, we have

∆ q [W/X]P (B.4.4)

With (B.4.1), (B.4.4), and rule ent-q-alg-impl we get

∆ q
′ [W/X]N implements I <V >

Define U = [W/X]N ; then (B.4.2) finishes this case.

� Case ent-alg-iface1: We then have T = T for some T . Inverting the rule yields

∆;β; I à T ↑ I <V >

1 ∈ pol+(I)

non-static(I)

By rule ent-q-alg-iface, we have ∆ q
′ I <V > implements I <V >. Defining U =

I <V > finishes this case.

� Case ent-alg-iface2: Then T = J<W> for some J<W>. Inverting the rule yields

1 ∈ pol+(J)

non-static(J)

J<W> Ei I <V >

The claim now follows with rule ent-q-alg-iface.

End case distinction on the last rule used in D1.

(ii) Case distinction on the last rule used in D2.

� Case sub-alg-kernel: Inverting the rule yields ∆ q̀
′ T ≤ U , so the claim follows

with rule sub-q-alg-kernel.

236



B.4 Deciding Constraint Entailment and Subtyping

� Case sub-alg-impl: Then U = I <V > for some I <V >. Inverting the rule yields

∆; G ; true a T implements I <V >

Applying part (i) of the I.H. gives us the existence of T ′ such that

∆ q
′ T ′ implements I <V >

∆; true; I à T ↑ T ′

Inverting the derivation of ∆; true; I à T ↑ T ′ yields ∆ q̀
′ T ≤ T ′. An application

of rule sub-q-alg-impl now proves the claim.

End case distinction on the last rule used in D2.

Proof of Theorem 3.25. We prove both claims separately.

(i) The derivation of ∆ a P ends with rule ent-alg-main. Inverting the rule yields

D :: ∆; ∅; false a P

Case distinction on the form of P.

� Case P = T extendsU : Then D ends with rule ent-alg-extends. Inverting the rule
yields ∆; ∅ à T ≤ U . By Lemma B.4.3 we get ∆ q̀ T ≤ U , thus ∆ q P by rule
ent-q-alg-extends,

� Case P = T implements I <V >: Applying Lemma B.4.3 to D yields the existence of
U such that

∆ q
′ U implements I <V >

∆; false; I à T ↑ U

We then get ∆ q P by Lemma B.4.2.

End case distinction on the form of P.

(ii) The derivation of ∆ à T ≤ U ends with rule sub-alg-main. Inverting the rule yields
∆; ∅ à T ≤ U . The claim now follows with Lemma B.4.3.

B.4.3 Proof of Theorem 3.26

Theorem 3.26 states that algorithmic entailment and subtyping are complete with respect to
quasi-algorithmic entailment and subtyping.

The algorithmic formulation of entailment and subtyping restricts derivations to certain forms
through the use of a goal cache G . Thus, the section starts by proving various properties of
derivations in general before turning to derivations that are specific to algorithmic entailment
and subtyping.

Definition B.4.4 (Small derivations). A derivation D is small if, and only if, its direct subderiva-
tions are small and all its proper subderivations end with a conclusion other then the conclusion
of D.

Remember that D :: J denotes that D is a derivation of judgment J . Moreover, we write
D; r :: J if D :: J and D ends with an application of rule r. The notation height(D) denotes the
height of a derivation D.

Lemma B.4.5. Let J be a judgment such that the inference rules defining J do not put restric-
tions on properties of derivations. Now suppose D :: J . Then there exists D̂ :: J such that D̂ is
small and height(D̂) ≤ height(D).

237



B Formal Details of Chapter 3

Proof. By induction on the height of D. If D is already small then we are done. In the following,
r ranges over rule names. Assume D is not small. Hence

D1 :: J1 . . . Dn :: Jn
D :: J

r

By applying the I.H. we get D′i ::Ji for all i ∈ [n] whereby D′i is small and height(D′i) ≤ height(Di).
An application of rule r now yields D′ :: J such that height(D′) ≤ height(D). If D′ is small then
we are done. Otherwise, we have the following situation:

D′′ :: J
...

D :: J
r

with height(D′′) < height(D). We now apply the I.H. to D′′ ::J and get D′′′ ::J such that D′′′ is
small and height(D′′′) ≤ height(D′′) < height(D).

Lemma B.4.6. If D′ is a subderivation of a small derivation D, then D′ is also small.

Proof. By induction on the height of D. If D′ = D then the claim is immediate. Otherwise, there
exist a direct subderivation D′′ of D such that D′ is a subderivation of D′′. By Definition B.4.4,
we know that D′′ is small. Applying the I.H. proves that D′ is small.

Definition B.4.7 (Entailment goals). Let D be a derivation. The set of entailment goals occurring
in D is defined as follows:

goals(D) = {R | D contains a subderivation D′; ent-q-alg-impl :: ∆ q R}

Lemma B.4.8. If D′ is a subderivation of D then goals(D′) ⊆ goals(D).

Proof. Obvious.

Lemma B.4.9. Suppose D; ent-q-alg-impl :: ∆ q R. If D is small and D′ is a proper subderiva-
tion of D, then R /∈ goals(D′).

Proof. Assume R ∈ goals(D′). Hence, D′ has a subderivation

D′′; ent-q-alg-impl :: ∆ q R

But this is a contradiction to D being small because D′′ is a proper subderivation of D.

Lemma B.4.10.

(i) If D1 ::∆ q P and D1 is small, then ∆; G ;β a P for all β and all G with goals(D1)∩G = ∅.

(ii) If D2 :: ∆ q
′ U implements I <V > and D2 is small and ∆;β; I à T ↑ U , then ∆; G ;β a

T implements I <V > for all G with goals(D2) ∩ G = ∅.

(iii) If D3 :: ∆ q̀ T ≤ U and D3 is small, then ∆; G à T ≤ U for all G with goals(D3)∩G = ∅.

Proof. We proceed by induction on the combined height of D1, D2, and D3.

(i) Suppose G is a set of entailment goals such that goals(D1)∩G = ∅ and let β ∈ {false, true}.
Case distinction on the last rule used in D1.

238



B.4 Deciding Constraint Entailment and Subtyping

� Case rule ent-q-alg-extends: We then have P = T extendsU . By inverting the rule,
we get D′1 ::∆ q̀ T ≤ U such that D′1 is a subderivation of D1. From Lemma B.4.6 we
know that D′1 is small and Lemma B.4.8 gives us goals(D′1) ∩ G = ∅. Applying part
(iii) of the I.H. yields ∆; G à T ≤ U , so the claim follows with rule ent-alg-extends.

� Case rule ent-q-alg-up: We then have

(∀i) ∆ q̀
′ Ti ≤ Ui

(∀i) if Ti 6= Ui then i ∈ pol−(I) D′1 :: ∆ q
′ U implements I <V >

D1 :: ∆ q T implements I <V >︸ ︷︷ ︸
=P

Thus, we have

∆;β; I à T ↑ U

by rule ent-alg-lift. Moreover, D1 is small so D′1 is small by Lemma B.4.6. Fur-
thermore,

goals(D′1) ∩ G = ∅

with Lemma B.4.8 and goals(D1) ∩ G = ∅. Applying part (ii) of the I.H. now yields
∆; G ;β a P.

End case distinction on the last rule used in D1.

(ii) Case distinction on the last rule used in D2.

� Case rule ent-q-alg-env: We have

U implements I <V > = G implements I <V >

Inverting the rule yields R ∈ ∆ and G implements I <V > ∈ sup(R). The claim now
follows with the assumption ∆;β; I à T ↑ G by rule ent-alg-env.

� Case rule ent-q-alg-impl: We have

implementation<X> I <V ′> [N ] where P . . . ∆ q [W/X]P

D2 :: ∆ q
′ [W/X](N implements I <V ′>)︸ ︷︷ ︸

=U implements I<V > (B.4.5)

Suppose D′i :: ∆ q [W/X]Pi, let G be a set of entailment goals such that goals(D2)∩
G = ∅, and assume β ∈ {false, true}.
D2 is small by assumption, so D′i is small with Lemma B.4.6. Using Lemma B.4.9
we get U implements I <V > /∈ goals(D′i). Moreover, goals(D′i) ⊆ goals(D2). Because
goals(D2) ∩ G = ∅ we then have

goals(D′i) ∩ (G ∪ {U implements I <V >}) = ∅

By part (i) of the I.H. we now get

∆; G ∪ {U implements I <V >}; false à [W/X]Pi (B.4.6)

Moreover, U implements I <V > ∈ goals(D2) by Definition B.4.7 and goals(D2)∩G =
∅ by the assumption, so

U implements I <V > /∈ G (B.4.7)

239



B Formal Details of Chapter 3

Furthermore, U = [W/X]N from (B.4.5) and ∆;β; I à T ↑ U by the assumption;
hence

∆;β; I à T ↑ [W/X]N (B.4.8)

We conclude by using rule ent-alg-impl

[W/X]N implements I <V > /∈ G from (B.4.7) and (B.4.5)
implementation<X> I <V ′> [N ] where P . . . from (B.4.5)

∆;β; I à T ↑ [W/X]N from (B.4.8)

V = [W/X]V ′ from (B.4.5)

∆; G ∪ {[W/X]N implements I <V >}; false a [W/X]P from (B.4.6)

∆; G ;β a T implements I <V >

� Case rule ent-q-alg-iface: We then have U = J<W> such that

1 ∈ pol+(J) (B.4.9)

non-static(J) (B.4.10)

J<W> Ei I <V > (B.4.11)

With Lemma B.1.18 and Lemma B.1.19 we get

1 ∈ pol+(I) (B.4.12)

non-static(I) (B.4.13)

With the assumption ∆;β; I à T ↑ U we get T = T for some T and

∆ q̀
′ T ≤ J<W>

β or T = J<W> or 1 ∈ pol−(I) (B.4.14)

With (B.4.11), rule sub-q-alg-iface, and Lemma B.1.7 we get

∆ q̀
′ T ≤ I <V > (B.4.15)

Case distinction on the form of T .

– Case T 6= J<W>: With (B.4.14) we get β or 1 ∈ pol−(I). With (B.4.15) and
rule ent-alg-lift we get ∆;β; I à T ↑ I <V >. With (B.4.12), (B.4.13), and rule
ent-alg-iface1 we get

∆; G ;β a T implements I <V >

– Case T = J<W>: The claim then follows with (B.4.9), (B.4.10), (B.4.11), and
rule ent-alg-iface2.

End case distinction on the form of T .

End case distinction on the last rule used in D2.

(iii) Case distinction on the last rule used in D3.

� Case rule sub-q-alg-kernel: By inverting the rule, we get ∆ q̀
′ T ≤ U , so ∆; G à

T ≤ U by sub-alg-kernel.

240



B.4 Deciding Constraint Entailment and Subtyping

� Case rule sub-q-alg-impl: We have U = I <V > for some I <V > such that

∆ q̀
′ T ≤ T ′ D′3 :: ∆ q

′ T ′ implements I <V >

D3 :: ∆ q̀ T ≤ I <V >

By rule ent-alg-lift

∆; true; I à T ↑ T ′

Because D3 is small, we get with Lemma B.4.6 that D′3 is small. Moreover, by
Lemma B.4.8 goals(D′3) ⊆ goals(D3), so with the assumption goals(D3) ∩ G = ∅ we
have

goals(D′3) ∩ G = ∅

Applying part (ii) of the I.H. now yields

∆; G ; true a T implements I <V >

so we get ∆; G à T ≤ I <V > by rule sub-alg-impl.

End case distinction on the last rule used in D3.

Proof of Theorem 3.26. By Lemma B.4.5 we may safely assume that the two derivations given
are small. Then the two claims follow from Lemma B.4.10 and applications of rules ent-alg-main

and sub-alg-main.

B.4.4 Proof of Theorem 3.27

Theorem 3.27 states that the entailment and subtyping algorithms induced by the rules in Fig-
ure 3.25 and by the rules for quasi-algorithmic kernel subtyping in Figure 3.16 terminate. Fig-
ure B.3 and Figure B.4 define these algorithms in pseudo code.

Lemma B.4.11. The algorithms in Figure B.3 and Figure B.4 are equivalent to the algorithmic
entailment and subtyping rules defined in Figure 3.25 and the rules for quasi-algorithmic subtyping
defined in Figure 3.16.

� ∆ a P if, and only if, entails(∆,P) returns true.

� ∆; G ;β a P if, and only if, entailsAux(∆,G , β,P) returns true.

� ∆ à T ≤ U if, and only if, sub(∆, T, U) returns true.

� ∆; G à T ≤ U if, and only if, subAux(∆,G , T, U) returns true.

� ∆ q̀
′ T ≤ U if, and only if, sub’(∆, T, U) returns true.

� ∆;β; I à T ↑ U if, and only if, lift(∆, β, I, T , U) returns true.

Proof. Completeness (⇒) follows by straightforward rule induction. Soundness (⇐) follows by
induction on the depth of the recursion.

The termination proof requires that the goal cache G in an invocation of either entailsAux or
subAux has a finite upper bound (Lemmas B.4.19 and B.4.21). The set of entailment candidates
of a constraint P with respect to a type environment ∆, written cand∆(P), plays a crucial role in
the definition of that upper bound. Figure B.5 defines cand∆(P) formally.

241



B Formal Details of Chapter 3

Figure B.3 Constraint entailment algorithm.

entails(∆,P) { return entailsAux(∆, ∅, false,P); }
entailsAux(∆,G , β,P) {
switch (P) {

case T extendsU: return subAux(∆,G , T , U);
5 case T implements I <V >:

// rule ent-alg-env

for (R ∈ ∆, G implements I <V > ∈ sup(R)) {
if (lift(∆, β, I, T ,G)) return true;

}
10 switch (T) {

// rule ent-alg-iface1

case T:
if (lift(∆, β, I, T , I <V >) && 1 ∈ pol+(I) && non-static(I))
return true;

15 // rule ent-alg-iface2

case J<W>:
if (1 ∈ pol+(J) && J<W> Ei I <V > && non-static(J))
return true;

}
20 // rule ent-alg-impl

for implementation<X> I <W> [N ] where P
n
. . . {

if (unify≤(∆, X, {Ti ≤? Ni}) == ϕ && lift(∆, β, I, T , ϕN)

&& V ==ϕW && (ϕN) implements I <V > /∈ G ) {
G0 = G ∪ {ϕN implements I <V >};

25 if (∀i ∈ [n],entailsAux(∆,G0, false, ϕPi)) return true;
}

}
return false; // no rule applicable

}
30 }

lift(∆, β, I, T
n
, U

m
) {

return (n==m && ∀i ∈ [n],(sub’(∆, Ti, Ui) &&
(β || Ti==Ui || i ∈ pol−(I))));

35 }

242



B.4 Deciding Constraint Entailment and Subtyping

Figure B.4 Subtyping algorithm.

sub(∆, T , U) { return subAux(∆, ∅, T , U); }
subAux(∆,G , T , U) {
if (sub’(∆, T , U)) return true;
switch (U) {

5 case K: return entailsAux(∆,G , true, T implementsK);
}
return false;

}

10 sub’(∆, T , U) {
switch (T,U) {
case ( ,Object): return true;
case (X,X): return true;
case (X, ):

15 for X extendsV ∈ ∆ { if (sub’(∆, V , U)) return true; }
return false;

case (N1,N2): return N1 Ec N2;
case (K1,K2): return K1 Ei K2;

}
20 return false;

}

Figure B.5 Entailment candidates.

P ∈ cand∆(Q)

cand-closure
U ⊆ closure∆(T )

U implementsK ∈ cand∆(T implementsK)

cand-impl1
implementation<X> I <V > [N ] where P . . .

U ⊆ closure∆(T ) U ′ ⊆ closure∆(T ) Pi = W implementsL

U implements [U ′/X]L ∈ cand∆(T implementsK)

cand-impl2
implementation<X> I <V > [N ] where P . . .

U ∈ closure∆(T ) U ′ ⊆ closure∆(T ) Pi = W extendsW ′

U extends [U ′/X]W ′ ∈ cand∆(T implementsK)

cand-extends
P ∈ cand∆(T implementsK)

P ∈ cand∆(T extendsK)

243



B Formal Details of Chapter 3

Definition B.4.12. For a constraint P, we define left(P) as follows:

left(T implementsK) = T

left(T extendsU) = U

Lemma B.4.13. If P ∈ cand∆(Q) then left(P) ⊆ closure∆(left(Q)).

Proof. Straightforward case distinction on the last rule used in the derivation of P ∈ cand∆(Q).

Lemma B.4.14. If T3 ⊆ closure∆(T2) and T2 ⊆ closure∆(T1) then T3 ⊆ closure∆(T1).

Proof. It suffices to show that T ∈ closure∆(T2) implies T ∈ closure∆(T1) for all T . The proof is
a straightforward induction on the derivation of T ∈ closure∆(T2).

Lemma B.4.15. If P ∈ cand∆(Q) then cand∆(P) ⊆ cand∆(Q).

Proof. We show that P′ ∈ cand∆(P) implies P′ ∈ cand∆(Q) for all P′.
Case distinction on the last rule used in the derivation of P′ ∈ cand∆(P).

� Case cand-closure: We then have

P′ = U implementsK

P = T implementsK

U ⊆ closure∆(T )

By Lemma B.4.13 we have T ⊆ closure∆(left(Q)), so with Lemma B.4.14

U ⊆ closure∆(left(Q)) (B.4.16)

Case distinction on the last rule in the derivation of P ∈ cand∆(Q).

– Case cand-closure: Then Q = V implementsK. With (B.4.16) we have U ⊆
closure∆(V ), so P′ ∈ cand∆(Q) by rule cand-closure.

– Case cand-impl1: Then

implementation<X> I <V ′> [N ] where P . . .
T ⊆ closure∆(V ) T ′ ⊆ closure∆(V ) Pi = W implementsK ′

T implements [T ′/X]K ′︸ ︷︷ ︸
=K

∈ cand∆(V implementsL︸ ︷︷ ︸
=Q

)

With (B.4.16) we have U ⊆ closure∆(V ), so P′ ∈ cand∆(Q) by rule cand-impl1.

– Case cand-impl2: Impossible because P is not an extends-constraint.

– Case cand-extends: Then Q = V extendsL and

P ∈ closure∆(V implementsL)

Because this derivation cannot end with rule cand-extends, the claim follows with
the same argumentation as in one of the three preceding cases.

End case distinction on the last rule in the derivation of P ∈ cand∆(Q).

244



B.4 Deciding Constraint Entailment and Subtyping

� Case cand-impl1: We then have

implementation<X> I <V > [N ] where P . . .
U ⊆ closure∆(T ) U ′ ⊆ closure∆(T ) Pi = W implementsL

U implements [U ′/X]L︸ ︷︷ ︸
=P′

∈ cand∆(T implementsK︸ ︷︷ ︸
=P

)

By Lemma B.4.13 we have T ⊆ closure∆(left(Q)), so with Lemma B.4.14

U ⊆ closure∆(left(Q)) (B.4.17)

U ′ ⊆ closure∆(left(Q)) (B.4.18)

If now Q = W ′ implementsL′ for some W ′ and L′, then the claim follows with rule
cand-impl1. Otherwise, Q = W ′ extendsW ′′. Because P ∈ cand∆(Q), we must have that
W ′′ = L′ for some L′. With rule cand-impl1, we have P′ ∈ cand∆(W ′ implementsL′), so
the claim follows with rule cand-extends.

� Case cand-impl2: The claim follows analogously to the preceding case, replacing cand-impl1
with cand-impl2.

� Case cand-extends: Then P = T extendsK and

P′ ∈ cand∆(T implementsK)

Because this derivation cannot end with rule cand-extends, the claim follows with the
same argumentation as in one of the three preceding cases.

End case distinction on the last rule used in the derivation of P′ ∈ cand∆(P).

Lemma B.4.16. Assume implementation<X> I <V > [N ] where P . . . and U ⊆ closure∆(T ).
Then [U/X]Pi ∈ cand∆(T implementsK) for all i.

Proof. Case distinction on the form of Pi.

� Case Pi = T ′ implementsK ′ for some T ′ and K ′: By criterion wf-impl-3 we have
T ′ ⊆ X. Hence, [U/X]T ′ ⊆ U ⊆ closure∆(T implementsK). Thus

implementation<X> I <V > [N ] where P . . .

[U/X]T ′ ⊆ closure∆(T ) U ⊆ closure∆(T ) Pi = T ′ implementsK ′

[U/X]Pi ∈ cand∆(T implementsK)
cand-impl1

� Case Pi = T ′ extendsT ′′: By criterion wf-impl-3 we have T ′ ∈ X. The claim now follows
analogously to the preceding case, replacing rule cand-impl1 with cand-impl2.

End case distinction on the form of Pi.

Definition B.4.17. The call tree of entailsAux(∆,G , β,P) consists of a root node with label
entailsAux(∆,G , β,P) such that its subtrees are the call trees of all the direct recursive calls of
entailsAux and subAux. The call tree of subAux(∆,G , T, U) is defined analogously.

Definition B.4.18. Assume n is a node in the call tree of entailsAux or subAux. The notation
cache(n) denote the set of goals cached at node n:

cache(entailsAux(∆,G , β,P)) = G

cache(subAux(∆,G , T, U)) = G

245



B Formal Details of Chapter 3

The notation cand∆(n) denotes the entailment candidates at node n:

cand∆(entailsAux(∆′,G , β,P)) = cand∆(P)

cand∆(subAux(∆′,G , T, U)) = cand∆(T extendsU)

Lemma B.4.19. If n is a node in the call tree of entailsAux(∆,G , β,P) then cache(n) ⊆
G ∪ cand∆(P). Similarly, if n is a node in the call tree of subAux(∆,G , T, U)) then cache(n) ⊆
G ∪ cand∆(T extendsU).

Proof. We prove the following, stronger claim:

If n is a node in the call tree of entailsAux(∆,G , β,P) define M as cand∆(P). If
n is a node in the call tree of subAux(∆,G , T, U) define M as cand∆(T extendsU).
In both cases, it holds that cache(n) ⊆ G ∪M and cand∆(n) ⊆M .

The proof is by induction on the depth of n. If n is the root node, then the claim is immediate.
Otherwise, n is the child of some node n′. Assume that the claim already holds for n′; that is,

cache(n′) ⊆ G ∪M (B.4.19)

cand∆(n′) ⊆M (B.4.20)

Case distinction on the form of n′.

� Case n′ = entailsAux(∆′,G ′, β′,P′): It is obvious that the type environment ∆ remains
constant throughout the whole call tree; hence, we may safely assume that ∆′ = ∆.

Case distinction on the line number of the call site corresponding to n.

– Case line 4: Then cache(n) = cache(n′) and cand∆(n) = cand∆(n′), so the claim is
immediate.

– Case line 25: We have

P′ = T
m
implements I <V >

implementation<X> I <V ′> [N ] where P
n
. . .

lift(∆, β′, I, T , [U/X]N)

V = [U/X]V ′

([U/X]N) implements I <V > /∈ G ′

G0 = G ′ ∪ {[U/X]N implements I <V >}

and

n = entailsAux(∆,G0, false, [U/X]Pi)

for some i ∈ [n].

From lift(∆, β′, I, T , [U/X]N) we get with Lemma B.4.11 that ∆ q̀
′ Tj ≤ [U/X]Nj

for all j ∈ [m], hence

[U/X]Nj ∈ closure∆(T ) (B.4.21)

for all j ∈ [m] by rule closure-up. With (B.4.21) and rule cand-closure we get

([U/X]N) implements I <V > ∈ cand∆(T implements I <V >)

246



B.4 Deciding Constraint Entailment and Subtyping

By (B.4.20) we have cand∆(T implements I <V >) ⊆M , so we get

([U/X]N) implements I <V > ∈M

Hence

cache(n) = G ′ ∪ {([U/X]N) implements I <V >}

= cache(n′) ∪ {([U/X]N) implements I <V >}
(B.4.19)

⊆ G ∪M ∪ {([U/X]N) implements I <V >}
= G ∪M

We still need to show cand∆(n) ⊆ M . By criterion wf-impl-2, we have X ⊆
ftv(N), so for each Xk there exists some Nj such that Xk ∈ ftv(Nj). Thus, Uk
is a subterm of [U/X]Nj . With (B.4.21) and possibly repeated applications of rules
closure-decomp-class and closure-decomp-iface, we get Uk ∈ closure∆(T ). Thus

U ⊆ closure∆(T )

With Lemma B.4.16

[U/X]Pi ∈ cand∆(T implements I <V >)

Lemma B.4.15 now yields

cand∆([U/X]Pi) ⊆ cand∆(T implements I <V >)

From (B.4.20) we have cand∆(T implements I <V >) ⊆ M . Moreover, cand∆(n) =
cand∆([U/X]Pi), so cand∆([U/X]Pi) ⊆M .

End case distinction on the line number of the call site corresponding to n.

� Case n′ = subAux(∆′,G ′, T ′, U ′): Again, we may safely assume ∆ = ∆′. The call site
corresponding to n must be in line 5. We then have

G ′ = G

U ′ = K for some K

n = entailsAux(∆,G , true, T ′ implementsK)

We get

cache(n) = G = cache(n′)
(B.4.19)

⊆ G ∪M

and

cand∆(n) = cand∆(T ′ implementsK)
by rule cand-extends

=

cand∆(T ′ extendsK) = cand∆(n′)
(B.4.20)

⊆ M

End case distinction on the form of n′.

247



B Formal Details of Chapter 3

Definition B.4.20. The size of a type T , written size(T ) ∈ N+, or constraint P, written size(P) ∈
N+, is defined as follows:

size(X) = 1

size(C<T>) = 1 + size(T )

size(I <T>) = 1 + size(T )

size(T implementsK) = 1 + size(K) + size(T )

size(T extendsU) = 1 + size(T ) + size(U)

Thereby, the size of a sequence of types T is defined as size(T ) =
∑
i size(Ti).

Lemma B.4.21. Suppose closure∆(T ) is finite for every finite T . Then cand∆(P) is finite for
all P.

Proof. We show that for all P there exists a δ(P) ∈ N+ such that size(Q) ≤ δ(P) for all Q ∈
cand∆(P). The original claim then follows immediately because the set of types and constraints
of a certain size is finite.

Let ρ ∈ N+ be a bound on the size of the constraints in the set P where

P = {Pi | implementation<X> I <T> [N ] where P
n
. . . , i ∈ [n]}

Let ϑ(P) ∈ N+ be a bound on the size of the types in closure∆(left(P)). Note that ϑ(P) exists
because closure∆(left(P)) is finite by the assumption. Define

δ(P) = ρ · ϑ(P) · size(P)

Now suppose Q ∈ cand∆(P).
Case distinction on the last rule in the derivation of Q ∈ cand∆(P).

� Case cand-closure: Then P = T implementsK and Q = U implementsK with U ⊆
closure∆(T ). Hence, size(Uj) ≤ ϑ(P) for all j and the following inequality holds:

size(Q) = 1 + size(U) + size(K)

≤ ϑ(P) + size(T ) · ϑ(P) + size(K) · ϑ(K)

= ϑ(P) · size(P)

≤ ϑ(P) · size(P) · ρ = δ(P)

� Case cand-impl1: Then

implementation<X> I <V > [N ] where P . . .
U ⊆ closure∆(T ) U ′ ⊆ closure∆(T ) Pi = W implementsL

U implements [U ′/X]L︸ ︷︷ ︸
=Q

∈ cand∆(T implementsK︸ ︷︷ ︸
=P

)

We have size(Uj) ≤ ϑ(P) and size(U ′k) ≤ ϑ(P) for all j, k. Moreover, size(Pi) ≤ ρ. Then
the following inequality holds:

size(Q) = 1 + size(U) + size([U ′/X]L)

≤ ϑ(P) + size(W ) · ϑ(P) + size(L) · ϑ(P)

= ϑ(P) · size(Pi)

≤ ϑ(P) · ρ · size(P) = δ(P)

248



B.4 Deciding Constraint Entailment and Subtyping

� Case cand-impl2: Analogously to the preceding case.

� Case cand-extends: Then P = T extendsK and

Q ∈ closure∆(T implementsK)

Because this derivation cannot end with rule cand-extends, the claim follows with the
same argumentation as in one of the three preceding cases.

End case distinction on the last rule in the derivation of Q ∈ cand∆(P).

Proof of Theorem 3.27. We show for all ∆, P, T , and U that entails(∆,P) and sub(∆, T, U)
and sub’(∆, T, U) terminate. By Definition 3.7 and the criteria wf-tenv-1 and wf-tenv-2, we
know that ∆ is finite and contractive and that closure∆(T ) is finite for every finite T .

sub’ terminates. The weight function from Definition B.4.1 is extended to recursive calls of sub’
in the obvious way:

weight(sub’(∆, T, U)) = weight∆(T ) + weight∆(U)

It is straightforward to verify that for each recursive call of sub’, the weight of the recursive
call is strictly smaller than the weight of the original call. Moreover, the algorithms for
checking class (Ec) and interface (Ei) inheritance terminate because the class and interface
hierarchy is acyclic by criterion wf-prog-5. Thus, sub’ terminates.

entails terminates. To prove that entails(∆,P) terminates, we show for finite G that both
entailsAux(∆,G , β,P) and subAux(∆,G , T, U) terminate. The claim then follows because
entails(∆,P) invokes entailsAux only with G = ∅.
To obtain a contradiction, assume that an invocation of either entailsAux(∆,G , β,P) or
subAux(∆,G , T, U) diverges. It is easy to see that infinitely many calls of entailsAux or
subAux must cause divergence:

� There are only finitely many choices for R in line 8 because ∆ is finite.

� The algorithms for checking the relations R ∈ sup(R), i ∈ pol+(I), i ∈ pol−(I) and
K Ei K terminate because the interface graph is acyclic (criterion wf-prog-5).

� The function lift terminates because sub’ terminates as shown in the preceding
case.

� The function unify≤ terminates by Theorem 3.24.

Hence, there exists a call tree t of infinite size. We lead this to a contradiction by defining
a measure µ from call tree nodes into N × N that strictly decreases (with respect to the
usual lexicographic ordering on pairs) when moving from a node to any of its children.

Suppose the root node of t is entailsAux(∆,G , β,P) (or subAux(∆,G , T, U)) and define
M = cand∆(P) (or M = cand∆(T extendsU)). We have the assumption that closure∆(T )
is finite for every finite T , so M is finite by Lemma B.4.21. Because G is also finite, we
now may define

δ = |G |+ |M | ∈ N

(| · | denotes set cardinality.) We have by Lemma B.4.19 that cache(n) ⊆ G ∪M for all
nodes n in t. Hence, (δ − |cache(n)|, i) ∈ N× N for all i ∈ N and all nodes n in t. We now
define the measure µ on nodes in t as follows:

µ(entailsAux(∆′,G ′, β′, T implementsK)) = (δ − |G ′|, 0) ∈ N× N
µ(entailsAux(∆′,G ′, β′, T extendsK)) = (δ − |G ′|, 2) ∈ N× N

µ(subAux(∆′,G ′, T, U)) = (δ − |G ′|, 1) ∈ N× N

249



B Formal Details of Chapter 3

We now show that this measure strictly decreases when moving from a node to its children.
Assume n is a node in t with children n1, . . . , nn and suppose i ∈ [n].

Case distinction on the line number of the call site corresponding the ni.

� Case line 4: We have n = entailsAux(∆′,G ′, β′, T ′ extendsU ′), n = 1, and n1 =
subAux(∆′,G ′, T ′, U ′). Hence,

µ(n1) = (δ − |G ′|, 1) < (δ − |G ′|, 2) = µ(n)

� Case line 25: We have

n = entailsAux(∆′,G ′, β′, T implements I <V >)

G0 = G ′ ∪ {(ϕN) implements I <V >}
(ϕN) implements I <V > /∈ G ′

ni = entailsAux(∆′,G0, false, ϕPi)

Thus, |G0| = |G ′|+ 1. Hence,

µ(ni) = (δ − |G0|, j) = (δ − |G ′| − 1, j) < (δ − |G ′|, 0) = µ(n)

for some j ∈ {0, 1, 2}.
� Case line 5: We have n = subAux(∆′,G ′, T ′,K), n = 1, and

n1 = entailsAux(∆′,G ′, true, T ′ implementsK)

Thus

µ(n1) = (δ − |G ′|, 0) < (δ − |G ′|, 1) = µ(n)

End case distinction on the line number of the call site corresponding the ni.

sub terminates. In the preceding case, we showed that entailsAux(∆,G , β,P) terminates and
that subAux(∆,G , T, U) terminates (for finite G ). The claim follows immediately because
sub(∆, T, U) invokes subAux only with G = ∅.

B.5 Deciding Expression Typing

This section proves Theorem 3.28 (soundness of entailment for constraints with optional types),
Theorem 3.29 (completeness of entailment for constraints with optional types), Theorem 3.31
(soundness of algorithmic method typing), Theorem 3.32 (completeness of algorithmic method
typing), Theorem 3.35 (soundness of algorithmic expression typing), Theorem 3.36 (complete-
ness of algorithmic expression typing), and Theorem 3.37 (termination of algorithmic expression
typing).

B.5.1 Proof of Theorem 3.28

Theorem 3.28 states that entailment for constraints with optional types is sound with respect to
algorithmic entailment for ordinary constraints.

250



B.5 Deciding Expression Typing

Proof of Theorem 3.28. We first show that

∆; G ;β `?
a T

?
n
↑ Un _ V

n
implies ∆; G ;β à V

n ↑ Un (B.5.1)

From ∆; G ;β `?
a T

?
n
↑ Un _ V

n
we get

(∀i) T ?
i = nil or ∆ q̀

′ T ?
i ≤ Ui

β or
(
(∀i) if T ?

i 6= Ui and T ?
i 6= nil then i ∈ pol−(I)

)
(∀i) if T ?

i = nil then Vi = Ui else Vi = T ?
i

Hence, (∀i) ∆ q̀
′ Vi ≤ Ui and (β or (if Vi 6= Ui then i ∈ pol−(I))). We then have by rule

ent-alg-lift that ∆; G ;β à V
n ↑ Un.

We now prove that D :: ∆; G ;β ?
a T ? implements I <W ?> _ R implies ∆; G ;β a R by

induction on D. The claim then follows with rule ent-alg-main.
Case distinction on the last rule used in D.

� Case rule ent-nil-alg-env: Then

R ∈ ∆

G implements I <W> ∈ sup(R)

∆;β; I `?
a T

? ↑ G_ T

(∀i) W ?
i ∼Wi

with R = T implements I <W>. We then have by (B.5.1) that ∆;β; I à T ↑ G. The claim
now follows with rule ent-alg-env.

� Case rule ent-nil-alg-iface1: Then

∆;β; I à T ↑ I <W>

1 ∈ pol+(I)

non-static(I)

(∀i) W ?
i ∼Wi

with T ? = T and R = T implements I <W>. The claim follows from rule ent-alg-iface1.

� Case rule ent-nil-alg-iface2: Then

1 ∈ pol+(J)

non-static(J)

J<V > Ei I <W>

(∀i) W ?
i ∼Wi

with T ? = J<V > and R = J<V > implements I <W>. The claim follows by applying rule
ent-alg-iface2.

� Case rule ent-nil-alg-impl: Then

implementation<X> I <V > [N ] where P . . .

∆;β; I `?
a T

? ↑ [U/X]N _ T

(∀i) W ?
i ∼ [U/X]Vi

[U/X]N implements I <[U/X]V > /∈ G

∆; G ∪ {[U/X]N implements I <[U/X]V >}; false a [U/X]P

251



B Formal Details of Chapter 3

with R = T implements I <[U/X]V >. From ∆;β; I `?
a T ? ↑ [U/X]N _ T we get with

(B.5.1) that ∆;β; I à T ↑ [U/X]N . The claim now follows with rule ent-alg-impl.

End case distinction on the last rule used in D.

B.5.2 Proof of Theorem 3.29

Theorem 3.29 states that entailment for constraints with optional types is complete with respect
to algorithmic entailment for ordinary constraints.

Lemma B.5.1. If I is a single-headed interface, then 1 ∈ disp(I).

Proof. The proof is by induction on the depth of I (see Definition B.2.6).

Proof of Theorem 3.29. We first show:

If T ?
n
∼ T

n
and ∆; false; I à T

n ↑ Un then ∆; false; I à T ?
n
↑ Un _ V

n

such that ∆ q̀
′ Ti ≤ Vi for all i and

Vi = Ti for those i with T ?
i 6= nil or i /∈ pol−(I). (B.5.2)

Assume ∆; G ; false à T
n ↑ Un and T ?

n
∼ T

n
. By inverting rule ent-alg-lift, we get ∆ q̀

′

Ti ≤ Ui for all i and Ti = Ui for i /∈ pol−(I). By rule ent-nil-alg-lift, we have ∆; G ; false à

T ?
n
↑ Un _ V

n
for some V . Now let i ∈ [n].

� If T ?
i = nil then Vi = Ui. Hence, ∆ à Ti ≤ Vi. If additionally i /∈ pol−(I), then

Vi = Ui = Ti.

� If T ?
i 6= nil then Vi = T ?

i . With T ?
i ∼ Ti then Vi = Ti.

This finishes the proof of (B.5.2).

We now show that D :: ∆; G ; false a T implements I <V > and T ? V ? ∼ T V and T ?
i 6= nil for

i ∈ disp(i) imply

∆; G ; false ?
a T

? implements I <V ?>_ U implements I <V >

such that ∆ q̀
′ Ti ≤ Ui for all i and Ui = Ti for those i with T ?

i 6= nil or i /∈ pol−(I). The original
claim then follows with rule ent-nil-alg-main.
Case distinction on the last rule used in D.

� Case rule ent-alg-env: Then

R ∈ ∆

G implements I <V > ∈ sup(R)

∆; false; I à T ↑ G

By (B.5.2) we have ∆; G ;β `?
a T ? ↑ G _ U such that U has the desired properties. The

claim now follows by rule ent-nil-alg-env.

� Case rule ent-alg-iface1: Then

∆; false; I à T ↑ I <V >

1 ∈ pol+(I)

non-static(I)

with T = T . By Lemma B.5.1, 1 ∈ disp(I). Hence, T ?
1 = T1 = T . We get with (B.5.2) that

∆; G ;β `?
a T

? ↑ I <V >_ T . The claim now follows by rule ent-nil-alg-iface1.

252



B.5 Deciding Expression Typing

� Case rule ent-alg-iface2: Then

1 ∈ pol+(J)

non-static(J)

J<W> Ei I <V >

with T = J<W>. By Lemma B.5.1, 1 ∈ disp(I). Hence, T ?
1 = T1 = J<W>. The claim now

follows by rule ent-nil-alg-iface2.

� Case rule ent-alg-impl: Then

implementation<X> I <V ′> [N ] where P . . .

∆;β; I à T ↑ [W/X]N

V = [W/X]V ′

[W/X]N implements I <V > /∈ G

∆; G ∪ {[W/X]N implements I <V >}; false a [W/X]P

By (B.5.2), we have ∆;β; I `?
a T

? ↑ [W/X]N _ U such that U has the desired properties.
The claim now follows by rule ent-nil-alg-impl.

End case distinction on the last rule used in D.

B.5.3 Proof of Theorem 3.31

Theorem 3.31 states that algorithmic method typing in Figure 3.29 is sound with respect to
its declarative specification in Figure 3.8. All proofs in this section apply the equivalences and
implications of the following corollary implicitly.

Corollary B.5.2.

∆ ` T ≤ U iff ∆ q̀ T ≤ U (Theorem 3.12, Theorem 3.11)
∆  P iff ∆ q P (Theorem 3.12, Theorem 3.11)

∆ q̀ T ≤ U iff ∆ à T ≤ U (Theorem 3.26, Theorem 3.25)
∆ q P iff ∆ a P (Theorem 3.26, Theorem 3.25)

∆ q̀ T ≤ G implies ∆ q̀
′ T ≤ G (Lemma B.1.14)

∆ q̀
′ T ≤ U implies ∆ q̀ T ≤ U (Rule sub-q-alg-kernel)
∆ q

′ P implies ∆ q P (Lemma B.1.17)
N Ec M iff ∆ q̀

′ N ≤M (rule sub-q-alg-class and Lemma B.1.10)
K Ei L iff ∆ q̀

′ K ≤ L (rule sub-q-alg-iface and Lemma B.1.10)

Lemma B.5.3. If bound∆(T ) = N then ∆ ` T ≤ N .

Proof. Obvious by inspecting rule bound.

Lemma B.5.4. If ∆ ?
a T

? implements I <U?> _ T implements I <U> and T ?
i 6= nil then T ?

i =
Ti.

Proof. Follows by inspecting the rules in Figure 3.27.

Proof of Theorem 3.31. Case distinction on the form of m.

253



B Formal Details of Chapter 3

� Case m = mc: Then

bound∆(T ) = N

D :: a-mtypec(m,N) = <X>U x→ U where P

A straightforward induction on the derivation D shows that there exists N ′ such that

mtype(m,N ′) = <X>U x→ U where P

N Ec N
′

With bound∆(T ) = N and Lemma B.5.3 we have ∆ ` T ≤ N . Thus, by transitivity of
subtyping,

∆ ` T ≤ N ′

We finish this case by setting T ′ = N ′.

� Case m = mi: Then

interface I <Z ′> [Z
l
whereR ] where P { . . . rcsig }

rcsigj = receiver {m : msig}
msigk = <X>U ′ x→ U ′ where Q

(∀i ∈ [l], i 6= j) sresolve∆;Zi
(U ′, T ) = Vi

sresolve∆;Zj (Zj U ′, T T ) = Vj

p? = (if U ′ = Zi for some i ∈ [l] then i else nil)

W implements I <W ′> = pick-constrp
?

∆ M

M = {V implements I <V ′′> | (∀i ∈ [l]) if Vi = ∅ then V ?
i = nil

else define V ?
i such that

∆ q̀
′ V ′i ≤ V ?

i for V ′i ∈ Vi,

∆ ?
a V

? implements I <nil>_ V implements I <V ′′>}
and

<X>U x→ U where P = [W/Z,W ′/Z ′](<X>U ′ x→ U ′ where Q)

Obviously, Vj 6= ∅. With Lemma B.5.16 and the definition of sresolve we get

∆ q̀
′ T ≤ V ′j for all V ′j ∈ Vj

With Lemma B.5.4, we know that for all V implements I <V ′′> ∈ M there exists some
V ′j ∈ Vj such that

∆ q̀
′ V ′j ≤ Vj

With rule sub-trans we thus have

∆ ` T ≤Wj

By Theorem 3.28 we get

∆ W implements I <W ′>

By rule mtype-iface we now have

mtype∆(m,Wj) = [W/Z,W ′/Z ′]msigk = <X>U x→ U where P

Define T ′ = Wj to finish this case.

End case distinction on the form of m.

254



B.5 Deciding Expression Typing

B.5.4 Proof of Theorem 3.32

Theorem 3.32 states that algorithmic method typing in Figure 3.29 is complete with respect to
its declarative specification in Figure 3.8. All proofs in this section apply the equivalences and
implications of Corollary B.5.2 implicitly.

Lemma B.5.5 (Transitivity of ∈+ and ∈∗).

(i) If X extendsY ∈+ ∆ and Y extendsT ∈+ ∆ then X extendsT ∈+ ∆.

(ii) If X extendsY ∈∗ ∆ and Y extendsT ∈∗ ∆ then X extendsT ∈∗ ∆.

Proof. Claim (i) is proved by induction on the derivation ofX extendsY ∈+ ∆. Claim (ii) follows
by claim (i) and a case distinction on the last rule used in the derivation ofX extendsY ∈∗ ∆.

Lemma B.5.6. If X extendsT ∈+ ∆ or X extendsT ∈∗ ∆ then ∆ q̀
′ X ≤ T .

Proof. If X extendsT ∈+ ∆ then the claim follows by a straightforward induction on the deriva-
tion given. The other case is now trivial. Note that we use Lemma B.1.6.

Lemma B.5.7. If ∆ ` T ≤ G1 and ∆ ` T ≤ G2 then ∆ ` G1 ≤ G2 or ∆ ` G2 ≤ G1.

Proof. We first note that ∆ ` T ≤ Gi implies ∆ q̀
′ T ≤ Gi by Corollary B.5.2. If G1 = Object

or G2 = Object , then the claim is obvious. Thus, assume G1 6= Object and G2 6= Object .
Case distinction on the form of T .

� Case T = X for some X: If G1 = X or G2 = X then the claim is obvious. Now assume
G1 6= X and G2 6= X. By Lemma B.1.10 we have that

X extendsGi ∈+ ∆ (i = 1, 2) (B.5.3)

Define level : TvarName → N as follows. Let G = (V ,E ) be a directed graph with

V = {X ∈ TvarName | X extendsT ∈ ∆ or Y extendsX ∈ ∆}
E = {(X,Y ) | Y extendsX ∈ ∆}

∆ is contractive by criterion wf-tenv-1, so G is acyclic. Hence, there exists a topological
ordering X0, X1, . . . , Xn on V such that (Xi, Xj) ∈ E implies i < j. Then

level(X) =

{
i if X ∈ V and X = Xi

0 if X /∈ V

We have that

X extendsY ∈ ∆ implies level(X) > level(Y )

We now show that X extendsGi ∈+ ∆ for i = 1, 2 implies ∆ q̀
′ G1 ≤ G2 or ∆ q̀

′ G2 ≤
G1 by induction on level(X). Together with (B.5.3), this finishes the case “T = X”.

– level(X) = 0. Assume X extendsY ∈ ∆. Then 0 = level(X) > level(Y ) which is
impossible because level(Y ) ∈ N.

Hence, Gi = Ni for some Ni and X extendsGi ∈ ∆ (for i = 1, 2). The claim now
follows with criterion wf-tenv-3.

– level(X) = n > 0 and the claim holds for n′ < n. We proceed by case distinction on
the pair of last rules in the derivations of X extendsGi ∈+ ∆

Case distinction on the pair of last rules.

255



B Formal Details of Chapter 3

* Case in-trans-base / in-trans-base: The claim follows with well-formedness
criterion wf-tenv-3.

* Case in-trans-step / in-trans-base: Then

X extendsY ∈ ∆

Y extendsG1 ∈+ ∆ (B.5.4)

X extendsG2 ∈ ∆

By criterion wf-tenv-3 either ∆ ` Y ≤ G2 or ∆ ` G2 ≤ Y . By Corollary B.5.2
either ∆ q̀

′ Y ≤ G2 or ∆ q̀
′ G2 ≤ Y .

· Suppose ∆ q̀
′ Y ≤ G2. If Y = G2 then ∆ ` G2 ≤ G1 by (B.5.4) and

Lemma B.5.6. If Y 6= G2 then Y extendsG2 ∈+ ∆ by Lemma B.1.10.
Because level(Y ) < level(X) we can use the I.H. on (B.5.4) and get the
desired result.

· Suppose ∆ q̀
′ G2 ≤ Y . By Lemma B.1.10, G2 = Z for some Z with either

Y = Z or Z extendsY ∈+ ∆. If Y = Z = G2 then ∆ ` G2 ≤ G1 by
(B.5.4) and Lemma B.5.6. Otherwise, Z extendsG1 ∈+ ∆ by (B.5.4) and
Lemma B.5.5, so ∆ ` G2 ≤ G1 by Lemma B.5.6.

* Case in-trans-base / in-trans-step: Analogously to the preceding case.

* Case in-trans-step / in-trans-step: Then

X extendsY1 ∈ ∆

Y1 extendsG1 ∈+ ∆ (B.5.5)

X extendsY2 ∈ ∆

Y2 extendsG2 ∈+ ∆ (B.5.6)

By criterion wf-tenv-3 either ∆ ` Y1 ≤ Y2 or ∆ ` Y2 ≤ Y1. We now consider the
case ∆ ` Y1 ≤ Y2, the proof for the other case is very similar. From ∆ ` Y1 ≤ Y2

we get ∆ q̀
′ Y1 ≤ Y2 by Corollary B.5.2. With Lemma B.1.10 either Y1 = Y2 or

Y1 extendsY2 ∈+ ∆. In the following, note that level(Yi) < level(X) for i = 1, 2.

· If Y1 = Y2 then the claim follows by applying the I.H. to (B.5.5) and (B.5.6).

· If Y1 extendsY2 ∈+ ∆, then we get by (B.5.5) and the I.H. that either ∆ `
Y2 ≤ G1 or ∆ ` G1 ≤ Y2. In the latter case, we have with Y2 extendsG2 ∈+

∆, Lemma B.5.6, and transitivity that ∆ ` G1 ≤ G2. If ∆ ` Y2 ≤ G1

then ∆ q̀
′ Y2 ≤ G1 by Corollary B.5.2. With Lemma B.1.10 either Y2 =

G1 or Y2 extendsG1 ∈+ ∆. In the former case, we get with (B.5.6) and
Lemma B.5.6 that ∆ ` G1 ≤ G2. In the latter case, the claim follows by
applying the I.H. to Y2 extendsG1 ∈+ ∆ and (B.5.6).

End case distinction on the pair of last rules.

� Case T = N for some N or T = K for some K: Because ∆ q̀
′ T ≤ Gi and Gi 6= Object

we have with Lemma B.1.10 that T = N and Gi = Ni (i = 1, 2). Hence, N Ec N1 and
N Ec N2. The claim now follows by Lemma B.2.12.

End case distinction on the form of T .

Lemma B.5.8 (Existence of u). If ∆ ` T ≤ Gi for i = 1, 2 then there exists H with ∆ ` G1uG2 =
H.

256



B.5 Deciding Expression Typing

Proof. With Lemma B.5.7 we have either ∆ ` G1 ≤ G2 or ∆ ` G2 ≤ G1. With rule glb-left or
glb-right, respectively, we then have ∆ ` G1 uG2 = G1 or ∆ ` G1 uG2 = G2.

Lemma B.5.9. If ∆ ` N1 uN2 = H then ∆′ ` N1 uN2 = H for any ∆′.

Proof. From ∆ ` N1 uN2 = H we have w.l.o.g. N1 Ec N2. Hence, ∆′ ` N1 ≤ N2, so the claim
holds.

Lemma B.5.10. If ∆  T implements I <U> and ∆  V implements I <W> such that for all
i ∈ disp(I) there exists T ′i with ∆ q̀

′ T ′i ≤ Ti and ∆ q̀
′ T ′i ≤ Vi, then U = W and Tj = Vj for

all j /∈ disp(I) ∪ pol−(I).

Proof. Define P = ∆  T implements I <U> and Q = ∆  V implements I <W>. We first prove
the following auxiliary lemma:

If ∆ q
′ P and ∆ q

′ Q and for all i ∈ disp(I) there exists T ′i with

∆ q̀
′ T ′i ≤ Ti and ∆ q̀

′ T ′i ≤ Vi, then U = W and Tj = Vj
for all j /∈ disp(I) ∪ pol−(I). (B.5.7)

The proof is by induction in the combined height of the derivations of ∆ q
′ P and ∆ q

′ Q.
We proceed by case analysis on the last rules of these derivations. The following table lists all
possible cases; cases marked with E can never occur because they put conflicting requirements on
the form of P and Q. The remaining cases are dealt with shortly.

∆ q
′ P

∆ q
′ Q

ent-q-alg-env ent-q-alg-impl ent-q-alg-iface

ent-q-alg-env (1) (2) E

ent-q-alg-impl (2) (3) E

ent-q-alg-iface E E (4)

For (1), (2), and (3) we have T = G and V = G′ for some G and G′. Hence, by Lemma B.5.8

for all i ∈ disp(I) exists Hi with ∆ ` Gi uG′i = Hi (B.5.8)

1. Then P ∈ sup(∆) and Q ∈ sup(∆). The claim now follows with wf-tenv-6.

2. Then, w.l.o.g., P ∈ sup(∆) and Q = [U ′/X](N implements I <W ′>) for some

implementation<X> I <W ′> [N ] where P . . .

As in the preceding case, the claim follows with wf-tenv-6.

3. Then

implementation<X> I <U ′> [N ] where P . . .

implementation<Y > I <W ′> [M ] where Q . . .

such that
P = ϕ(N implements I <U ′>)

with dom(ϕ) = X and
Q = ψ(M implements I <W ′>

with dom(ψ) = Y . We have by (B.5.8) and Lemma B.5.9 that

for all i ∈ disp(I) exists Hi with ∅ ` ϕNi u ψMi = Hi

The claim now follows with criterion wf-prog-2.

257



B Formal Details of Chapter 3

4. Then T = J<U ′>, 1 ∈ pol+(J), J<U ′> Ei I <U>, and V = J ′<W ′>, 1 ∈ pol+(J ′),
J ′<W ′> Ei I <W>. Because I is a single-headed interface, 1 ∈ disp(I) by Lemma B.5.1.
Hence,

∆ q̀
′ T ′1 ≤ J<U ′>

∆ q̀
′ T ′1 ≤ J ′<W ′>

By Lemma B.1.10 one of the following holds:

� T ′1 = X and X extendsK ∈+ ∆ with K Ei J<U ′> and X extendsK ′ ∈+ ∆ with
K ′ Ei J ′<W ′>. With Lemma B.5.6 and Lemma B.1.7 then ∆ q̀

′ X ≤ I <U> and
∆ q̀

′ X ≤ I <W>. Criterion wf-tenv-4 now yields U = W as required.

� T ′1 = L with L Ei J<U ′> and L Ei J ′<W ′>. With Lemma B.1.4 then L Ei I <U> and
L Ei I <W>. Hence, U = W by criterion wf-prog-6.

This finishes the proof of (B.5.7).
From ∆  P and ∆  Q we have ∆ q P and ∆ q Q. By Lemma B.1.25 there exists T ′′ and

V ′ such that for all i

∆ q̀
′ Ti ≤ T ′′i

Ti = T ′′i if i /∈ pol−(I)

∆ q
′ T ′′ implements I <U>

∆ q̀
′ Vi ≤ V ′i

Vi = V ′i if i /∈ pol−(I)

∆ q
′ V ′ implements I <W>

With Lemma B.1.7 then ∆ q̀
′ T ′i ≤ T ′′i and ∆ q̀

′ T ′i ≤ V ′i for all i ∈ disp(I). With (B.5.7) now
U = W and T ′′i = V ′i if i /∈ disp(I)∪ pol−(I). Assume i /∈ disp(I)∪ pol−(I). Then i /∈ pol−(I), so
Ti = T ′′i and Vi = V ′i . Hence, Ti = Vi for i /∈ disp(I) ∪ pol−(I).

Lemma B.5.11 (Antisymmetry of kernel subtyping). If ∆ q̀
′ T ≤ U and ∆ q̀

′ U ≤ T then
T = U .

Proof. We proceed by case distinction on the last rules of the two derivations. The only combi-
nations possible are:

sub-q-alg-obj / sub-q-alg-obj: Then T = Object = U .

sub-q-alg-obj / sub-q-alg-class or sub-q-alg-class / sub-q-alg-obj: Impossible
because programs cannot define Object .

sub-q-alg-var-refl / sub-q-alg-var-refl: Then T = X = U for some X.

sub-q-alg-var / sub-q-alg-var: Then T = X, X extendsT ′ ∈ ∆, and U = Y , Y extendsU ′ ∈
∆, and ∆ q̀

′ T ′ ≤ Y , ∆ q̀
′ U ′ ≤ X. By Lemma B.1.10 then T ′ = Y ′, Y ′ extendsY ∈∗ ∆,

and U ′ = X ′, X ′ extendsX ∈∗ ∆. Hence, we have X extendsY ′ ∈ ∆, Y ′ extendsY ∈∗
∆, Y extendsX ′ ∈ ∆, and X ′ extendsX ∈∗ ∆. This is a contradiction because ∆ is
contractive by criterion wf-tenv-1.

sub-q-alg-class / sub-q-alg-class: Then T = N1, U = N2 with N1 Ec N2 and N2 Ec N1.
Because the class graph is acyclic by criterion wf-prog-5, we have N1 = N2.

sub-q-alg-iface / sub-q-alg-iface: Then T = K1, U = K2 with K1 Ei K2 and K2 Ei K1.
Because the interface graph is acyclic by criterion wf-prog-5, we have K1 = K2.

258



B.5 Deciding Expression Typing

Lemma B.5.12. If ∆ q̀
′ Object ≤ T then T = Object.

Proof. With rule sub-q-alg-obj, we have ∆ q̀
′ T ≤ Object . The claim now follows with

Lemma B.5.11.

Lemma B.5.13. The set {U | ∆ q̀
′ T ≤ U} is finite for any T and ∆.

Proof. We prove that there exists a bound on the size of all types U ∈ {U | ∆ q̀
′ T ≤ U}. Then,

because the set of types of a certain size is finite, {U | ∆ q̀
′ T ≤ U} must be finite.

Let δ ∈ N be a bound on the size of ∆ and the program’s superclasses and superinterfaces.
That is,

� if P ∈ ∆ then size(P ) ≤ δ,

� if class C<X> extends N where P . . . then size(N) ≤ δ,

� if interface I <X> [Y whereR] . . . then size(R) ≤ δ.

Differing from Definition B.4.1, the proof of this lemma defines the weight of a type as follows:

weight′(X) = max{weight′(T ) | X extendsT ∈ ∆}
weight′(N) = size(N)

weight′(K) = size(K)

Here, by convention max∅ = 1. The definition of weight′ is well-formed (i.e. terminating) because
∆ is contractive by criterion wf-tenv-1. Moreover, weight′(T ) ∈ N+ and weight′(T ) ≥ size(T )
for all types T .

Define the level of a type as follows:

level′(Object) = 1

level′(C<T>) = n+ 1 if class C<X> extends N . . . and level′([T/X]N) = n

level′(I <T>) = 1 if interface I <X> [Y ] . . .

level′(I <T>) = n+ 1 if interface I <X> [Y whereR] . . . ,
Ri = Vi implementsKi, and

n = maxi(level′([T/X]Ki))
level′(X) = max{level′(T ) | X extendsT ∈ ∆}

The definition of level′ is well-formed (i.e., terminating) because the class and interface graph is
acyclic by criterion wf-prog-5. Moreover, level′(T ) ∈ N+ for all types T . We now show that

∆ q̀
′ T ≤ U implies weight′(U) ≤ δlevel

′(T ) · weight′(T ) (B.5.9)

The proof of (B.5.9) is by induction on the derivation of ∆ q̀
′ T ≤ U .

Case distinction on the last rule used in the derivation of ∆ q̀
′ T ≤ U .

� Case sub-q-alg-obj: Obvious.

� Case sub-q-alg-var-refl: Obvious.

� Case sub-q-alg-var: Then T = X and

X extendsT ′ ∈ ∆ ∆ q̀
′ T ′ ≤ U

∆ q̀
′ X ≤ U

By the I.H. weight′(U) ≤ δlevel′(T ′) · weight′(T ′) ≤ δlevel′(X) · weight′(X).

259



B Formal Details of Chapter 3

� Case sub-q-alg-class: Then T = N , U = N ′, and N Ec N
′. We now show that

N Ec N
′ implies size(N ′) ≤ δlevel

′(N) · size(N) (B.5.10)

We then have weight′(N ′) = size(N ′) ≤ δlevel′(N) ·size(N) = δlevel
′(N) ·weight′(N) as required.

The proof of (B.5.10) is by induction on the derivation of N Ec N
′.

Case distinction on the last rule used in the derivation of N Ec N
′.

– Case inh-class-refl: Obvious.

– Case inh-class-super: Then N = C<T> and

class C<X> extends M . . . [T/X]M Ec N
′

C<T> Ec N
′

We have

size([T/X]M) ≤ size(M) + maxi(size(Ti)) · (size(M)− 1)

≤ size(M) + (size(N)− 1) · (size(M)− 1)

= size(N) · size(M)− size(N) + 1

≤ δ · size(N)

level′(N) = level′([T/X]M) + 1

Hence,

size(N ′)
I.H.
≤ δlevel

′([T/X]M) · size([T/X]M)

≤ δlevel
′([T/X]M) · δ · size(N) = δlevel

′(N) · size(N)

End case distinction on the last rule used in the derivation of N Ec N
′.

� Case sub-q-alg-iface: Hence, T = K, U = K ′, and K Ei K
′. Similar to the preceding

case, we show that K Ei K
′ implies size(K ′) ≤ δlevel

′(K) · size(K) by induction on the
derivation of K Ei K

′. The claim also follows analogously to the preceding case.

End case distinction on the last rule used in the derivation of ∆ q̀
′ T ≤ U .

Lemma B.5.14. Let T be a non-empty set of types. Suppose ∆ q̀
′ T ≤ V for all T ∈ T . Then

there exists a V ′ ∈ mub∆(T ) such that ∆ q̀
′ V ′ ≤ V .

Proof. We argue by contradiction. To do so, we construct an infinite chain U0, U1, . . . such that
Ui 6= Uj for all i 6= j and ∆ q̀

′ T ≤ Ui for all T ∈ T and all i. Hence, because T 6= ∅, there
exists some T ∈ T such that the set {U | ∆ q̀

′ T ≤ U} is infinite. This is then a contradiction
to Lemma B.5.13.

Here is how we construct the infinite chain U0, U1, U2, . . . :

� Assume V = U0 /∈ mub∆(T ). (Otherwise, choose V ′ = U0 and we are done.) Hence, there
exists U1 6= U0 with ∆ q̀

′ T ≤ U1 for all T ∈ T and ∆ q̀
′ U1 ≤ U0.

� Assume U1 /∈ mub∆(T ). (Otherwise, choose V ′ = U1 and we are done.) Hence, there
exists U2 6= U1 with ∆ q̀

′ T ≤ U2 for all T ∈ T and ∆ q̀
′ U2 ≤ U1.

� . . .

� Assume Ui /∈ mub∆(T ). (Otherwise, choose V ′ = Ui and we are done.) Hence, there exists
Ui+1 6= Ui with ∆ q̀

′ T ≤ Ui+1 for all T ∈ T and ∆ q̀
′ Ui+1 ≤ Ui.

260



B.5 Deciding Expression Typing

� . . .

From this construction we have:

∆ q̀
′ T ≤ Ui for all i ∈ N, T ∈ T

Ui 6= Ui+1 for all i ∈ N
∆ q̀

′ Ui+1 ≤ Ui for all i ∈ N

We still have to verify that Ui 6= Uj if i 6= j. Suppose i < j with Ui = Uj . Because subtyping is
transitive we have ∆ q̀

′ Uj ≤ Ui+1. Hence, ∆ q̀
′ Ui ≤ Ui+1. But we also have ∆ q̀

′ Ui+1 ≤ Ui.
With Lemma B.5.11 now Ui = Ui+1 which is a contradiction.

If we choose V = Object in Lemma B.5.14, we get the following corollary:

Corollary B.5.15. For any set of types T 6= ∅, mub∆(T ) 6= ∅.
Lemma B.5.16. If T ∈ mub∆(U ) then ∆ q̀

′ U ≤ T for all U ∈ U .

Proof. Obvious.

Lemma B.5.17. Let T be a non-empty set of types. If G1 ∈ mub∆(T ) and G2 ∈ mub∆(T ) then
G1 = G2.

Proof. Because T 6= ∅, there exists T ∈ T such that ∆ q̀
′ T ≤ Gi for i = 1, 2. By Lemma B.5.7

either ∆ q̀
′ G1 ≤ G2 or ∆ q̀

′ G2 ≤ G1. W.l.o.g. assume ∆ q̀
′ G1 ≤ G2. But because

G2 ∈ mub∆(T ) we must have that G1 = G2.

Lemma B.5.18. If ∆ q̀
′ T ≤ N then bound∆(T ) = M with M Ec N .

Proof. Obvious.

Lemma B.5.19.

(i) If N Ec N
′ then ftv(N ′) ⊆ ftv(N).

(ii) If K Ei K
′ then ftv(K ′) ⊆ ftv(K).

(iii) If ∆ q̀
′ T ≤ U then ftv(U) ⊆ ftv(∆, T ).

Proof. We prove all three parts by straightforward inductions on the given derivations.

Lemma B.5.20 (Strengthening). Let ∆′ = ∆, X implementsK and ∆′′ = ∆, X.

(i) If ∆′ ` T ok and X /∈ ftv(∆,K, T ) then ∆ ` T ok.

(ii) If ∆′ ` P ok and X /∈ ftv(∆,K,P) then ∆ ` P ok.

(iii) If ∆′′ ` T ok and X /∈ ftv(∆, T ) then ∆ ` T ok.

(iv) If ∆′′ ` P ok and X /∈ ftv(∆,P) then ∆ ` P ok.

Proof. We first prove:

(a) If D1 :: ∆′ q̀
′ V ≤ U then ∆ q̀

′ V ≤ U .

(b) If D2 :: ∆′ q
′ P and X /∈ ftv(∆,K,P) then ∆ q

′ P.

(c) If D3 :: ∆′ q̀ V ≤ U and X /∈ ftv(∆, V, U) then ∆ q̀ V ≤ U .

(d) If D4 :: ∆′ q P and X /∈ ftv(∆,K,P) then ∆ q P.

261



B Formal Details of Chapter 3

The proof of (a) is straightforward because kernel subtyping does not use implementation con-
straints. The proof of (b), (c), and (d) is by induction on the combined height of D2, D3, and
D4.

(b) Case distinction on the last rule of the derivation of ∆′ q
′ P.

– Case rule ent-q-alg-env: Then R ∈ ∆′ and P ∈ sup(R). If R = X implementsK
then by Lemma B.1.22 P = X implementsK ′. But this is a contradiction to the
assumption X /∈ ftv(P). Hence, R 6= X implementsK, so R ∈ ∆ and the claim
follows with ent-q-alg-env.

– Case rule ent-q-alg-impl: Then

implementation<Y > I <T> [N ] where P . . . ∆′ q [U/Y ]P

∆′ q
′ [U/Y ](N implements I <T>)︸ ︷︷ ︸

=P

With criterion wf-impl-2 we have X ⊆ ftv(N). With X /∈ ftv(P) we then have X /∈
ftv(U). Hence, X /∈ ftv([U/X]P ). Applying part (d) of the I.H. yields ∆ q [U/X]P ,
so the claim follows with ent-q-alg-impl.

– Case rule ent-q-alg-iface: Obvious.

End case distinction on the last rule of the derivation of ∆′ q
′ P.

(c) If the last rule of D3 is sub-q-alg-kernel, then the claim follows by (a). Otherwise, we
have

∆′ q̀
′ V ≤W

∆′ q
′ W implementsL

with U = L. By (a) then ∆ q̀
′ V ≤W . With Lemma B.5.19 we have ftv(W ) ⊆ ftv(V,∆).

Hence, X /∈ ftv(W ). With part (b) of the I.H. we then have ∆ q
′ W implementsL. The

claim now follows with rule sub-q-alg-impl.

(d) Follows trivially from (a) and parts (b), (c) of the I.H.

Constraint entailment does not use the type variable component of ∆′′ at all, so the following
claim is trivial to prove:

If ∆′′ q P then ∆ q P (B.5.11)

Using (d) and (B.5.11), we easily show the original claim by an induction on the given deriva-
tions.

Lemma B.5.21 (Interface inheritance propagates well-formedness). If K Ei L and ∆ ` K ok
then ∆ ` L ok

Proof. We proceed by induction on the derivation of K Ei L
Case distinction on the last rule of the derivation of K Ei L.

� Case rule inh-iface-refl: Obvious.

� Case rule inh-iface-super: Then

interface I <X> [Y whereR] where P . . .

Ri = Y implementsK ′ [V/X]K ′ Ei L

∆ ` I <V > ≤ L

262



B.5 Deciding Expression Typing

with K = I <V >. We now prove that ∆ ` [V/X]K ′ ok. The original claim then follows by
the I.H.

Because ∆ ` K ok, we have

∆, Y implements I <V >, Y  [V/X]R,P

∆ ` V ok

with

Y /∈ ftv(V ,∆) (B.5.12)

Lemma B.2.23 gives us ∆, Y implements I <V >, Y ` V ok. The underlying program is
well-typed, so R,P ,X, Y ` Ri ok. Hence, with Lemma B.2.24,

∆, Y implements I <V >, Y ` [V/X]Ri ok

Then ∆, Y implements I <V >, Y ` [V/X]K ′ ok. By criterion wf-iface-2, Y /∈ ftv(K ′).
With (B.5.12) and two applications of Lemma B.5.20, we get ∆ ` [V/X]K ′ ok as required.

End case distinction on the last rule of the derivation of K Ei L.

Lemma B.5.22 (Kernel subtyping propagates well-formedness). If ` ∆ ok and ∆ ` T ok and
∆ q̀

′ T ≤ U then ∆ ` U ok.

Proof. Straightforward induction on the derivation of ∆ q̀
′ T ≤ U , making use of Lemma B.2.25

and Lemma B.5.21.

Lemma B.5.23. If ` ∆ ok and ∆ ` T ok and bound∆(T ) = N , then ∆ ` N ok.

Proof. Follows by Lemma B.5.22.

Lemma B.5.24. If ∆ q̀
′ X ≤ I <T> then 1 ∈ pol−(I).

Proof. We proceed by induction on the derivation of ∆ q̀
′ X ≤ I <T>. The derivation must end

with an application of rule sub-q-alg-var. Hence, X extendsT ∈ ∆ and ∆ q̀
′ T ≤ I <T>.

Case distinction on the form of T .

� Case T = Y : The claim then follows from the I.H.

� Case T = N : Impossible by Lemma B.1.10.

� Case T = J<U>: Then J<U> Ei I <T> by Lemma B.1.10 and 1 ∈ pol−(J) by crite-
rion wf-tenv-5. The claim now follows with Lemma B.1.18.

End case distinction on the form of T .

Lemma B.5.25. Assume mtype∆(mc,C<W>) = <X>U x
n → U where P and let ϕ be a substi-

tution with dom(ϕ) = X. Suppose ` ∆ ok and ∆ ` N ok. If N Ec C<W> and ∆  ϕP, then
a-mtypec(m,N) = <X>U x

n → U ′ where P such that ∆ ` ϕU ′ ≤ ϕU .

Proof. From mtype∆(mc,C<W>) = <X>U x
n → U where P we get

class C<Y > extends M where Q { . . . m : msig {e} }
mj = mc

<X>U x
n → U where P = [W/Y ]msigj (B.5.13)

Case distinction on the last rule in the derivation of N Ec C<W>.

263



B Formal Details of Chapter 3

� Case inh-class-refl: Then N = C<W>, so the claim follows with an application of rule
alg-mtype-class-base and reflexivity of subtyping.

� Case inh-class-super: Then N = D<V > and

class D<Z> extends M ′ where Q′ { . . . m′ : msig ′ {e′} } [V/Z]M ′ Ec C<W>

D<V > Ec C<W>

Clearly, D<V > Ec [V/Z]M ′, so we get with ∆ ` N ok and Lemma B.2.25 that ∆ `
[V/Z]M ′ ok.

Case distinction on whether or not m ∈ m′.
– Case m /∈ m′: The claim then follows from the I.H. and an application of rule

alg-mtype-class-super.

– Case m ∈ m′: Assume m = m′i. Because the underlying program is well-typed, we
have

Q′, Z ` m′i : msig ′i {e′i} ok in D<Z>

Hence,

override-okQ′,Z(m′i : msig ′i,D<Z>)

With D<V > Ec C<W> and Lemma B.2.33 there exists W ′ such that

D<Z> Ec C<W ′>

[V/Z]W ′ = W (B.5.14)

By inverting rule ok-override

Q′, Z ` msig ′i ≤ [W ′/Y ]msigj

Assume

msig ′i = <X ′′′>U ′′′ x′′′ → U ′′′ where P ′′′

msigj = <X ′′>U ′′ x′′ → U ′′ where P ′′

Then by rule sub-msig

X ′′′ = X ′′

U ′′′ = [W ′/Y ]U ′′

x′′′ = x′′

P ′′′ = [W ′/Y ]P ′′ (B.5.15)

Q′, Z, P ′′′, X ′′′ ` U ′′′ ≤ [W ′/Y ]U ′′ (B.5.16)

From (B.5.13)

X ′′ = X

[W/Y ]U ′′ = U

x′′ = x

[W/Y ]U ′′ = U

[W/Y ]P ′′ = P

264



B.5 Deciding Expression Typing

Moreover, we have with (B.5.14) and the fact that Z ∩ ftv(U ′′, U ′′, P ′′) = ∅

[V/Z][W ′/Y ](U ′′, U ′′, P ′′) =

[W/Y ](U ′′, U ′′, P ′′) =

(U,U,P)

(B.5.17)

Hence, we have with rule alg-mtype-class-base

a-mtypec(m,D<V >) = [V/Z]msig ′i

= [V/Z](<X ′′′>U ′′′ x′′′ → U ′′′ where P ′′′)

= [V/Z](<X> [W ′/Y ]U ′′ x→ U ′′′ where [W ′/Y ]P ′′)

= <X> [W/Y ]U ′′ x→ [V/Z]U ′′′ where [W/Y ]P ′′

= <X>U x→ [V/Z]U ′′′ where P

To finish this case, we still need to show that for U ′ = [V/Z]U ′′′ we have ∆ ` ϕU ′ ≤
ϕU .

From the assumption ∆ ` D<V > ok we get ∆  [V/Z]Q′. W.l.o.g. X∩ftv([V/Z]Q′) =
∅. Hence, ∆  ϕ[V/Z]Q′. From (B.5.15) and (B.5.17) and the assumption ∆  ϕP
we get ∆  ϕ[V/Z]P ′′′. Thus, with (B.5.16) and Corollary B.1.28

∆ ` ϕ[V/Z]U ′′′ ≤ ϕ[V/Z][W ′/Y ]U ′′

But with (B.5.17) we have ϕ[V/Z][W ′/Y ]U ′′ = ϕU .

End case distinction on whether or not m ∈ m′.

End case distinction on the last rule in the derivation of N Ec C<W>.

Proof of Theorem 3.32. Case distinction on the form of m.

� Case m = mc: Then T = C<W>. We have by Lemma B.1.14 that ∆ q̀
′ T ′ ≤ C<W>. By

Lemma B.5.18 we have

bound∆(T ′) = N

N Ec C<W>

With Lemma B.5.23 we get ∆ ` N ok. The claim now follows with an application of
Lemma B.5.25.

� Case m = mi: From mtype∆(m,T ) = <X>U x
n → U where P we get

interface I <Z ′> [Z
l
whereR ] where P { . . . rcsig }

rcsigj = receiver {m : msig}
m = mk

msigk = <X>U ′′ x→ U ′′ where P ′′

∆  T ′ implements I <W> (B.5.18)

T ′j = T

(U,U,P) = [T ′/Z,W/Z ′](U ′′, U ′′, P ′′) (B.5.19)

By Lemma B.1.32, there are two possibilities.

Case distinction on the possibilities left by Lemma B.1.32.

265



B Formal Details of Chapter 3

– Case first possibility:

[l] = N1 ∪̇N2

T ′i = Ki for all i ∈ N1

i ∈ pol−(I) for all i ∈ N1 (B.5.20)

T ′i = Gi for all i ∈ N2 (B.5.21)

∆  T ′′ implements I <W>
for all T ′′ with T ′′i = Gi for all i ∈ N2

(B.5.22)

Define for all i ∈ [l]:

Vi =

{
sresolve∆;Zi

(U ′′, T ) if i 6= j

sresolve∆;Zi
(Zj U ′′, T

′ T ) if i = j
(B.5.23)

V ?
i =


nil if Vi = ∅
T ′i if Vi 6= ∅ and i ∈ N2

Object if Vi 6= ∅ and i ∈ N1

(B.5.24)

We now prove

for all i ∈ [l], either V ?
i = nil

or V ?
i 6= nil and ∆ q̀

′ V ′i ≤ Vi for some V ′i ∈ Vi (B.5.25)

Assume i ∈ [l].

Case distinction on whether or not Vi = ∅.
* Case Vi = ∅: Then Vi = nil. Thus, (B.5.25) holds for this specific i.

* Case Vi 6= ∅: Define

Ti = {Tq | q ∈ [n], U ′′q = Zi} ∪ (if i = j then {T ′} else ∅)

Then

Vi = mub∆Ti 6= ∅ (B.5.26)

by definition of sresolve. With Corollary B.5.15 we get Vi 6= ∅. If i ∈ N1 then
V ?
i = Object , so (B.5.25) holds for this specific i. Now suppose i ∈ N2. Then
T ′i = Gi by (B.5.21). From the assumptions we get

(∀q ∈ [n]) ∆ ` Tq ≤ ϕUq

Let q ∈ [n] such that U ′′q = Zi. W.l.o.g., X ∩ ftv(T ′) = ∅. Hence, with (B.5.19)

ϕUq = ϕT ′i = T ′i = Gi

Thus, with Lemma B.1.14

∆ q̀
′ Tq ≤ T ′i

If i = j then we also have T ′i = T ′j = T , so by the assumption ∆ ` T ′ ≤ T

∆ ` T ′ ≤ T ′i

266



B.5 Deciding Expression Typing

Then again with Lemma B.1.14

∆ q̀
′ T ′ ≤ T ′i

Hence,

∆ q̀
′ T̃ ≤ T ′i for all T̃ ∈ Ti

By (B.5.26) and Lemma B.5.14, there exists V ′i ∈ Vi such that

∆ q̀
′ V ′i ≤ T ′i

But V ?
i = T ′i because i ∈ N2.

End case distinction on whether or not Vi = ∅.
This finishes the proof of (B.5.25).

Now define

M = {V implements I <V ′′> | (∀i ∈ [l]) if Vi = ∅ then V ?
i = nil

else define V ?
i such that

∆ q̀
′ V ′i ≤ V ?

i for V ′i ∈ Vi,

∆ ?
a V

? implements I <nil>_ V implements I <V ′′>}

(B.5.27)

We now show that M 6= ∅. Define for all i ∈ [l]

T ′′′i =

{
T ′i if V ?

i = nil

V ?
i otherwise

(B.5.28)

With (B.5.22) and the definition of V ?
i :

∆  T ′′′ implements I <W> (B.5.29)

Clearly, V ? nil ∼ T ′′′W and V ?
i 6= nil if i ∈ disp(I). Hence, by Theorem 3.29

∆ ?
a V

? implements I <nil>_W ′ implements I <W>

for W ′ such that

T ′′′i = W ′i if V ?
i 6= nil or i /∈ pol−(I) (B.5.30)

With (B.5.25) we thus have

W ′ implements I <W> ∈M (B.5.31)

so

M 6= ∅ (B.5.32)

Moreover, for all V implements I <V ′′> ∈M the following holds:

∆ q̀
′ Tq ≤ Vi for all i ∈ [l], q ∈ [n] with U ′′q = Zi (B.5.33)

∆ q̀
′ T ′ ≤ Vj (B.5.34)

V ′′ = W (B.5.35)

Vi = T ′i for all i ∈ [l], i /∈ disp(I) ∪ pol−(I) (B.5.36)

267



B Formal Details of Chapter 3

* Equations (B.5.33) and (B.5.34) follow from (B.5.27) and (B.5.23) and with
Lemma B.5.4.

* To prove equations (B.5.35) and (B.5.36), proceed as follows: We have by The-
orem 3.28 and (B.5.27) that

∆  V implements I <V ′′>

With (B.5.29) we get

∆  T ′′′ implements I <W>

Suppose i′ ∈ disp(I). Clearly, Vi′ 6= ∅. Thus, using Lemma B.5.4, (B.5.31),
(B.5.30), and (B.5.27) there exists V ′i′ , V

′′
i′ ∈ Vi′ such that

∆ q̀
′ V ′i′ ≤ Vi′

∆ q̀
′ V ′′i′ ≤ T ′′′i′

Define T ′′ = T ′ if i′ = j and T ′′ = Tq for some q ∈ [n] with U ′′q = Zi′ otherwise.
By (B.5.23), the definition of sresolve, and Lemma B.5.16 we have

∆ q̀
′ T ′′ ≤ V ′i′

∆ q̀
′ T ′′ ≤ V ′′i′

Hence,

∆ q̀
′ T ′′ ≤ Vi′

∆ q̀
′ T ′′ ≤ T ′′′i′

With Lemma B.5.10 we then get

V ′′ = W

Vi = T ′′′i for all i /∈ disp(I) ∪ pol−(I)

This proves (B.5.35). Now assume i /∈ disp(I) ∪ pol−(I). Then i ∈ N2 by
(B.5.20). By (B.5.28) and (B.5.24) we have T ′′′i = T ′i . This proves (B.5.36).

Define

p? =

{
i if U ′′ = Zi

nil otherwise
(B.5.37)

Now assume

pick-constrp
?

∆ M = V implements I <V ′′> (B.5.38)

for some V implements I <V ′′>. (We will prove (B.5.38) shortly.)

We then can use rule alg-mtype-iface to derive

a-mtype∆(m,T ′, T ) = [V/Z, V ′′/Z ′]msigk

= [V/Z, V ′′/Z ′](<X>U ′′ x→ U ′′ where P ′′)

From criterion wf-iface-3 we have Z ∩ ftv(P ′′′) = ∅. With (B.5.19) and (B.5.35) we
thus get

[V/Z, V ′′/Z ′]P ′′ = P

Now suppose i ∈ [n]. Define U ′i = [V/Z, V ′′/Z ′]U ′′i .

268



B.5 Deciding Expression Typing

* If Z ∩ ftv(U ′′i ) = ∅ then with (B.5.19) and (B.5.35)

ϕU ′i = ϕ[V/Z, V ′′/Z ′]U ′′i = ϕ[V ′′/Z ′]U ′′i = ϕUi

We now get

∆ ` Ti ≤ ϕU ′i

by the assumption ∆ ` Ti ≤ ϕUi.
* If Z ∩ ftv(U ′′i ) 6= ∅ then by criterion wf-iface-3 U ′′i = Zi′ for some i′ ∈ [l].

W.l.o.g., X ∩ ftv(V ) = ∅. Hence,

ϕU ′i = ϕ[V/Z, V ′′/Z ′]U ′′i = ϕVi′ = Vi′

With (B.5.33) we have

∆ q̀
′ Ti ≤ Vi′

Hence,

∆ ` Ti ≤ ϕU ′i

Thus, ∆ ` Ti ≤ ϕU ′i for all i ∈ [n].

Define

U ′ = [V/Z, V ′′/Z ′]U ′′ (B.5.39)

We still need to prove ∆ ` ϕU ′ ≤ ϕU and (B.5.38).

Case distinction on whether or not U ′′ ∈ Z.

* Case U ′′ /∈ Z: Then Z ∩ ftv(U ′′) = ∅ by criterion wf-iface-3. By (B.5.37) we
have p? = nil. Then (B.5.38) holds trivially by rule pick-constr-nil. Moreover,
we have with (B.5.19) and (B.5.35) that

ϕU ′ = ϕ[V/Z, V ′′/Z ′]U ′′ = ϕ[V ′′/Z ′]U ′′ = ϕU

* Case U ′′ ∈ Z: Then U ′′ = Zi for some i ∈ [l] by criterion wf-iface-3. By
(B.5.37) we have p? = i. Moreover,

i /∈ pol−(I) (B.5.40)

In the following, we use the notation impl(R, q) to denote the qth implementing
type of R; that is, impl(T implementsK, q) := Tq.

Case distinction on whether or not V ?
i = nil.

· Case V ?
i = nil: By (B.5.24) Vi = ∅, so we get by (B.5.23) and the definition

of sresolve that Zi /∈ U ′′ and i 6= j. Thus, it is easy to verify that i /∈ disp(I).
With (B.5.40) then i /∈ disp(I)∪pol−(I). Hence, for all R ∈M , impl(R, i) =
T ′i by (B.5.36). By rule pick-constr-non-nil we get (B.5.38). Obviously,
V implements I <V ′′> ∈ M , so Vi = T ′i . With (B.5.19), (B.5.39), and the
fact U ′′ = Zi then

ϕU ′ = ϕ[V/Z, V ′′/Z ′]U ′′ = ϕVi = ϕT ′i = ϕU

269



B Formal Details of Chapter 3

· Case V ?
i 6= nil: Because of (B.5.40) we have by (B.5.20) and (B.5.24)

i ∈ N2 (B.5.41)

V ?
i = T ′i

Vi 6= ∅ (B.5.42)

Suppose R ∈M . By (B.5.27) and (B.5.35)

R = . . . implements I <W>

With (B.5.27), Theorem 3.28, and Lemma B.5.4

∆  R

∆ q̀
′ Vi,R ≤ impl(R, i) for some Vi,R ∈ Vi (B.5.43)

Next, we show that

impl(R, i) = Gi,R (B.5.44)

for some Gi,R. Assume that this is not the case; that is, impl(R, i) is an
interface type. Because of (B.5.40) we get by Lemma B.1.32

[l] = {1}
R = J<W ′′> implements I <W> (B.5.45)

J<W ′′> Ei I <W> (B.5.46)

1 ∈ pol+(I)

1 ∈ pol+(J)

Hence, i = j = 1. Because 1 ∈ pol+(I) we have Zi /∈ ftv(U ′′). With (B.5.41)
and (B.5.21) T ′ = G for some G, so we have with (B.5.23) and the definition
of sresolve that Vi = {G}. With (B.5.43) and (B.5.45) then

∆ q̀
′ G ≤ J<W ′′>

By Lemma B.1.10 we then have G = X for some X. Thus, by Lemma B.5.24

1 ∈ pol−(J)

With (B.5.46) and Lemma B.1.18 then also 1 ∈ pol−(I), which is a contra-
diction to (B.5.40). This finishes the proof of (B.5.44).

Our next goal is to prove that there exists some R′ ∈M such that

∆ q̀
′ impl(R′, i) ≤ impl(R, i) (B.5.47)

for all R ∈M .

Together with (B.5.32), we then use rule pick-constr-non-nil to derive
(B.5.38), yielding

pick-constrp
?

∆ M = V implements I <V ′′> = R′ (B.5.48)

270



B.5 Deciding Expression Typing

W.l.o.g., assume that impl(R, i) 6= Object for all R ∈ M . (If impl(R, i) =
Object then (B.5.47) holds trivially for this R.) Hence, we have with (B.5.44)

impl(R, i) = Gi,R 6= Object

With (B.5.43), Lemma B.1.10, and Lemma B.5.12 we then get

Vi 3 Vi,R = Hi,R 6= Object (B.5.49)

By (B.5.23) and the definition of sresolve

Vi = mub∆

(
{Tq | q ∈ [n], U ′′q = Zi} ∪ (if i = j then {T ′} else ∅)

)︸ ︷︷ ︸
=:T

Hence, because Vi,R ∈ Vi, we have with Lemma B.5.16

∆ q̀
′ Tq ≤ Vi,R for all q ∈ [n], U ′′q = Zi

∆ q̀
′ T ′ ≤ Vi,R if i = j

By (B.5.23), (B.5.42), and the definition of sresolve, we get T 6= ∅. By
(B.5.43), (B.5.49), and Lemma B.5.17, we get that there exists Vi ∈ Vi such
that Vi = Vi,R for all R ∈M . Hence, with (B.5.43)

∆ q̀
′ Vi ≤ impl(R, i) (B.5.50)

for all R ∈ M . Now suppose R1,R2 ∈ M . We then have ∆ q̀
′ Vi ≤

impl(R1, i) and ∆ q̀
′ Vi ≤ impl(R2, i), so with Lemma B.5.7 and (B.5.44)

∆ q̀
′ impl(R1, i) ≤ impl(R2, i) or ∆ q̀

′ impl(R2, i) ≤ impl(R1, i)

But with (B.5.50) and Lemma B.5.13, we know that the set {impl(R, i) | R ∈
M } is finite. Thus, there exists some R′ ∈M such that ∆ q̀

′ impl(R′, i) ≤
impl(R, i). This finishes the proof of (B.5.47) and thus the proof of (B.5.38).

Finally, we prove ∆ ` ϕU ′ ≤ ϕU . With (B.5.31) we have some R′′ ∈ M
such that

impl(R′′, i) = W ′i
(B.5.30),(B.5.40)

= T ′′′i
(B.5.28)

= V ?
i

(B.5.41),(B.5.24)
= T ′i

By (B.5.47) then

∆ q̀
′ impl(R′, i) ≤ T ′i (B.5.51)

We also have (note U ′′ = Zi)

U ′
(B.5.39)

= [V/Z, V ′′/Z ′]U ′′ = [V/Z, V ′′/Z ′]Zi = Vi
(B.5.48)

= impl(R′, i)U
(B.5.19)

= T ′i

W.l.o.g., X∩ ftv(V ) = ∅ = X∩ ftv(T ′). Thus, with (B.5.51), ∆ ` ϕU ′ ≤ ϕU ,
as required.

End case distinction on whether or not V ?
i = nil.

End case distinction on whether or not U ′′ ∈ Z.

271



B Formal Details of Chapter 3

– Case second possibility left by Lemma B.1.32:

[l] = {1}
1 ∈ pol+(I)

T = T ′1 = K (B.5.52)

K Ei I <W> (B.5.53)

(By abuse of notation, we identify pol(K) with pol(J) for K = J<T>.) Because
1 ∈ pol+(I) we have

Z1 /∈ ftv(U ′′) (B.5.54)

Define

V1 = sresolve∆;Z1
(Z1 U ′′, T

′ T ) = mub∆{T ′} = {T ′}
p? = (if U ′′ = Z1 then 1 else nil)

M = {V implements I <V ′′> | V ′ ∈ V1,∆ q̀
′ V ′ ≤ V,

∆ ?
a V implements I <nil>_ V implements I <V ′′>}

{V implements I <V ′′> | ∆ q̀
′ T ′ ≤ V,

∆ ?
a V implements I <nil>_ V implements I <V ′′>}

(B.5.55)

We now prove that there exists some T ′′ such that

T ′′ implements I <W> ∈M (B.5.56)

∆ ` T ′′ ≤ K (B.5.57)

From the assumption ∆ ` T ′ ≤ T and T = K we get ∆ à T
′ ≤ K.

Case distinction on whether or not ∆ q̀
′ T ′ ≤ K.

* Case ∆ q̀
′ T ′ ≤ K: From (B.5.18) we get

∆ a K implements I <W>

so with Theorem 3.29 we get that K implements I <W> ∈ M . The claims
(B.5.56) and (B.5.57) then follow for T ′′ = K.

* Case not ∆ q̀
′ T ′ ≤ K: Hence, by inverting rule sub-q-alg-impl,

∆ q̀
′ T ′ ≤ T ′′

∆ q
′ T ′′ implementsK (B.5.58)

By rule sub-impl then ∆ ` T ′′ ≤ K. This proves (B.5.57). With (B.5.53),
Lemma B.1.2, and Lemma B.1.27, we get

∆ a T
′′ implements I <W>

With Theorem 3.29 and (B.5.55) then

T ′′ implements I <W> ∈M

This proves (B.5.56).

272



B.5 Deciding Expression Typing

End case distinction on whether or not ∆ q̀
′ T ′ ≤ K.

This finishes the proof of (B.5.56) and (B.5.57).

Let R ∈M . By (B.5.55) and Theorem 3.28:

∆ a R (B.5.59)

∆ q̀
′ T ′ ≤ impl(R, 1) (B.5.60)

Moreover, we have with Lemma B.5.10, (B.5.56), and (B.5.55) that

R = VR implements I <W> (B.5.61)

for some VR.

Case distinction on the form of p?.

* Case p? = nil: Then U ′′ 6= Z1. By criterion wf-iface-3

Z ∩ ftv(U ′′) = ∅
Z ∩ ftv(P ′′) = ∅

Moreover, by (B.5.56) we know that M 6= ∅, so with (B.5.61)

pick-constrp
?

∆ M = V implements I <W>

for some V implements I <W> ∈ M . We have by rule alg-mtype-iface and
(B.5.54)

a-mtype∆(m,T ′, T ) = [W/Z ′]msigk

= [T ′/Z,W/Z ′]msigk
(B.5.19)

= <X>U x
n → U where P

as required.

* Case p? 6= nil: Then p? = 1 and U ′′ = Z1. Hence

1 /∈ pol−(I) (B.5.62)

We now prove that there exists some R′ ∈M such that

∆ q̀
′ impl(R′, 1) ≤ impl(R, 1) for all R ∈M (B.5.63)

In the following, we assume w.l.o.g. that impl(R, 1) 6= Object for all R ∈M . (If
impl(R, 1) = Object then (B.5.63) holds trivially for this R.) We proceed by case
distinction on the existence of L and R′ ∈M with impl(R′, 1) = L

Case distinction on the existence of L and R′ ∈M .

· Case there exists R′ ∈ M with impl(R′, 1) = L for some L: Then we have
∆ q L implements I <W> by (B.5.59). Hence, Lemma B.1.32 and (B.5.62)
give us that L Ei I <W>, so with (B.5.60) and Lemma B.1.7 we have

∆ q̀
′ T ′ ≤ I <W>

If T ′ = X then, by Lemma B.5.24, 1 ∈ pol−(I), which is a contradiction
to (B.5.62). If T ′ = N then, by Lemma B.5.24, 1 ∈ pol−(I), which is a

273



B Formal Details of Chapter 3

contradiction to (B.5.62). Finally, we consider the case where T ′ = K ′.
Because impl(R, 1) 6= Object for all R ∈ M , we have with (B.5.60) and
Lemma B.1.10 that for all R ∈M :

impl(R, 1) = LR for some LR

K ′ Ei LR (B.5.64)

With (B.5.61), (B.5.59), (B.5.62), and Lemma B.1.32 we get

LR Ei I <W>

1 ∈ pol+(LR)

With Lemma B.1.4 then

K ′ Ei I <W>

Now assume 1 ∈ pol+(K ′). Then

∆ q K
′ implements I <W>

by rule ent-q-alg-env and Lemma B.1.17. Hence, with (B.5.55) and Theo-
rem 3.29

K ′ implements I <W> ∈M

With (B.5.64), we have ∆ q̀
′ K ′ ≤ LR for all R ∈M , so (B.5.63) holds.

On the other hand, assume 1 /∈ pol+(K ′). Because of (B.5.62), we get with
Lemma B.1.18 that 1 /∈ pol−(K ′). With (B.5.64) and criterion wf-prog-7
we then have for all R1,R2 ∈M :

LR1 Ei LR2 or LR2 Ei LR1

With (B.5.60) and Lemma B.5.13, we know that the set {impl(R, 1) | R ∈
M } is finite. Thus, (B.5.63) holds.

· Case there does not exist R′ ∈ M with impl(R′, 1) = L for some L: With
(B.5.60) and Lemma B.5.7 we have for all R1,R2 ∈M :

LR1
Ei LR2

or LR2
Ei LR1

Thus, (B.5.63) holds.

End case distinction on the existence of L and R′ ∈M .

This finishes the proof of (B.5.63).

We now use rule pick-constr-non-nil to derive

pick-constrp
?

∆ M = R′

such that ∆ q̀
′ impl(R′, 1) ≤ impl(R, 1) for all R ∈ M . We now have by

alg-mtype-iface (note that U ′′ = Z1 and, by criterion wf-iface-3, Z∩ftv(P ′′) =
∅)

a-mtype∆(m,T ′, T )

= [impl(R′, 1)/Z1,W/Z ′](<X>U ′′ x→ U ′′ where P ′′)

(B.5.19),(B.5.54)
= <X>U x→ impl(R′, 1) where P

274



B.5 Deciding Expression Typing

Define U ′ = impl(R′, 1). With (B.5.56), (B.5.57), and (B.5.63) we have

∆ à impl(R′, 1) ≤ K

By (B.5.19) and (B.5.52) we have

U = T ′1 = T = K

Hence,

∆ ` U ′ ≤ U

W.l.o.g., X ∩ ftv(T ′,R′) = ∅. Hence

∆ ` ϕU ′ ≤ ϕU

as required.

End case distinction on the form of p?.

End case distinction on the possibilities left by Lemma B.1.32.

End case distinction on the form of m.

B.5.5 Proof of Theorem 3.35

Theorem 3.35 states that algorithmic expression typing is sound with respect to its declarative
specification in Figure 3.9. All proofs in this section apply the equivalences and implications of
Corollary B.5.2 implicitly.

Lemma B.5.26.

(i) ∆ ` T ok if, and only if, ∆ à T ok.

(ii) ∆ ` P ok if, and only if, ∆ à P ok.

Proof. Follows by straightforward induction on the combined size of the given derivations.

From now on, we use Lemma B.5.26 implicitly.

Lemma B.5.27. If ∆ ` R ok and S ∈ sup(R) then ∆ ` S ok.

Proof. We proceed by induction on the derivation of S ∈ sup(R). If this derivation ends with rule
sup-refl, then the claim holds trivially. Otherwise, we have

interface I <X> [Y whereS]whereP . . . U implements I <V > ∈ sup(R)

[V/X,U/Y ]Sj︸ ︷︷ ︸
=S

∈ sup(R)

By the I.H., we have ∆ ` U implements I <V > ok. This derivation must end with ok-impl-constr.
Inverting the rule then yields

∆  [V/X,U/Y ]S, P

∆ ` U, V ok

The underlying program is well-typed, so we have S, P ,X, Y ` Sj ok. With Lemma B.2.24 then
∆ ` S ok.

275



B Formal Details of Chapter 3

Lemma B.5.28. Assume ` ∆ ok and ∆ ` T ok. If ∆ q T implements I <V > then ∆ `
T implements I <V > ok.

Proof. We have

ent-q-alg-up

(∀i) ∆ q̀
′ Ti ≤ Ui

(∀i) if Ti 6= Ui then i ∈ pol−(I) ∆ q
′ U implements I <V >

∆ q T implements I <V >

By Lemma B.5.22

∆ ` U ok (B.5.65)

Case distinction on the last rule of the derivation of ∆ q
′ U implements I <V >.

� Case rule ent-q-alg-env: Then R ∈ ∆ and U implements I <V > ∈ sup(R). With ` ∆ ok
we have ∆ ` R ok. By Lemma B.5.27 we have

∆ ` U implements I <V > ok

� Case rule ent-q-alg-impl: Then

implementation<X> I <V ′> [N ] where P . . . ∆ q [W/X]P

∆ q [W/X](N implements I <V ′>)︸ ︷︷ ︸
=U implements I<V >

Because the underlying program is well-typed, we have

P ,X ` N implements I <V ′> ok

Moreover, with (B.5.65) ∆ ` [W/X]N ok and by criterion wf-impl-2 X ⊆ ftv(N). Hence,
with Lemma B.2.21, ∆ `W ok. Thus, with Lemma B.2.24

∆ ` [W/X](N implements I <V ′>) ok

� Case rule ent-q-alg-iface: Then

1 ∈ pol+(J) non-static(J) J<W> Ei I <V >

∆ q
′ J<W> implements I <V >︸ ︷︷ ︸

=U implements I<V >

From ∆ ` J<W> ok and Lemma B.5.21 we have

∆ ` I <V > ok (B.5.66)

Assume

interface I <X> [Y whereR]whereP . . . (B.5.67)

From (B.5.66) then

∆, Y implements I <V >, Y  [V/X]R,P (B.5.68)

Y /∈ ftv(∆, V )

276



B.5 Deciding Expression Typing

With ∆ q
′ J<W> implements I <V > we have ∆  J<W> implements I <V > by Corol-

lary B.5.2. Hence,

∆  [J<W>/Y ](∆, Y implements I <V >, Y )

Thus, with Corollary B.1.28 applied to (B.5.68)

∆  [J<W>/Y ][V/X]R,P︸ ︷︷ ︸
=[J<W>/Y,V/X]R,P

(B.5.69)

We then have with ∆ ` J<W> ok, (B.5.66), (B.5.67), (B.5.69), and an application of rule
ok-impl-constr that

∆ ` J<W> implements I <V > ok

End case distinction on the last rule of the derivation of ∆ q
′ U implements I <V >. Let

interface I <X> [Y whereR]whereP . . .

Because we just proved that ∆ ` U implements I <V > ok, we have

∆ ` V ok

∆  [V/X,U/Y ]R,P

We now prove by induction on the number of indices i with Ti 6= Ui that ∆  [V/X, T/Y ]R,P .
The original claim then follows with rule ok-impl-constr.

� Assume there are no indices i with Ti 6= Ui. Then ∆  [V/X, T/Y ]R,P holds trivially.

� Assume i such that Ti 6= Ui. The I.H. then gives us that ∆  [V/X, T ′/Y ]R,P where

T ′j =

{
Tj if i 6= j

Uj if i = j

From Ti 6= Ui we have i ∈ pol−(I). Hence Yi /∈ ftv(P ). Thus,

∆  [W/X, T/Y ]P

Now suppose Yi ∈ ftv(G implements J ′<W ′>) for some G implements J ′<W ′> ∈ R. Then
we have with i ∈ pol−(I) and well-formedness criteria wf-iface-2 that Yi /∈ ftv(W ′) and that
Yi ∈ ftv(Gj) implies Yi = Gj and j ∈ pol−(J ′). Hence, with ∆ q̀

′ Ti ≤ Ui and (possibly) some

applications of rule ent-up, we also get ∆  [W/X, T/Y ]R, as required.

Lemma B.5.29. Assume

interface I <Z> [Y whereR ] where Q {m : staticmsig rcsig }
msig = <X>U x→ U where P

∆  T implements I <W>

∆  [V/X][T/Y ,W/Z]P

∆ ` T , V ok

such that either msig ∈ msig or that there exists receiver {m′ : msig ′} ∈ rcsig with msig ∈ msig ′.
Then ∆ ` [V/X][T/Y ,W/Z]U ok.

277



B Formal Details of Chapter 3

Proof. We get with Lemma B.5.28 and the assumptions ∆  T implements I <W> and ∆ ` T ok
that

∆ ` T implements I <W> ok

Hence,

∆ `W ok

∆  [T/Y ,W/Z]R,Q (B.5.70)

Because the underlying program is well-typed, we have

R,Q, Y , Z, P ,X ` U ok (B.5.71)

W.l.o.g., X ∩ ftv(R,Q, T ,W ) = ∅. Hence,

[T/Y ,W/Z]R,Q = [V/X, T/Y ,W/Z]R,Q (B.5.72)

[V/X][T/Y ,W/Z]P = [V/X, T/Y ,W/Z]P (B.5.73)

[V/X][T/Y ,W/Z]U = [V/X, T/Y ,W/Z]U (B.5.74)

With (B.5.72) and (B.5.70) we then have

∆  [V/X, T/Y ,W/Z]R,Q

With (B.5.73) and the assumption ∆  [V/X][T/Y ,W/Z]P we have

∆  [V/X, T/Y ,W/Z]P

With Lemma B.2.24 and (B.5.71) we then have

∆ ` [V/X, T/Y ,W/Z]U ok

so the claim follows with (B.5.74).

Lemma B.5.30. Suppose ` ∆ ok and and ∆ ` Tj ok for all j ∈ disp(I). If

∆ ?
a T

? implements I <V ?>_ T implements I <V >

and T ?
i = nil then ∆ ` Ti ok.

Proof. We first note that

∆;β; J `?
a T

? ↑ U _ V and Tj = nil imply Vj = Uj . (B.5.75)

∆;β; J `?
a T

? ↑ U _ V implies ∆ q̀
′ Vi ≤ Ui for all i. (B.5.76)

Now we show that

If ` ∆ ok and ∆ ` Tj ok for all j ∈ disp(I) and D::∆; G ;β ?
a T

?
n
implements I <V ?>_

T implements I <V > and T ?
i = nil then ∆ ` Ti ok.

Assume T ?
i = nil. W.l.o.g., i /∈ disp(I).

Case distinction on the last rule of D.

278



B.5 Deciding Expression Typing

� Case rule ent-nil-alg-env: Then

R ∈ ∆

G implements I <V > ∈ sup(R)

∆;β; I `?
a T

? ↑ G_ T

From the assumption ` ∆ ok and Lemma B.5.27 we get

∆ ` G implements I <V > ok

so ∆ ` Gi ok. But with (B.5.75) we have Ti = Gi.

� Case rule ent-nil-alg-iface1: Impossible because n = 1 and T1 6= nil in this rule.

� Case rule ent-nil-alg-iface2: Impossible because n = 1 and T1 6= nil in this rule.

� Case rule ent-nil-alg-impl: Then

implementation<X> I <V ′> [N ] where P . . .

∆;β; I `?
a T

? ↑ [U/X]N _ T (B.5.77)

∆; G ∪ {[U/X]N implements I <[U/X]V ′>}; false a [U/X]P (B.5.78)

With (B.5.77) and (B.5.76) we get

(∀i) ∆ ` Ti ≤ [U/X]Ni

Thus, if j ∈ disp(I) then ∆ ` Tj ok by assumption, so with Lemma B.5.22

∆ q̀
′ [U/X]Nj ok

From criterion wf-impl-2 we get X ⊆ ftv({Nj | j ∈ disp(I)}). Thus, withLemma B.2.21,

∆ ` U ok

With Lemma B.4.3, (B.5.78), and rule ent-q-alg-up, we get

∆ q [U/X]P

Because the underlying program is well-typed we have

P ,X ` N implements I <V ′> ok

Now Lemma B.2.24 yields

∆ ` [U/X](N implements I <V ′>) ok

Thus,

∆ ` [U/X]N ok

But with (B.5.75) and (B.5.77) we have Ti = [U/X]Ni.

End case distinction on the last rule of D.

Lemma B.5.31. Suppose ` ∆ ok and ∆ ` N,V ok and ∆  [V/X]P. Then a-mtypec(m,N) =
<X>U x→ U where P implies ∆ ` [V/X]U ok.

279



B Formal Details of Chapter 3

Proof. By induction on the derivation of a-mtypec(m,N).
Case distinction on the last rule of the derivation of a-mtypec(m,N).

� Case rule alg-mtype-class-base: Then

N = C<T>

class C<Y > extends M where Q { . . . m : msig {e} }
m = mj

<X>U x→ U where P = [T/Y ]msigj

Assume

msigj = <X>U ′ x→ U ′ where P

Because the underlying program is well-typed, we have

Q,Y ` mj : msigj {ej} ok in C<Y >

Hence,

Q,Y , P ,X ` U ′ ok (B.5.79)

From ∆ ` N ok we get ∆  [T/Y ]Q and ∆ ` T ok. W.l.o.g., X ∩ ftv(T ,Q) = ∅. Hence,
[T/Y ]Q = [V/X, T/Y ]Q, so we have

∆  [V/X, T/Y ]Q

Moreover, the assumption ∆  [V/X]P can be written as

∆  [V/X, T/Y ]P

Using Lemma B.2.24 on (B.5.79) yields

∆ ` [V/X, T/Y ]U ′︸ ︷︷ ︸
=[V/X]U

ok

as required.

� Case rule alg-mtype-class-super: Then

class C<X> extends M . . .

a-mtypec(m, [T/X]M) = <X>U x→ U where P

N = C<T>

Then N Ec [T/X]M , so we get with ∆ ` N ok and Lemma B.2.25 that ∆ ` [T/X]M ok.
The claim now follows from the I.H.

End case distinction on the last rule of the derivation of a-mtypec(m,N).

Lemma B.5.32. Suppose ` ∆ ok and ∆ ` T, T , V ok and ∆  [V/X]P. If a-mtype∆(m,T, T ) =
<X>U x→ U where P then ∆ ` [V/X]U ok.

Proof. Case distinction on the rule used to derive a-mtype∆(m,T, T ).

280



B.5 Deciding Expression Typing

� Case rule alg-mtype-class: Then bound∆(T ) = N . Moreover,

a-mtypec(m,N) = <X>U x→ U where P

With Lemma B.5.23 we have ∆ ` N ok. The claim now follows with Lemma B.5.31.

� Case rule alg-mtype-iface: Then

interface I <Z ′> [Z
l
whereR ] where P { . . . rcsig }

rcsigj = receiver {m : msig}
msigk = <X>U ′ x→ U ′ where Q

(∀i ∈ [l], i 6= j) sresolve∆;Zi(U, T ) = Vi

sresolve∆;Zj
(Zj U, T T ) = Vj

p? = (if U = Zi for some i ∈ [l] then i else nil)

W implements I <W ′> =
pick-constrp

?

∆ {V ′′ implements I <V ′′′> | (∀i ∈ [l]) if Vi = ∅ then V ?
i = nil

else define V ?
i such that

∆ q̀
′ V ′i ≤ V ?

i for V ′i ∈ Vi,

∆ ?
a V

? implements I <nil>_ V ′′ implements I <V ′′′>}

and

m = mk

<X>U x→ U where P = [W/Z,W ′/Z ′]msigk

With Lemma B.5.22 and the assumption ∆ ` T, T ok we easily verify that ∆ ` V ′i ok for all

V ′i ∈ Vi. Hence, we have with Lemma B.5.22 for the V ?
i in the argument to pick-constrp

?

∆

that

V ?
i 6= nil implies ∆ ` V ?

i ok

Then, by Lemma B.5.4, we have for the V ′′i in the argument to pick-constrp
?

∆

V ?
i 6= nil implies ∆ ` V ′′i ok

Clearly, Vi 6= nil for all i ∈ disp(I), so V ?
i 6= nil for all i ∈ disp(I). Hence, with Lemma B.5.30

V ?
i = nil implies ∆ ` V ′′i ok

Hence,

∆ `W ok

With Theorem 3.28

∆ W implements I <W ′>

We have [V/X]P = [V/X][W/Z,W ′/Z ′]Q, so with the assumption ∆  [V/X]P and
Lemma B.5.29

∆ ` [V/X] [W/Z,W ′/Z ′]U ′︸ ︷︷ ︸
=U

ok

as required.

281



B Formal Details of Chapter 3

End case distinction on the rule used to derive a-mtype∆(m,T, T ).

Lemma B.5.33. If ∆ ` N ok and fields(N) = U f
n

, then ∆ ` Ui ok for all i ∈ [n].

Proof. We proceed by induction on the derivation of fields(N) = U f
n
.

Case distinction on the last rule in the derivation of fields(N) = U f
n
.

� Case rule fields-object: Then n = 0 and the claim holds trivially.

� Case rule fields-class: Then N = C<V > and

class C<X> extends M where P {T f . . . }

fields([V/X]M) = T ′ f ′

U f
n

= T ′ f ′, [V/X]T f

Clearly, N Ec [V/X]M , so ∆ ` [V/X]M ok by Lemma B.2.25. Hence, we have by the I.H.
that

∆ ` T ′ ok

The underlying program is well-typed, so we have P ,X ` T ok. From ∆ ` C<V > ok we
get ∆  [V/X]P and ∆ ` V ok. Hence, with Lemma B.2.24,

∆ ` [V/X]T ok

End case distinction on the last rule in the derivation of fields(N) = U f
n
.

Lemma B.5.34 (Expression typing ensures well-formedness). Suppose that ` ∆ ok and ∆ ` Γ ok.
If ∆; Γ à e : T then ∆ ` T ok.

Proof. We proceed by induction on the derivation of ∆; Γ à e : T .
Case distinction on the last rule used in the derivation of ∆; Γ à e : T .

� Case rule exp-alg-var: Follows with the assumption ∆ ` Γ ok.

� Case rule exp-alg-field: Then

∆; Γ à e
′ : T ′

bound∆(T ′) = N

fields(N) = U f

e = e′.fj

T = Uj

We get from the I.H. that ∆ ` T ′ ok. With Lemma B.5.23 then ∆ ` N ok. Then we get
with Lemma B.5.33 that ∆ ` Uj ok.

� Case rule exp-alg-invoke: Then

e = e′.m<V >(e)

T = [V/X]U

∆; Γ à e
′ : T ′

(∀i) ∆; Γ à ei : Ti

a-mtype∆(m,T ′, T ) = <X>U x→ U where P

∆  [V/X]P

∆ ` V ok

282



B.5 Deciding Expression Typing

Applying the I.H. yields ∆ ` T ′, T ok, so we can apply Lemma B.5.32 and get ∆ `
[V/X]U ok, as required.

� Case rule exp-alg-invoke-static: Then

e = I <W>[T ].m<V >(e)

T = [V/X]U

∆ ` T , V ok

∆  [V/X]P

a-smtype∆(m, I <W>[T ]) = <X>U x→ U where P

Applying Lemma B.5.32 yields ∆ ` [V/X]U ok, as required.

� Case rule exp-alg-new: Then ∆ ` T ok from the premise of this rule.

� Case rule exp-alg-cast: Then ∆ ` T ok from the premise of this rule.

End case distinction on the last rule used in the derivation of ∆; Γ à e : T .

Lemma B.5.35. If fields(N) = T f
n

and i ∈ [n], then there exists

class C<X> . . . {V g . . . }

such that N Ec C<U> and Ti fi = [U/X]Vj gj for some j.

Proof. We proceed by induction on the derivation of fields(N) = T f
n
. The derivation cannot

end with rule fields-object because this would contradict i ∈ [n]. Hence, the last rule must be
fields-class. We get

N = D<W>

class D<X> extends M where P {T ′ f ′ . . . }

fields([W/X]M) = T ′′ f ′′

T f
n

= T ′′ f ′′
m
, [W/X]T ′ f ′

If i > m set C<U> = D<W>. Otherwise, the claim follows with the I.H., the fact that D<W> Ec

[W/X]M , and Lemma B.1.4.

Proof of Theorem 3.35. We proceed by induction on the derivation of ∆; Γ à e : T .
Case distinction on the last rule of the derivation of ∆; Γ à e : T .

� Case rule exp-alg-var: Obvious.

� Case rule exp-alg-field: Inverting the rule yields

e = e′.fj

∆; Γ à e
′ : T ′

bound∆(T ′) = N

fields(N) = U f

T = Uj

283



B Formal Details of Chapter 3

With Lemma B.5.35 there exists a class C such that

class C<X> . . . {V g . . . }
N Ec C<W>

Uj fj = [W/X]Vi gi (B.5.80)

By Lemma B.5.3 we have ∆ ` T ′ ≤ N , so ∆ ` T ′ ≤ C<W>. We get by the I.H. that
∆; Γ ` e′ : T ′, so with rule exp-subsume, ∆; Γ ` e′ : C<W>. The claim now follows with
rule exp-field and (B.5.80).

� Case rule exp-alg-invoke: We get from the premises of the rule

e = e′.m<V >(e)

T = [V/X]U

∆; Γ à e
′ : T ′

(∀i) ∆; Γ à ei : Ti

a-mtype∆(m,T ′, T ) = <X>U x→ U where P

(∀i) ∆ à Ti ≤ [V/X]Ui

∆ a [V/X]P

∆ à V ok

By the I.H.

∆; Γ ` e′ : T ′

(∀i) ∆; Γ ` ei : Ti

With Lemma B.5.34

∆ ` T ′, T ok

With Theorem 3.31, we get the existence of T ′′ such that

∆ ` T ′ ≤ T ′′

mtype∆(m,T ′′) = <X>U x→ U where P

We have by rule exp-subsume

∆; Γ ` e′ : T ′′

(∀i) ∆; Γ ` ei : [V/X]Ui

so the claim follows with rule exp-invoke.

� Case rule exp-alg-invoke-static: We use the I.H. and rule exp-subsume to derive the
correct types for the arguments of the call. With Corollary B.5.2, we get that smtype and
a-smtype are equivalent. The claim then follows with rule exp-invoke-static.

� Case rule exp-alg-new: We use the I.H. and rule exp-subsume to derive the correct types
for the arguments of the constructor call. The claim then follows with rule exp-new.

� Case rule exp-alg-cast: Follows from the I.H.

End case distinction on the last rule of the derivation of ∆; Γ à e : T .

284



B.5 Deciding Expression Typing

B.5.6 Proof of Theorem 3.36

Theorem 3.36 states that algorithmic expression typing is complete with respect to its declarative
specification in Figure 3.9. All proofs in this section apply the equivalences and implications of
Corollary B.5.2 implicitly.

Lemma B.5.36. If class C<X> . . . {U f . . . } and N Ec C<T> then fields(N) = . . . U ′ f . . .
such that [T/X]U = U ′.

Proof. Follows by a routine induction on the derivation of N Ec C<T>.

Proof of Theorem 3.36. We proceed by induction on the derivation of ∆; Γ ` e : T .
Case distinction on the last rule used in the derivation of ∆; Γ ` e : T .

� Case rule exp-var: Obvious.

� Case rule exp-field: By inverting the rule, we get

∆; Γ ` e′ : C<T>

class C<X> extends N where P {U f . . . }
e = e′.fj

T = [T/X]Uj

We get from the I.H.

∆; Γ à e
′ : T ′

∆ ` T ′ ≤ C<T>

Hence, with Corollary B.5.2,

∆ q̀
′ T ′ ≤ C<T>

By Lemma B.5.18

bound∆(T ′) = N

N Ec C<T>

By Lemma B.5.36

fields(N) = . . . U ′ f . . .

[T/X]U = U ′

The claim now follows with rule exp-alg-field.

� Case rule exp-invoke: Inverting the rule yields

e = e′.m<V >(e)

T = [V/X]U ′

∆; Γ ` e′ : T ′

(∀i) ∆; Γ ` ei : [V/X]Ui

mtype∆(m,T ′) = <X>U x→ U ′ where P

∆  [V/X]P

∆ ` V ok

285



B Formal Details of Chapter 3

By the I.H.

∆; Γ à e
′ : T ′′

∆ ` T ′′ ≤ T ′

(∀i) ∆; Γ à ei : Wi

(∀i) ∆ `Wi ≤ [V/X]Ui

Now with Lemma B.5.34

∆ ` T ′′ ok

By Theorem 3.32

a-mtype∆(m,T ′′,W ) = <X>U ′ x→ U ′′ where P

(∀i) ∆ `Wi ≤ [V/X]U ′i

∆ ` [V/X]U ′′ ≤ [V/X]U ′

We now get with rule exp-alg-invoke

∆; Γ à e
′.m<V >(e) : [V/X]U ′′

� Case rule exp-invoke-static: Inverting the rule yields

e = I <W>[T ].m<V >(e)

T = [V/X]U ′

smtype∆(m, I <W>[T ]) = <X>U x→ U ′ where P

(∀i) ∆; Γ ` ei : [V/X]Ui

∆  [V/X]P

∆ ` T , V ok

By the I.H.

(∀i) ∆; Γ à ei : Wi

∆ `Wi ≤ [V/X]Ui

With Corollary B.5.2, we get that smtype and a-smtype are equivalent. We then have by
rule exp-alg-invoke-static

∆; Γ à I <W>[T ].m<V >(e) : [V/X]U ′

� Case rule exp-new: The claim follows from the I.H. and rule exp-alg-new.

� Case rule exp-cast: The claim follows from the I.H. and rule exp-alg-cast.

� Case rule exp-subsume: From the premise of the rule, we get ∆; Γ ` e : U ′ and ∆ ` U ′ ≤ T .
The I.H. yields ∆; Γ à e : U and ∆ ` U ≤ U ′. We then have ∆ ` U ≤ T by rule sub-trans.

End case distinction on the last rule used in the derivation of ∆; Γ ` e : T .

286



B.5 Deciding Expression Typing

B.5.7 Proof of Theorem 3.37

Theorem 3.37 states that the expression typing algorithm induced by the rules in Figures 3.27,
3.29 and 3.30 terminates. All proofs in this section apply the equivalences and implications of
Corollary B.5.2 implicitly.

Lemma B.5.37. If T ?
i 6= nil for all i ∈ disp(I), then the set

R = {R | ∆ ?
a T

? implements I <V ?>_ R}

is finite.

Proof. We generalize the claim and prove that

R = {R | ∆; G ;β ?
a T

? implements I <V ?>_ R}

is finite. Assume R = {R1,R2, . . . } is infinite. W.l.o.g., assume for all i ∈ N

Di :: ∆; G ;β ?
a T

? implements I <V ?>_ Ri

i 6= j implies Ri 6= Rj

such that all Di end with the same rule.
Case distinction on the last rule in all Di.

� Case rule ent-nil-alg-env: Impossible because ∆ is finite and, obviously, sup(S) is finite
for all S.

� Case rule ent-nil-alg-iface1: Impossible because the set {I <V > | ∆;β; I à T1 ↑ I <V >} is
finite by Lemma B.5.13.

� Case rule ent-nil-alg-iface2: Impossible because the set {J<V > | J ′<W> Ei J<V >} is
finite by Lemma B.5.13.

� Case rule ent-nil-alg-impl: W.l.o.g., assume that the same implementation definition

implementation<X> I <V > [N ] where P . . .

appears in the premise of the last rule of every Di. (There are only finitely many imple-
mentation definitions in a program, so infinitely many derivations must share the same
implementation definition.) We then have

Ri = T implements I <[Ui/X]V >

∆;β; I `?
a T

? ↑ [Ui/X]N _ T

Clearly, for j ∈ disp(I), we have

∆ q̀
′ T ?

j ≤ [Ui/X]Nj

With criterion wf-impl-2 we have X ⊆ ftv({Ni | i ∈ disp(I)}, so with Lemma B.5.13 we
know that the set {Ui | i ∈ N} is finite. Hence, the set

{[Ui/X]N | i ∈ N} ∪ {[Ui/X]V | i ∈ N}

is finite. But if T ?
j = nil then Tj = [Ui/X]Nj . Hence, the set R cannot be infinite, which

contradicts our assumption.

287



B Formal Details of Chapter 3

End case distinction on the last rule in all Di.

Lemma B.5.38. Let

M = {V implements I <V ′′> | (∀i ∈ [l]) if Vi = ∅ then V ?
i = nil

else define V ?
i such that

∆ q̀
′ V ′i ≤ V ?

i for V ′i ∈ Vi,

∆ ?
a V

? implements I <nil>_ V implements I <V ′′>}

If Vi 6= ∅ for all i ∈ disp(I) and all Vi are finite, then M is finite.

Proof. With Lemma B.5.13 we know that only finitely many choices for the V ?
i s in the definition

of M exist. Moreover, V ?
i 6= nil for all i ∈ disp(I). The claim now follows with Lemma B.5.37.

Proof of Theorem 3.37. Let type(∆,Γ, e) be the algorithm induced by the rules in Figures 3.27,
3.29, and 3.30. Clearly, the third argument of a recursive call of type is always a subexpression
of the original expression argument; hence, there are only finitely many recursive calls of type.
Similarly, the function checking the relations ∆ à T ok and ∆ à P ok calls itself only on strictly
smaller arguments. Moreover, checking entailment and subtyping terminates by Theorem 3.27.

The only possible sources of non-termination left are the auxiliaries a-mtype, a-smtype, bound,
and fields. Thereof, a-smtype and fields obviously terminate. For bound∆(T ), we get with an
application of Lemma B.5.13 that the set {∆ q̀

′ T ≤ N} is finite, so such a call also terminates.
We now consider a call a-mtype(m,T, T ). If m = mc, then the call obviously terminates.

Otherwise, we check that all premises of rule alg-mtype-iface terminate. With Lemma B.5.13
we easily verify that all Vi in the premise are finite and that Vi 6= ∅ for all i ∈ disp(I). By
Lemma B.5.38 we then have that the argument of pick-constr is finite, so the premise involving
pick-constr terminates. The remaining premises terminate trivially.

B.6 Deciding Program Typing

This section proves Theorem 3.39 (soundness, completeness, and termination of unifyu) and
Theorem 3.40 (equivalence/soundness of the well-formedness criteria defined in Section 3.7.3
with respect to the criteria given in Section 3.5.3),

B.6.1 Proof of Theorem 3.39

Theorem 3.39 states that unifyu is sound, complete, and terminating. All proofs in this section
apply the equivalences and implications of Corollary B.5.2 implicitly.

Definition B.6.1. The notation sol(L) denotes the set of solutions of a unification problem modulo
greatest lower bounds L.

Lemma B.6.2. Assume that L = (∆, X, {G11 u? G12, . . . , Gn1 u? Gn2}) is a unification problem
modulo greatest lower bounds. Choose (ik, jk) ∈ {(1, 2), (2, 1)} for all k ∈ [n] and define L′ =
(∆, X, {G1i1 ≤? G1j1 , . . . , Gnin ≤? Gnjn}). Then sol(L′) = ∅ or sol(L) = sol(L′).

Proof. If sol(L′) = ∅, then nothing is to prove. Thus, assume sol(L′) 6= ∅.

� “sol(L) ⊆ sol(L′)”. Assume ϕ ∈ sol(L). Then, by the rules in Figure 3.18, there exists

((i′1, j
′
1), . . . , (i′n, j

′
n)) ∈

n∏
i=1

{(1, 2), (2, 1)}

288



B.6 Deciding Program Typing

such that for all k ∈ [n]

∆ ` ϕGki′k ≤ ϕGkj′k (B.6.1)

From sol(L′) 6= ∅ we get the existence of a substitution ψ such that for all k ∈ [n]

∆ ` ψGkik ≤ ϕGkjk

It is easy to see that L′ is a well-defined unification problem modulo greatest lower bounds.
Hence,

dom(ϕ) ⊆ X (B.6.2)

dom(ψ) ⊆ X (B.6.3)

We now show ∆ ` ϕGkik ≤ ϕGkjk for all k ∈ [n]. This implies ϕ ∈ sol(L′).
Assume k ∈ [n]. We have (ik, jk) = (1, 2) or (ik, jk) = (2, 1), and (i′k, j

′
k) = (1, 2) or

(i′k, j
′
k) = (2, 1). If (ik, jk) = (i′k, j

′
k) then with (B.6.1) ∆ ` ϕGkik ≤ ϕGkjk . Thus, assume

(ik, jk) 6= (i′k, j
′
k). W.l.o.g., (ik, jk) = (1, 2) and (i′k, j

′
k) = (2, 1). Hence, ∆ ` ϕGk2 ≤ ϕGk1

and ∆ ` ψGk1 ≤ ψGk2. With (B.6.2), (B.6.3), and because L is a unification problem
modulo greatest lower bounds, we know that ϕGk2, ϕGk1, ψGk2, and ψGk1 are all G-types.
Thus, with Theorem 3.12 and Lemma B.1.14:

∆ q̀
′ ϕGk2 ≤ ϕGk1

∆ q̀
′ ψGk1 ≤ ψGk2

Case distinction on the form of Gk2.

– Case Gk2 = Y for some Y : L is a unification problem modulo greatest lower bounds,
so Y /∈ X. Hence, with (B.6.2) and (B.6.3), ϕGk2 = Y = ψGk2. With Lemma B.1.10
then ψGk1 = Y , so Gk1 = Y . Thus, ∆ ` ϕGkik ≤ ϕGkjk .

– Case Gk2 = C<T> for some C<T>: With Lemma B.1.10 then ϕGk1 = ϕD<U>. By
inverting rule sub-q-alg-class, we get

ϕC<T> Ec ϕD<U>

ψD<U> Ec ψC<T>

The class graph is acyclic (criterion wf-prog-5), so

C = D

ϕT = ϕU

Thus, ∆ ` ϕGk1 ≤ ϕGk2, so ∆ ` ϕGkik ≤ ϕGkjk .

End case distinction on the form of Gk2.

� “sol(L′) ⊆ sol(L)”. If ϕ ∈ sol(L′) then obviously also ϕ ∈ sol(L).

Proof of Theorem 3.39. Termination of unifyu follows with Theorem 3.24.
Next, assume the unification problem modulo greater lower bounds L does not have a solution.

Thus, none of the unification problems modulo kernel subtyping constructed by unifyu has a
solution. The claim now follows from Theorem 3.23.

Finally, assume that L has a solution. Thus, some of the unification problems modulo kernel
subtyping constructed by unifyu have solutions. Assume that L′ is the first of these problems.
According to Lemma B.6.2, we then have sol(L) = sol(L′). The claim now follows with Theo-
rem 3.23.

289



B Formal Details of Chapter 3

B.6.2 Proof of Theorem 3.40

Theorem 3.40 states equivalence/soundness of the well-formedness criteria defined in Section 3.7.3
with respect to the criteria given in Section 3.5.3. All proofs in this section apply the equivalences
and implications of Corollary B.5.2 implicitly.

Lemma B.6.3. If a unification problem modulo kernel subtyping (or modulo greatest lower bounds)
has a solution, than it also has a most general solution.

Proof. Follows from Theorems 3.23, 3.24, and 3.39.

Proof of Theorem 3.40. The equivalence proofs for wf-prog-2′, wf-prog-3′, and wf-tenv-6′

are easy, using Lemma B.6.3 for proving that the formulations in Section 3.7.3 imply the original
formulations in Section 3.5.3.

To prove that criterion wf-prog-4′ implies criterion wf-prog-4 requires slightly more work.
Assume

implementation<X> I <T> [M ] where P . . .

implementation<Y > I <U> [N ] where Q . . .

with [V/X]M Ec [W/Y ]N and ∅  [W/Y ]Q.
W.l.o.g., X∩Y = ∅ and the two implementation definitions given are disjoint. From [V/X]M Ec

[W/Y ]N and Lemma B.6.3 we get the existence of a substitution ϕ such that ϕM Ec ϕN and
ϕ is more general than [V/X] and [W/Y ]; that is, [V/X] = ϕ′ϕ and [W/Y ] = ϕ′ϕ for some
substitution ϕ′.

Now assume P ∈ [V/X]P . That is, there exists some i such that P = [V/X]Pi. From crite-
rion wf-prog-4′ we then get that either {Q ∈ ϕQ}  ϕPi or ϕPi ∈ sup(ϕQ) ∪ {T extendsU |
T extendsU ′ ∈ ϕQ,ϕQ q̀

′ U ′ ≤ U}.

� Case {Q ∈ ϕQ}  ϕPi. We have ∅  ϕ′{Q ∈ ϕQ}, so ∅  [V/X]Pi by Lemma B.2.22.

� Case ϕPi ∈ sup(ϕQ) ∪ {T extendsU | T extendsU ′ ∈ ϕQ,ϕQ q̀
′ U ′ ≤ U}.

If ϕPi ∈ sup(ϕQ), then [V/X]Pi ∈ sup([W/Y ]Q) by Lemma B.1.13. We then get with
∅  [W/Y ]Q, Theorem 3.12, Lemma B.1.27, and Theorem 3.11. that ∅  [V/X]Pi.

Suppose ϕPi ∈ {T extendsU | T extendsU ′ ∈ ϕQ,ϕQ q̀
′ U ′ ≤ U} and assume ϕPi =

T extendsU with T extendsU ′ ∈ ϕQ and ϕQ q̀
′ U ′ ≤ U . With ∅  [W/Y ]Q then

∅ ` ϕ′T ≤ ϕ′U ′

and with rule sub-q-alg-kernel, Theorem 3.11, and Lemma B.2.22

∅ ` ϕ′U ′ ≤ ϕ′U

By transitivity of subtyping and rule ent-extends then ∅  [V/X]Pi.

This proves ∅  [V/X]P .

B.7 Syntactic Characterization of Finitary Closure

This section defines a syntactic but equivalent formulation of well-formedness criterion wf-tenv-2.
Most definitions, lemmas, and proofs in this section are heavily based on work by Viroli [232] and
by Kennedy and Pierce [113]. All proofs in this section apply the equivalences and implications
of Corollary B.5.2 implicitly.

290



B.7 Syntactic Characterization of Finitary Closure

Definition B.7.1 (Type parameter dependency graph). The type parameter dependency graph D
is a labeled graph D = (V ,E ). The set of vertices V consists of all the formal type parameters
to classes in the program:

V = {C#i | class C<X
n
> extends N . . . , i ∈ [n]}

The set of labeled edges E = E0 ∪ E1, where the labels are drawn from the set {0, 1}, represent
uses of formal type parameters. Edges labeled with 0 are called non-expansive edges:

E0 = {C#i
0→ D#j | class C<X

n
> extends N . . . ,D<T> subterm of N,Xi = Tj}

Edges labeled with 1 are called expansive edges:

E1 = {C#i
1→ D#j | class C<X

n
> extends N . . . ,D<T> subterm of N,

Xi proper subterm of Tj}

The type parameter dependency graph is said to be expansive if, and only if, it contains a cycle
with at least one expansive edge. Otherwise, the type parameter dependency graph is said to be
non-expansive.

At some points, we use the name of the formal type parameter Xi instead of C#i, assuming
the names of all formal type parameters are (α-converted to be) distinct. If labels of edges are
irrelevant, we simply omit them.

Definition B.7.2 (Levels in the type parameter dependency graph). Let D = (V ,E ) be a type
parameter dependency graph. The level of a vertex X ∈ V , written vlevel(X), is a natural number
such that for X,Y ∈ V the following property holds:

if X → Y and Y →+ X then vlevel(X) = vlevel(Y )

if X → Y and not Y →+ X then vlevel(X) > vlevel(Y )

Definition B.7.3 (Paths). A path ι is a sequence of formal type parameters, where ε denotes the
empty path and X ◦ ι is the path consisting of formal type parameter X prepended to path ι.
By interpreting a path ι as a partial function from terms to subterms, we may use ι to identify
a particular subterm in a type:

ε(T ) = T
ι(Ti) = U

(C#i ◦ ι)(C<T>) = U

We say that ι is a path in T if ι(T ) is defined.

In the following |ξ| denotes the length of a sequence ξ.

Definition B.7.4. Let L, δ ∈ N. The predicate φL,δ(ι) holds for a path ι if, and only if, ι can
be divided into a sequence of (possibly empty) sequences of type parameters whose levels are
bounded by 0, . . . , L− 1 and whose lengths are bounded by δ. That is, φL,δ(ι) means that ι has
the form X0X1 . . . XL−1, such that, for all l ∈ {0, . . . , L− 1}, vlevel(X) ≤ l for all X ∈ Xl and
|Xl| ≤ δ.

The predicate φL,δ is extended to types by defining that φL,δ(T ) holds for a type T if, and
only if, φL,δ(ι) holds for every path ι in T .

Definition B.7.5. The height of a type T , written height(T ), is defined as follows:

height(X) = 1

height(C<T>) = 1 + maxi(height(Ti))

height(I <T>) = 1 + maxi(height(Ti))

291



B Formal Details of Chapter 3

Lemma B.7.6. If φL,δ(T ) then height(T ) ≤ δL.

Proof. Easy.

Let D = (V ,E ) be the type parameter dependency graph of the underlying program. We define
L ∈ N as the number of levels in D (that is, 0 ≤ vlevel(X) < L for any formal type parameter
X). Moreover, we define δ ∈ N as a bound on the height of the superclasses of the underlying
program. That is, class C<X> extends N . . . implies height(N) ≤ δ. In the following, we write
φ instead of φL,δ.

Lemma B.7.7. If height(T ) ≤ δ then φ(T ).

Proof. Easy.

Lemma B.7.8. Suppose the type parameter dependency graph of the underlying program is non-
expansive. If N Ec M and φ(N) then φ(M).

Proof. We proceed by induction on the derivation of N Ec M . If the last rule in this derivation
is inh-class-refl, then the claim holds trivially. Otherwise, we have

class C<X> extends N ′ . . .

[T/X]N ′ Ec M

N = C<T>

We now show φ([T/X]N ′), the claim then follows by the I.H. Note that height(N ′) ≤ δ by
definition of δ.

Consider a path ι in [T/X]N ′. There are two possibilities. First, ι could be simply a path in
N ′ that maps to a non-variable type. In this case, we know |ι| ≤ δ, so we have φ(ι) immediately.

Otherwise ι = ι′ ◦ ι′′ for paths ι′ and ι′′ such that ι′ is non-empty, ι′(N ′) = Xi and ι′′ is a path
in Ti. Hence, C#i ◦ ι′′ is a path in C<T>, and so from φ(C<T>), we can deduce φ(C#i ◦ ι′′),
or written another way, φ(Xi ◦ ι′′). Now if vlevel(Xi) = k then ι′′ = Yk Yk+1 . . . YL−1, with
vlevel(Yli) ≤ l for all i and k ≤ l < L and with |Yk| < δ and |Yl| ≤ δ for k < l < L. Suppose

ι′ = Z ◦ Z. By definition of the type parameter dependency graph, we know that Xi
1→ Zj for

each j and that Xi
0→ Z. The type parameter dependency graph is non-expansive, so there is no j

such that Zj →+ Xi. Hence, vlevel(Zj) < vlevel(Xi) = k for each j. Finally, because |Z| < δ and
vlevel(Z) ≤ k and |Yk| < δ, we see that ι = Z (Z ◦ Yk)Yk+1 . . . YL−1 satisfies φ, as required.

Lemma B.7.9. Suppose the type parameter dependency graph of the underlying program is non-
expansive. Moreover, assume that δ is not only a bound on the height of the superclasses of the
underlying program, but also a bound on the height of the types in ∆. If ∆ q̀

′ U ≤ N and φ(U),
then φ(N).

Proof. We proceed by induction on the derivation of ∆ q̀
′ U ≤ N .

Case distinction on the last rule in the derivation of ∆ q̀
′ U ≤ N .

� Case rule sub-q-alg-obj: Trivial.

� Case rule sub-q-alg-var-refl: Impossible.

� Case rule sub-q-alg-var: Then X = U , X extendsU ′ ∈ ∆, and ∆ q̀
′ U ′ ≤ N . Hence,

height(U ′) ≤ δ, so φ(U ′) by Lemma B.7.7. The claim now follows from the I.H.

� Case rule sub-q-alg-class: Follows by Lemma B.7.8.

292



B.7 Syntactic Characterization of Finitary Closure

� Case rule sub-q-alg-iface: Impossible.

End case distinction on the last rule in the derivation of ∆ q̀
′ U ≤ N .

Lemma B.7.10. Suppose ∆ is finite and assume that the type parameter dependency graph of the
underlying program is non-expansive. Then closure∆(T ) is finite for every finite T .

Proof. Let T be a finite set of types. We can safely assume that δ is not only a bound on height
of the superclasses of the underlying program, but also a bound on the height of the types in T
and ∆. We now prove that the height of types in closure∆(T ) is bounded by δL; then, because
the set of types of a certain height is finite, it follows that closure∆(T ) is finite.

By Lemma B.7.6, it suffices to show that φ holds for all types in closure∆(T ). Assume T ∈
closure∆(T ). We proceed by induction on the derivation of T ∈ closure∆(T ).
Case distinction on the last rule of the derivation of T ∈ closure∆(T ).

� Case rule closure-elem: Then T in T , so height(T ) ≤ δ. Then φ(T ) with Lemma B.7.7.

� Case rule closure-up: Then we have U ∈ closure∆(T ) and ∆ q̀
′ U ≤ N and T = N .

From the I.H. we get φ(U). Moreover, with Lemma B.4.11 we have ∆ q̀
′ U ≤ N . The

claim now follows with Lemma B.7.9.

� Case rule closure-decomp-class: Then C<U> ∈ closure∆(T ) and T = Ui. From the I.H.
we know φ(C<U>), so φ(Ui) also holds.

� Case rule closure-decomp-iface: Analogously to the preceding case.

End case distinction on the last rule of the derivation of T ∈ closure∆(T ).

Lemma B.7.11. Suppose C<T> ∈ closure∆(T ).

(i) If C#i
0→ D#j then D<U> ∈ closure∆(T ) for some U with Uj = Ti.

(ii) If C#i
1→ D#j then D<U> ∈ closure∆(T ) for some U such that Ti is a proper subterm of

Uj.

Proof. We only proof the first claim. The proof of the second claim is similar.
From the definition of the type parameter dependency graph, we get

class C<X> extends N . . .

D<V > subterm of N

Vj = Xi

Obviously, ∆ q̀
′ C<T> ≤ [T/X]N , so we have with rule closure-up that

[T/X]N ∈ closure∆(T )

Possibly repeated applications of rule closure-decomp-class yield [T/X]D<V > ∈ closure∆(T ),
from which the claim follows immediately.

Lemma B.7.12. Assume closure∆(T ) is finite for every finite T . Then the type parameter
dependency graph is non-expansive.

Proof. We prove the contraposition; that is, we assume that the type parameter dependency
graph is expansive and show that there exists a finite set T such that closure∆(T ) infinite.

Suppose the type parameter dependency graph is expansive; that is, there is a cycle such that

at least one of the edges of the cycle (say the first) is expansive. Thus, either C#i
1→ C#i or

C#i
1→ D#j →+ C#i. Now consider C = closure∆({C<Object>}).

293



B Formal Details of Chapter 3

� By possibly repeated applications of Lemma B.7.11 we see that also C<U1> ∈ C for types
U1 such that Object is a proper subterm of U1i.

� By possibly repeated applications of Lemma B.7.11 we see that also C<U2> ∈ C for types
U2 such that U1i is a proper subterm of U2i.

� By possibly repeated applications of Lemma B.7.11 we see that also C<U3> ∈ C for types
U3 such that U2i is a proper subterm of U3i.

� . . .

Hence, there is a chain of types C<Object> = C<U0>,C<U1>,C<U2>, . . . such that C<Ui> ∈ C
and C<Ui+1> is strictly larger than C<Ui> for all i ∈ N. Thus, C is infinite.

We are now ready to give an equivalent and implementable formulation of criterion wf-tenv-2.

wf-tenv-2′ The type parameter dependency graph of the underlying program is non-expansive.

Theorem B.1. Criterion wf-tenv-2 and criterion wf-tenv-2′ are equivalent.

Proof. Follows from Lemma B.7.10, Lemma B.7.12, and the fact that type environments are
finite.

294



C
Formal Details of Chapter 4

C.1 Type Soundness for iFJ

This section contains the proofs of Theorem 4.6 (preservation) and Theorem 4.9 (progress), which
are necessary to complete the type soundness proof for iFJ (see Section 4.2.4). The section
implicitly assumes that the underlying iFJ program prog is well-formed; that is, `iFJ prog ok.

C.1.1 Proof of Theorem 4.6

Theorem 4.6 is the preservation theorem for iFJ. To reason about subtyping in iFJ, Figure C.1
introduces the relation `iFJ-a T ≤ U , which serves as an algorithmic variant of iFJ’s subtyping
relation.

Lemma C.1.1 (Reflexivity of algorithmic iFJ-subtyping). For all types T , `iFJ-a T ≤ T .

Proof. Obvious.

Lemma C.1.2 (Transitivity of algorithmic iFJ-subtyping). If `iFJ-a T ≤ U and `iFJ-a U ≤ V then
`iFJ-a T ≤ V .

Proof. We proceed by induction on the height of the derivation of `iFJ-a T ≤ U . The following
table lists all possible combinations for the last rules of the derivations of `iFJ-a T ≤ U and
`iFJ-a U ≤ V . (We omit the prefix “sub-alg-” and the suffix “-ifj” from the rule names.)

`iFJ-a T ≤ U

`iFJ-a U ≤ V
refl object class class-iface iface

refl 3 3 3 3 3
object E 3 E E E

class 3 3 I.H. I.H. E

class-iface 3 3 E E I.H.
iface 3 3 E E I.H.

For the combinations marked with “I.H.”, the claim follows directly from the induction hypoth-
esis. Combinations marked with “E” can never occur, because they put conflicting constraints on
the form of U . Combinations marked with “3” hold obviously.

295



C Formal Details of Chapter 4

Figure C.1 Algorithmic subtyping for iFJ.

`iFJ-a T ≤ U

sub-alg-refl-ifj

T 6= Object

`iFJ-a T ≤ T

sub-alg-object-ifj

`iFJ-a T ≤ Object

sub-alg-class-ifj

class C extends N . . . `iFJ-a N ≤ D
`iFJ-a C ≤ D

sub-alg-class-iface-ifj

`iFJ-a C ≤ D class D extends N implements J . . . `iFJ-a Ji ≤ I
`iFJ-a C ≤ I

sub-alg-iface-ifj

interface I extends J . . . `iFJ-a Ji ≤ J
`iFJ-a I ≤ J

Lemma C.1.3 (Equivalence of declarative and algorithmic subtyping for iFJ). For all types T and
U , it holds that `iFJ T ≤ U if, and only if, `iFJ-a T ≤ U .

Proof. The claim that `iFJ-a T ≤ U implies `iFJ T ≤ U follows by a straightforward induction
on the derivation of `iFJ-a T ≤ U . The proof of the other implication is straightforward, using
Lemma C.1.1 and Lemma C.1.2.

Lemma C.1.4. If `iFJ T ≤ C then T = D for some D.

Proof. By Lemma C.1.3, we may assume `iFJ-a T ≤ C. Then the claim holds obviously.

Lemma C.1.5. If fieldsiFJ(N) = T f and `iFJ M ≤ N then fieldsiFJ(M) = T f, U g and f, g are
pairwise disjoint.

Proof. From `iFJ M ≤ N we get `iFJ-a M ≤ N by Lemma C.1.3. The claim now follows by
induction on the derivation of `iFJ-a M ≤ N , using well-formedness criterion wf-ifj-3 to show
that the field names are disjoint.

Lemma C.1.6. If mtypeiFJ(m,T ) = msig and `iFJ T ′ ≤ T then mtypeiFJ(m,T
′) = msig.

Proof. From `iFJ T ′ ≤ T we get `iFJ-a T ′ ≤ T by Lemma C.1.3. If T = C for some C, then T ′ = D
for some D by Lemma C.1.4. In this case, the claim follows by a straightforward induction on the
derivation of `iFJ-a D ≤ C, using the premise of rule ok-override-ifj to ensure that overriding
method m preserves its signature.

The case T = Object is impossible because Object does not define any methods. Now assume
T = I for some I.

� If T ′ = I ′ for some I ′, then the claim follows by a straightforward induction on the deriva-
tion of `iFJ-a I ′ ≤ I, using the premise of rule ok-idef-ifj to ensure that interfaces do
not override methods of superinterfaces and that the names of all methods defined in the
superinterfaces of some interface are pairwise disjoint.

296



C.1 Type Soundness for iFJ

� If T ′ = N for some N then we know from `iFJ-a N ≤ I by inverting sub-alg-class-iface-ifj

that

`iFJ-a N ≤ C
class C extends M implements J . . .

`iFJ-a Ji ≤ I

Because the underlying program is well-typed we know `iFJ C implements Ji. A straight-
forward induction shows `iFJ C implements I, so mtypeiFJ(m,C) = msig by inverting rule
impl-iface-ifj. But we already showed that `iFJ-a N ≤ C and mtypeiFJ(m,C) = msig imply
mtypeiFJ(m,N) = msig .

Lemma C.1.7. If mtypeiFJ(m,T ) = msig and getmdefiFJ(m,N) = msig ′ {e} and `iFJ N ≤ T then
msig = msig ′.

Proof. An induction on the derivation of getmdef iFJ(m,N) = msig ′ {e} shows mtypeiFJ(m,N) =
msig ′. Then msig = msig ′ follows by Lemma C.1.6.

Lemma C.1.8. If getmdefiFJ(m,N) = T x → T {e} then this : N ′, x : T `iFJ e : T ′ such that
`iFJ N ≤ N ′ and `iFJ T ′ ≤ T .

Proof. We proceed by induction on the derivation of getmdef iFJ(m,N) = T x → T {e}. If the
last rule of this derivation is dyn-mdef-class-super-ifj, then the claim follows from the I.H.
Otherwise, the last rule is dyn-mdef-class-base-ifj, so N is a class that defines the method in
question. The claim now follows by rules ok-cdef-ifj and ok-mdef-in-class-ifj.

Lemma C.1.9 (Substitution lemma for iFJ). If Γ, x : T `iFJ e : U and Γ `iFJ d : T ′ with `iFJ T ′ ≤ T
then Γ `iFJ [d/x]e : U ′ for some U ′ with `iFJ U ′ ≤ U .

Proof. In the following, define Γ′ := Γ, x : T . We proceed by induction on the derivation of
Γ′ `iFJ e : U .
Case distinction on the last rule in the derivation of Γ′ `iFJ e : U .

� Case rule exp-var-ifj: Easy.

� Case rule exp-field-ifj: Then

e = e0.fi

Γ′ `iFJ e0 : C

fieldsiFJ(C) = U f

U = Ui

Applying the I.H., together with Lemma C.1.4, yields

Γ `iFJ [d/x]e0 : C ′

`iFJ C ′ ≤ C

By Lemma C.1.5

fieldsiFJ(C
′) = U f,U ′ f ′

Applying rule exp-field-ifj yields

Γ `iFJ [d/x]e0.fi : U

297



C Formal Details of Chapter 4

� Case rule exp-invoke-ifj: Then

e = e0.m(e)

Γ′ `iFJ e0 : T0

mtypeiFJ(m,T0) = U x→ U

(∀i) Γ′ `iFJ ei : Ti

(∀i) `iFJ Ti ≤ Ui
Applying the I.H. yields

Γ `iFJ [d/x]e0 : T ′0

`iFJ T ′0 ≤ T0

(∀i) Γ `iFJ [d/x]ei : T ′i

(∀i) `iFJ T ′i ≤ Ti
By Lemma C.1.6

mtypeiFJ(m,T
′
0) = U x→ U

Moreover, we have (∀i) `iFJ T ′i ≤ Ui by transitivity of subtyping. The claim now follows
with rule exp-invoke-ifj.

� Case rule exp-new-ifj: Then

e = newN(e)

fieldsiFJ(N) = U f

(∀i) Γ′ `iFJ ei : Ti

(∀i) `iFJ Ti ≤ Ui
Applying the I.H. yields

(∀i) Γ `iFJ [d/x]ei : T ′i

(∀i) `iFJ T ′i ≤ Ti
By transitivity of subtyping then (∀i) `iFJ T ′i ≤ Ui, so the claims follows by rule exp-new-ifj.

� Case rule exp-cast-ifj: Then e = cast(U, e′) and Γ′ `iFJ e′ : V . Applying the I.H. yields
Γ `iFJ [d/x]e′ : V ′, so the claim follows with rule exp-cast-ifj.

� Case rule exp-getdict-ifj: Then e = getdict(I, e′), U = DictI , and Γ′ `iFJ e′ : V . Applying
the I.H. yields Γ `iFJ [d/x]e′ : V ′, so the claim follows with rule exp-getdict-ifj.

� Case rule exp-let-ifj: Then

e = (letV y = e1 in e2)

Γ′ `iFJ e1 : V ′

`iFJ V ′ ≤ V
Γ′, y : V `iFJ e2 : U

W.l.o.g., y 6= x. Applying the I.H. yields

Γ `iFJ [d/x]e1 : V ′′

`iFJ V ′′ ≤ V ′

Γ, y : V `iFJ [d/x]e2 : U ′

`iFJ U ′ ≤ U

By transitivity of subtyping `iFJ V ′′ ≤ V , so the claim follows with rule exp-let-ifj.

298



C.1 Type Soundness for iFJ

End case distinction on the last rule in the derivation of Γ′ `iFJ e : U .

Lemma C.1.10. If Γ `iFJ newN(en) : T then T = N . Moreover, if fieldsiFJ(N) = U f
m

then
n = m and Γ `iFJ ei : U ′i with `iFJ U ′i ≤ Ui for all i ∈ [n].

Proof. Follows from inverting rule exp-new-ifj.

Lemma C.1.11. If Γ `iFJ v : T and unwrap(v) = newN(w) then Γ `iFJ newN(w) : N .

Proof. We proceed by induction on the derivation of unwrap(v) = newN(w). If the last rule in
this derivation is unwrap-base-ifj, then v = unwrap(v) and the claim follows with Lemma C.1.10.
Otherwise, the last rule is unwrap-step-ifj. Hence,

v = new WrapI(v′)

unwrap(v) = unwrap(v′)

The claim now follows from the I.H.

Lemma C.1.12 (Preservation for top-level reduction of iFJ). If ∅ `iFJ e : T and e 7−→iFJ e
′ then

∅ `iFJ e′ : T ′ for some T ′ with `iFJ T ′ ≤ T .

Proof. Case distinction on the last rule in the derivation of ∅ `iFJ e : T .

� Case rule exp-var-ifj: Impossible because there is no reduction rule for variables.

� Case rule exp-field-ifj: Then

e = e0.fj

∅ `iFJ e0 : C

fieldsiFJ(C) = U f

T = Uj

The reduction e 7−→iFJ e
′ must have been performed through rule dyn-field-ifj. With

Lemma C.1.10 we thus have

e0 = newC(v)

e′ = vj

∅ `iFJ vj : U ′j

`iFJ U ′j ≤ Uj

� Case rule exp-invoke-ifj: Then

e = e0.m(e)

∅ `iFJ e0 : T0

mtypeiFJ(m,T0) = U x→ T

(∀i) ∅ `iFJ ei : Ti

(∀i) `iFJ Ti ≤ Ui

299



C Formal Details of Chapter 4

The reduction e 7−→iFJ e
′ must have been performed through rule dyn-invoke-ifj. With

Lemma C.1.10 and Lemma C.1.7 we thus have

e0 = v = newN(w)

T0 = N

e = v

getmdef iFJ(m,N) = U x→ T {d}

e′ = [v/this, v/x]d

An application of Lemma C.1.8 yields

this : N ′, x : U `iFJ d : T ′′

`iFJ T ′′ ≤ T
`iFJ N ≤ N ′

Repeated applications of Lemma C.1.9 and transitivity of subtyping then yield

∅ `iFJ [v/this, v/x]d : T ′

`iFJ T ′ ≤ T

as required.

� Case rule exp-new-ifj: Impossible because there is no matching reduction rule.

� Case rule exp-cast-ifj: Then

e = cast(T, e0)

∅ `iFJ e0 : U

Case distinction on the rule used to perform the reduction e 7−→iFJ e
′.

– Case rule dyn-cast-ifj: Then

e0 = v

unwrap(v) = newN(w)

`iFJ N ≤ T
e′ = newN(w)

We now get with Lemma C.1.11

∅ `iFJ newN(w) : N

as required.

– Case rule dyn-cast-wrap-ifj: Then

e0 = v

T = I

unwrap(v) = newN(w)

e′ = new WrapI(newN(w))

300



C.1 Type Soundness for iFJ

We get with Lemma C.1.11 that

∅ `iFJ newN(w) : N

Well-formedness criterion wf-ifj-6 yields

`iFJ WrapI ≤ I
fieldsiFJ(WrapI) = Object wrapped

With rule exp-new-ifj then

∅ `iFJ new WrapI(newN(w)) : WrapI

as required.

– Case any other rule: Impossible.

End case distinction on the rule used to perform the reduction e 7−→iFJ e
′.

� Case rule exp-getdict-ifj: Then

e = getdict(I, e0)

T = DictI

∅ `iFJ e0 : U

The reduction e 7−→iFJ e
′ must have been performed through rule dyn-getdict-ifj. Hence

e0 = v

unwrap(v) = newN(w)

mindictiFJ{class DictI,N
′
. . . |`iFJ N ≤ N ′} = M

e′ = newM()

By definition of mindictiFJ, we know that M = DictI,N
′

for some DictI,N
′
. With well-

formedness criterion wf-ifj-5 we then have

fieldsiFJ(M) = •
`iFJ M ≤ DictI

Rule exp-new-ifj yields ∅ `iFJ newM() : M as required.

� Case rule exp-let-ifj: Then

e = (letU x = e1 in e2)

∅ `iFJ e1 : U ′

`iFJ U ′ ≤ U
x : U `iFJ e2 : T

The reduction e 7−→iFJ e
′ must have been performed through rule dyn-let-ifj. Thus

e1 = v

e′ = [v/x]e2

Lemma C.1.9 now yields ∅ `iFJ [v/x]e2 : T ′ with `iFJ T ′ ≤ T as required.

301



C Formal Details of Chapter 4

End case distinction on the last rule in the derivation of ∅ `iFJ e : T .

Proof of Theorem 4.6. From e −→iFJ e
′ we get by inverting rule dyn-context the existence of an

evaluation context E and expressions d, d′ such that e = E [d], e′ = E [d′], and d 7−→iFJ d
′. Thus, it

suffices to show the following claim:

If ∅ `iFJ E [e] : T and e 7−→iFJ e
′ then ∅ `iFJ E [e′] : T ′ with `iFJ T ′ ≤ T .

The proof of this claim is by induction on the structure of E . If E = � then the claim follows
by Lemma C.1.12. In all other cases, the form of E uniquely determines the rule used to derive
∅ `iFJ E [e] : T . Using the I.H. and applying the rule in question then proves the claim. If E = E ′.f
or E = E .m(e) then we additionally need Lemma C.1.5 and Lemma C.1.6, respectively.

C.1.2 Proof of Theorem 4.9

Theorem 4.9 is the progress theorem for iFJ.

Proof of Theorem 4.9. We proceed by induction on the derivation of ∅ `iFJ e : T .
Case distinction on the last rule in the derivation of ∅ `iFJ e : T .

� Case rule exp-var-ifj: Impossible.

� Case rule exp-field-ifj: Then

e = e0.fi

∅ `iFJ e0 : C

fieldsiFJ(C) = U f
n

T = Ui

– If e0 is value, we get by Lemma C.1.10

e0 = newC(vn)

Thus, e 7−→iFJ vi by rule dyn-field-ifj, so e −→iFJ e
′ by rule dyn-context for e′ := vi.

– If e0 is not a value then we get from the I.H. that either e0 −→iFJ e
′
0 or that e0 is

stuck on a bad cast or a bad dictionary lookup. The claim now follows easily by
constructing an appropriate evaluation context.

� Case rule exp-invoke-ifj: Then

e = e0.m(e)

∅ `iFJ e0 : T0

mtypeiFJ(m,T0) = U x→ T

(∀i) ∅ `iFJ ei : Ti

(∀i) `iFJ Ti ≤ Ui

– If e0 and all ei are values then we get with Lemma C.1.10 and the fact that mtypeiFJ
is undefined for Object

e0 = v0 = newC0(w0)

T0 = C0

e = v

302



C.1 Type Soundness for iFJ

By Lemma C.1.7 then

getmdef iFJ(m,C0) = U x→ T {d}

The claim now follows by setting E := � and using rules dyn-invoke-ifj in combina-
tion with dyn-context to derive v0.m(v) −→iFJ [v0/this, v/x]d.

– If e0 or one of the ei is not a value then the claim follows from the I.H. by constructing
an appropriate evaluation context.

� Case rule exp-new-ifj: Then e = newN(e). If all ei are values then e is a value. Otherwise,
the claim follows from the I.H. by constructing an appropriate evaluation context.

� Case rule exp-cast-ifj: Then

e = cast(T, e0)

∅ `iFJ e0 : U

– Assume e0 = v for some value v. Obviously, unwrap(v) = newN(w) for some N and
some w.

* If `iFJ N ≤ T then e −→iFJ newN(w) by rules dyn-cast-ifj and dyn-context-ifj.

* If not `iFJ N ≤ T but T = I and there exists a dictionary class DictI,M such that
`iFJ N ≤ M , then e −→iFJ new WrapI(newN(w)) by rules dyn-cast-wrap-ifj

and dyn-context-ifj.

* Otherwise, e is stuck on a bad cast by Definition 4.7 for E = �.

– If e0 is not a value, then the claim follows from the I.H. by constructing an appropriate
evaluation context.

� Case rule exp-getdict-ifj: Then

e = getdict(I, e0)

∅ `iFJ e0 : U

– Assume e0 = v for some value v. Obviously, unwrap(v) = newN(w) for some N and
some w. Define

M := {class DictI,N
′
. . . |`iFJ N ≤ N ′}

If mindictiFJM is undefined, then e is stuck on a bad dictionary lookup by Defini-
tion 4.8 with E = �. Otherwise, mindictiFJM = M for some M , so e −→iFJ newM()
by rules dyn-getdict-ifj and dyn-context-ifj.

– If e0 is not a value, then the claim follows from the I.H. by constructing an appropriate
evaluation context.

� Case rule exp-let-ifj: Then

e = (letU x = e1 in e2)

∅ `iFJ e1 : U ′

– If e1 is a value, then e −→iFJ [e1/x]e2 follows by rules dyn-let-ifj and dyn-context-ifj.

– If e1 is not a value, then the claim follows from the I.H. by constructing an appropriate
evaluation context.

End case distinction on the last rule in the derivation of ∅ `iFJ e : T .

303



C Formal Details of Chapter 4

C.2 Translation Preserves Static Semantics

This section shows that the translation from CoreGI[ to iFJ preserves the static semantics. It
includes the proofs for Theorem 4.12 (translation preserves types of expressions) and Theorem 4.12
(translation preserves well-formedness of programs). Each lemma in this section mentioning both
CoreGI[ and iFJ constructs makes the implicit assumption that the underlying iFJ program is the
translation of the underlying CoreGI[ program.

C.2.1 Proof of Theorem 4.11

Theorem 4.11 states that the translation from CoreGI[ to iFJ preserves the types of expressions.

Lemma C.2.1. If `[′ T ≤ U then `iFJ T ≤ U .

Proof. Straightforward rule inductions show that C E[c D and I E[i J imply `iFJ C ≤ D and
`iFJ I ≤ J , respectively. The original claim then follows by case distinction on the last rule in the
derivation of `[′ T ≤ U .

Lemma C.2.2. If `[ T ≤ U  nil then `iFJ T ≤ U .

Proof. The last rule in the derivation of `[ T ≤ U  nil must be sub-kernel[. Inverting the rule
yields `[′ T ≤ U . The claim now follows with Lemma C.2.1.

Lemma C.2.3. If `[ T ≤ U  I then U = I.

Proof. Obvious.

Lemma C.2.4. If Γ `iFJ e : T and `[ T ≤ U  I? then Γ `iFJ wrap(I?, e) : U ′ for some U ′ with
`iFJ U ′ ≤ U .

Proof. Case distinction on the form of I?.

� Case I? = nil: Then, by Lemma C.2.2, `iFJ T ≤ U . Moreover, wrap(I?, e) = e. Defining
U ′ := T finishes this case.

� Case I? = I: By Lemma C.2.3 we have U = I. Moreover, wrap(I?, e) = new WrapI(e). By
Convention 4.4, examining rule ok-idef[, and applying rule exp-new-ifj, we now get

Γ ` wrap(I?, e) : WrapI

`iFJ WrapI ≤ I

Defining U ′ := WrapI finishes this case.

End case distinction on the form of I?.

Lemma C.2.5. If `[ T ≤ I  nil then T = J for some J with J E[i I.

Proof. The derivation of `[ T ≤ I  nil must end with rule sub-kernel[. Thus, `[′ T ≤ I. The
last rule in this derivation must be sub-iface[, so the claim holds by inverting this rule.

Lemma C.2.6. If mtype[(m,T ) = msig  nil then mtypeiFJ(m,T ) = msig.

Proof. Case distinction on the form of m.

304



C.2 Translation Preserves Static Semantics

� Case m = mc: We proceed by induction on the derivation of mtype[(m,T ) = msig  
nil. The last rule of this derivation cannot be mtype-iface[ because this rule requires
m = mi. If the last is mtype-class-super[, then the claim follows from the I.H. and rule
mtype-class-super-ifj. If the last rule is mtype-class-base[, then the claim follows by rule
mtype-class-base-ifj because the translation from CoreGI[ to iFJ leaves signatures of class
methods unchanged.

� Case m = mi: Thus, the derivation of mtype[(m,T ) = msig  nil ends with rule
mtype-iface[. Inverting the rules yields

interface I extends J {m : msig }
`[ T ≤ I  nil

m = mk

msig = msigk

By Lemma C.2.5, we get T = I ′ for some I ′ with I ′ E[i I. Convention 4.2 ensures that
I is the only interface defining m. Moreover, the translation from CoreGI[ to iFJ leaves
signatures of interface methods unchanged. An easy induction on the derivation of I ′ E[i I
then shows that mtypeiFJ(m,T ) = msig .

End case distinction on the form of m.

Lemma C.2.7. If fields[(N) = T f then fieldsiFJ(N) = T f .

Proof. Straightforward induction on the derivation of fields[(N) = T f , using the fact that the
translation from CoreGI[ to iFJ neither changes the types of fields nor the superclass of some
class.

Lemma C.2.8. If mtype[(m,T ) = msig  I then `[ T ≤ I  I, mtypeiFJ(m, I) = msig, and
interface I contains a definition of method m.

Proof. The derivation of mtype[(m,T ) = msig  I ends with rule mtype-iface[. Inverting the
rule, together with Lemma C.2.3, yields

interface I extends J {m : msig }
`[ T ≤ I  I

m = mk

msig = msigk

Looking at rule ok-idef[, it is easy to verify that mtypeiFJ(m, I) = msig .

Proof of Theorem 4.11. We perform induction on the derivation of Γ `[ e : T  e′.

Case distinction on the last rule in the derivation of Γ `[ e : T  e′.

� Case rule exp-var[: Obvious.

� Case rule exp-field[: Follows from the I.H., Lemma C.2.7, and an application of rule
exp-field-ifj.

305



C Formal Details of Chapter 4

� Case rule exp-invoke[: Then

e = e0.m(e)

Γ `[ e0 : T0  e′0

mtype[(m,T0) = U x→ T  I? (C.2.1)

(∀i) Γ `[ ei : Ti  e′i

(∀i) `[ Ti ≤ Ui  J?
i

e′′0 = wrap(I?, e′0)

(∀i) e′′i = wrap(J?
i , e
′
i)

e′ = e′′0 .m(e′′)

Applying the I.H. yields

Γ `iFJ e′0 : T0 (C.2.2)

(∀i) Γ `iFJ e′i : Ti

With Lemma C.2.4 we then get for some T ′ that

(∀i) Γ `iFJ e′′i : T ′i

(∀i) `iFJ T ′i ≤ Ui

Case distinction on the form of I?.

– Case I? = nil: Then e′′0 = e′0. Moreover, by Lemma C.2.6

mtypeiFJ(m,T0) = U x→ T

The claim now follows with rule exp-invoke-ifj.

– Case I? 6= nil: Then I? = I for some I. With (C.2.2), an examination of rule ok-idef[,
and rule exp-new-ifj then

Γ `iFJ e′′0 : WrapI

`iFJ WrapI ≤ I

We have with (C.2.1) and Lemma C.2.8 that mtypeiFJ(m, I) = U x→ T . An applica-
tion of Lemma C.1.6 yields

mtypeiFJ(m,WrapI) = U x→ T

The claim now follows with rule exp-invoke-ifj.

End case distinction on the form of I?.

� Case rule exp-new[: Then

e = newN (e)

T = N

fields[(N) = U f

(∀i) Γ `[ ei : Ti  e′i

(∀i) `[ Ti ≤ Ui  J?
i

(∀i) e′′i = wrap(J?
i , e
′
i)

e′ = newN(e′′)

306



C.2 Translation Preserves Static Semantics

Applying the I.H. yields (∀i) Γ `[ e′i : Ti, so with Lemma C.2.4

(∀i) Γ `iFJ e′′i : U ′i

(∀i) `iFJ U ′′i ≤ Ui

With Lemma C.2.7

fieldsiFJ(N) = U f

The claim now follows with rule exp-new-ifj.

� Case rule exp-cast[: Follows from the I.H. and rule exp-cast-ifj.

End case distinction on the last rule in the derivation of Γ `[ e : T  e′.

C.2.2 Proof of Theorem 4.12

Theorem 4.12 postulates that the translation from CoreGI[ to iFJ preserves well-formedness of
programs.

Lemma C.2.9. If `[ prog ok  prog ′ then prog ′ fulfills all well-formedness criteria for iFJ pro-
grams from Figure 4.13.

Proof. Easy.

Lemma C.2.10. If N is an iFJ class that results as the translation of a CoreGI [ class, then
mtypeiFJ(m,N) = msig implies mtype[(m,N) = msig  nil.

Proof. The translation from CoreGI[ to iFJ neither changes the superclass nor the method names
of a class. An induction on the derivation of mtypeiFJ(m,N) = msig then shows mtype[(m,N) =
msig ′  nil for some msig ′. With Lemma C.2.6 and Lemma C.1.6 then msig ′ = msig .

Lemma C.2.11. If override-ok[(m : msig , C) then override-okiFJ(m : msig , C).

Proof. Assume

class C extends N . . .

mtypeiFJ(m,N) = msig ′

Because Object does not define any methods, N 6= Object . If N is the translation of a CoreGI[

class, then we have with Lemma C.2.10 that mtype[(m,N) = msig ′  nil. The premise of rule
ok-override[ then yields msig = msig ′. The claim now follows with rule ok-override-ifj.

If N is not the translation of a CoreGI[ class, then N is either a wrapper class of the form
WrapI or a dictionary class of the form DictI,M . But the translation from CoreGI[ to iFJ never
uses such classes as superclasses of other classes, so we obtain a contradiction.

Lemma C.2.12. If `[ m : mdef ok inC  mdef ′ then `iFJ mdef ′ ok inC.

Proof. Assume

mdef = msig {e}
msig = T x→ T

307



C Formal Details of Chapter 4

Figure C.2 Interface implementation through methods.

`iFJ m : mdef implements I

impl-iface-methods-ifj

interface I extends J
l {m′ : msig ′

k } (∀i ∈ [l]) m : msig { e }n implements Ji
(∀i ∈ [k]∃j ∈ [n]) m′i = mj and msig ′i = msigj

`iFJ m : msig { e }n implements I

Inverting rule ok-mdef-in-class[ and ok-mdef[ yields

mdef ′ = msig {e′}

override-ok[(m : msig , C)

this : C, x : T︸ ︷︷ ︸
=:Γ

`[ e : T ′  e′′

`[ T ′ ≤ T  I?

e′ = wrap(I?, e′′)

By Theorem 4.11 and Lemma C.2.4

Γ `iFJ e′ : T ′′

`iFJ T ′′ ≤ T

With Lemma C.2.11 also override-okiFJ(m : msig , C). The claim now follows by applying rule
ok-mdef-in-class-ifj.

Lemma C.2.13. If `[ cdef ok cdef ′ then `iFJ cdef ′ ok.

Proof. Follows easily with Lemma C.2.12.

Figure C.2 defines the auxiliary relation `iFJ m : mdef implements I, which asserts that all
methods of I are implemented by some method in m : mdef .

Lemma C.2.14. If `iFJ m : mdef implements I and a class C defines all methods in m : mdef ,
then `iFJ C implements I.

Proof. Easy induction on the derivation of `iFJ m : mdef implements I.

Lemma C.2.15. If wrapper-methods(I) = m : mdef then `iFJ m : mdef implements I.

Proof. Easy induction on the derivation of wrapper-methods(I) = m : mdef .

Lemma C.2.16. If a CoreGI [ interface I defines a method m with signature T x → T then
mtypeiFJ(m,DictI) = Object y, T x→ T .

Proof. Obvious by inverting rule ok-idef[.

Lemma C.2.17. If wrapper-methods(I) = m : mdef
n

and i ∈ [n] then `iFJ mi : mdef i ok inC for
all classes C that have Object as their superclass and fieldsiFJ(C) = Object wrapped.

308



C.2 Translation Preserves Static Semantics

Proof. We proceed by induction on the derivation of wrapper-methods(I) = m : mdef . Inverting
rule wrapper-methods[ yields

interface I extends J
l {m′ : msig

k }
(∀j ∈ [k]) msigj = T x→ U

(∀j ∈ [k]) mdef′j = T x→ U { getdict(I, this.wrapped).m′j(this.wrapped, x)}

m : mdef = m′ : mdef ′
k

wrapper-methods(J1) . . .wrapper-methods(Jl)

We need to consider two cases:

� If i > k then mi : mdef i ∈ wrapper-methods(Jp) for some p ∈ [l]. In this case, applying the
I.H. yields the desired result.

� If i ≤ k then mi : mdef i = m′i : mdef ′i. Assume

mi : mdef i = m : mdef = m : msig {e} = m : T x→ U {e}

and suppose C is a class with Object as its superclass and fieldsiFJ(C) = Object wrapped.
Obviously,

override-okiFJ(m : msig , C)

by rule ok-override-ifj. Moreover, we have for Γ := this : C, x : T that

Γ `iFJ this.wrapped : Object

by rules exp-var-ifj and exp-field-ifj. Hence, with rule exp-getdict-ifj then

Γ `iFJ getdict(I, this.wrapped) : DictI

By Lemma C.2.16

mtypeiFJ(m,DictI) = Object y, T x→ U

By rule exp-var-ifj also Γ `iFJ xi : Ti for all suitable i. Thus, with rule exp-invoke-ifj

Γ `iFJ getdict(I, this.wrapped).m(this.wrapped, x)︸ ︷︷ ︸
=e

: U

With reflexivity of subtyping we now get

`iFJ mi : mdef i ok inC

as required.

Lemma C.2.18. If `[ idef ok def
n

then `iFJ def i ok for all i ∈ [n].

Proof. Assume

idef = interface I extends J {m : msig }

Then def = idef 1, idef 2, cdef where

idef 1 = interface I extends J {m : msig }

idef 2 = interface DictI extends DictJ {m : Object y,msig }
cdef = class WrapI extends Object implements I {Object wrapped

wrapper-methods(I) }

309



C Formal Details of Chapter 4

With Convention 4.2 we immediately get that `iFJ idef 1 ok and `iFJ idef 2 ok. With Lemma C.2.14
and Lemma C.2.15 we get

`iFJ WrapI implements I

Obviously, WrapI fulfills the condition required by Lemma C.2.17. Thus, we have

`iFJ m : mdef ok in WrapI

for all methods m : mdef of WrapI . Now we get `iFJ cdef ok by rule ok-cdef-ifj.

Lemma C.2.19. If mtypeiFJ(m, I) = msig then mtypeiFJ(m,DictI) = Object y,msig.

Proof. By Convention 4.4, implementation interfaces such as DictI are not part of standalone iFJ
programs, so the underlying iFJ program must be in the image of the translation from CoreGI[.
Moreover, implementation interfaces are only generated for interfaces originally contained in the
CoreGI[ program. Thus, the iFJ interface I is the translation of a CoreGI[ interface.

We proceed by induction on the derivation of mtypeiFJ(m, I) = msig . If the last rule in the
derivation is mtype-iface-base-ifj then the claim follows immediate by rule ok-idef-ifj. Other-
wise, the last rule in the derivation is mtype-iface-super-ifj. Hence, I does not define method
m and mtypeiFJ(m,J) = msig for some direct superinterface J of I. Applying the I.H. yields
mtypeiFJ(m,DictJ) = Object y,msig . Because I is the translation of a CoreGI[ interface, we know
with Convention 4.2 that J is unique; that is, no other superinterface of I contains a definition
of m. Because I also does not define m, we get by examining rule ok-idef[ that DictI does not
define m. Hence, applying rule mtype-iface-super-ifj yields the desired result.

Lemma C.2.20. If dict-methods(I) = m : mdef
n

and i ∈ [n] and C is a class with Object as its
superclass, then `iFJ mi : mdef i ok inC.

Proof. We proceed by induction on the derivation of dict-methods(I) = m : mdef
n
. We have

interface I extends J
l {m′ : msig ′

k
}

(∀i ∈ [k]) msig ′i = T x→ U and mdef ′i = Object y,T x→ U { getdict(I, y).m′i(y, x)}

m : mdef
n

= m′ : mdef ′
k

dict-methods(J1) . . . dict-methods(Jl)

If i > k then the claim follows by the I.H. Thus, assume i ≤ k and suppose

mi : mdef i = m′i : mdef ′i = m′i : Object y, T x→ U { getdict(I, y).m′i(y, x)}

Define Γ := this : C, y : Object , x : T . Then Γ `iFJ getdict(I, y) : DictI by rules exp-getdict-ifj

and exp-var-ifj. Obviously, mtypeiFJ(mi, I) = T x→ U , so with Lemma C.2.19

mtypeiFJ(mi,DictI) = Object y, T x→ U

Using rule exp-var-ifj, reflexivity of subtyping, and rule exp-invoke-ifj, we then get

Γ `iFJ getdict(I, y).m′i(y, x) : U

Because Object is the superclass of C, we also have override-okiFJ(mi : Object y, T x→ U). Thus,
with reflexivity of subtyping and rule ok-mdef-in-class-ifj

`iFJ mi : mdef i ok inC

as required.

310



C.2 Translation Preserves Static Semantics

The notation Γ ⊆ Γ′ asserts that x : T ∈ Γ implies x : T ∈ Γ′.

Lemma C.2.21 (Weakening for iFJ). If Γ `iFJ e : T and Γ ⊆ Γ′ then Γ′ `iFJ e : T .

Proof. Straightforward induction on the derivation of Γ `iFJ e : T

Lemma C.2.22. If this : N `[ mdef implements msig  mdef ′ then `iFJ m : mdef ′ ok inC for
any m and any class C with Object as its superclass.

Proof. Define

Γ := this : N, x : T

and choose T , x, U , and e such that

mdef = T x→ U {e}

Then we get by inverting rules impl-meth[ and ok-mdef[ that

Γ `[ e : U ′  e′

`[ U ′ ≤ U  I?

d := wrap(I?, e′)

mdef ′ = Object y, T x→ U {letN z = cast(N, y) in [z/this]d}
y, z fresh

By Theorem 4.11

Γ `iFJ e′ : U ′

so with Lemma C.2.4 and Lemma C.2.21

Γ, z : N `iFJ d : U ′′

`iFJ U ′′ ≤ U

By Lemma C.1.9 then

x : T , z : N `iFJ [z/this]d : U ′′′

`iFJ U ′′′ ≤ U ′′

With Lemma C.2.21 then for any class C

this : C, y : Object , x : T︸ ︷︷ ︸
=:Γ′

, z : N `iFJ [z/this]d : U ′′′

Moreover, with rules exp-var-ifj and exp-cast-ifj

Γ′ `iFJ cast(N, y) : N

Thus, with reflexivity of subtyping and rule exp-let-ifj

Γ′ `iFJ letN z = cast(N, y) in [z/this]d : U ′′′

By transitivity of subtyping

`iFJ U ′′′ ≤ U

If we additionally assume that C’s superclass is Object , then by rule ok-override-ifj

override-okiFJ(m : Object y, T x→ U,C)

The claim now follows with rule ok-mdef-in-class-ifj.

311



C Formal Details of Chapter 4

Lemma C.2.23. If dict-methods(I) = m : mdef then `iFJ m : mdef implements DictI .

Proof. Straightforward induction on the derivation of dict-methods(I) = m : mdef .

Lemma C.2.24. If `[ impl ok cdef then `iFJ cdef ok.

Proof. Assume

impl = implementation I [N ] {m : mdef }

Then

interface I extends J
n {m : msig }

(∀i) this : N `[ mdef i implements msig i  mdefi
′ (C.2.3)

cdef = class DictI,N extends Object implements DictI {
m : mdef ′

dict-methods(J1) . . . dict-methods(Jn)
}

With Lemma C.2.20 and Lemma C.2.22 we get that

`iFJ m : mdef ok in DictI,N (C.2.4)

for all methods m : mdef of DictI,N . By Lemma C.2.23 we get

dict-methods(Ji) implements DictJi

for all i ∈ [n]. With (C.2.3) we get by examining rule ok-mdef-in-class[ that mdef i and mdef ′i
have the same method signature. Looking at how rule ok-idef[ generates the dictionary interface
DictI thus yields

`iFJ m : mdef ′ dict-methodsJi implements DictI

by rule impl-iface-methods-ifj. With Lemma C.2.14 then

`iFJ DictI,N implements DictI (C.2.5)

Using (C.2.4) and (C.2.5) with rule ok-cdef-ifj then yields `iFJ cdef ok.

Proof of Theorem 4.12. The claim that the translation from CoreGI[ to iFJ preserves well-formed-
ness of programs follows with Lemma C.2.13, Lemma C.2.18, Lemma C.2.24, Theorem 4.11, and
Lemma C.2.9.

C.3 Translation Preserves Dynamic Semantics

This section contains detailed proofs for Theorem 4.14 (≡ is an equivalence relation), Theo-
rem 4.15 (substitution preserves ≡), Theorem 4.16 (evaluation preserves ≡), Theorem 4.18 (≡
is sound with respect to contextual equivalence), Theorem 4.19 (translation and single-step eval-
uation commute modulo wrappers), and Theorem 4.20 (translation and multi-step evaluation
commute modulo wrappers). The lemmas in this section implicitly assume that the underlying
CoreGI[ and iFJ programs are well-formed. Moreover, each lemma mentioning both CoreGI[ and
iFJ constructs makes the implicit assumption that the underlying iFJ program is the translation
of the underlying CoreGI[ program. In this case, well-formedness of the CoreGI[ program already
guarantees well-formedness of the iFJ program by Theorem 4.12.

312



C.3 Translation Preserves Dynamic Semantics

C.3.1 Proof of Theorem 4.14

Theorem 4.14 states that ≡ is an equivalence relation.

Lemma C.3.1. Assume fieldsiFJ(C) = U f
n

and i ∈ [n]. Then there exists C ′ such that `iFJ C ≤
C ′, defines-field(C ′, fi), and fieldsiFJ(C

′) = U f
m

with m ≥ i.

Proof. Straightforward induction on the derivation of fieldsiFJ(C) = U f . (Note that iFJ does not
support field shadowing by well-formedness criterion wf-ifj-3.)

Lemma C.3.2. If mtypeiFJ(m,T ) = msig then there exists T ′ with `iFJ T ≤ T ′, topmost(T ′,m)
and mtypeiFJ(m,T

′) = msig.

Proof. If T = I for some I, then the claim follows from a straightforward induction on the
derivation of mtypeiFJ(m,T ) = msig.

Otherwise, suppose T = N for some class type N . We then proceed by induction on the depth
of N in the inheritance hierarchy. (The depth of a class type N in the inheritance hierarchy is 0
if N = Object, otherwise it is 1 + δ, where δ is the depth of N ’s superclass.)

Suppose that N has depth δ. If δ = 0, we obtain a contradiction because Object does not have
any methods. Thus, δ > 0.

Case distinction on the rule used to derive mtypeiFJ(m,N) = msig.

� Case mtype-class-base-ifj: Thus,

N = C

class C extends M implements J { . . . m : msig { e } }
msig = msigi

m = mi

– If mtypeiFJ(m,M) is undefined and mtypeiFJ(m,Jj) are undefined for all j, then rule
topmost-class yields topmost(N,m), so the claim holds.

– If there exists j such that mtypeiFJ(m,Jj) = msig′, then we have already shown
at the beginning of this proof that mtypeiFJ(m,T

′) = msig′ for some T ′ such that
`iFJ Jj ≤ T ′ and topmost(T ′,m). By transitivity of subtyping `iFJ N ≤ T ′. We then
get msig = msig ′ by Lemma C.1.6.

– Otherwise, mtypeiFJ(m,M) = msig′. By rule ok-override-ifj, we get msig = msig′.
The claim now follows by the I.H. and transitivity of subtyping.

� Case mtype-class-super-ifj: In this case, the claim follows by the I.H. and transitivity of
subtyping.

End case distinction on the rule used to derive mtypeiFJ(m,N) = msig.

Lemma C.3.3 (Reflexivity of ≡). If Γ `iFJ e : T ′ and `iFJ T ′ ≤ T then Γ `iFJ e ≡ e : T .

Proof. The proof is by induction on the structure of e.

Case distinction on the form of e.

� Case e = x: Obvious.

313



C Formal Details of Chapter 4

� Case e = e′.f : By inverting the last rule in the derivation of Γ `iFJ e′.f : T ′, we get

Γ `iFJ e′ : C

fieldsiFJ(C) = U f

f = fj

T ′ = Uj

From Lemma C.3.1 we get that there exists C ′ with `iFJ C ≤ C ′ such that defines-field(C ′, f),
fields(C ′) = V g, f = fj = gj , and T ′ = Uj = Vj . Using the I.H. we also get Γ `iFJ e′ ≡ e′ :
C ′. The claim now follows with rule equiv-field.

� Case e = e0.m(e): By inverting the last rule in the derivation of Γ `iFJ e0.m(e) : T ′, we get

Γ `iFJ e0 : U

mtypeiFJ(m,U) = T x→ T ′

(∀i) Γ `iFJ ei : T ′i

(∀i) `iFJ T ′i ≤ Ti

By Lemma C.3.2 we get the existence of U ′ such that

`iFJ U ≤ U ′

topmost(U ′,m)

mtypeiFJ(m,U
′) = T x→ T ′

Applying the I.H. yields

Γ `iFJ e0 ≡ e0 : U ′

(∀i) Γ `iFJ ei ≡ ei : Ti

The claim now follows by rule equiv-invoke.

� Case e = newN(e): By inverting the last rule in the derivation of Γ `iFJ newN(e) : T ′, we
get

T ′ = N

fieldsiFJ(N) = T f

(∀i) Γ `iFJ ei : T ′i

(∀i) `iFJ T ′i ≤ Ti

We then get from the I.H.

(∀i) Γ `iFJ ei ≡ ei : Ti

The claim now follows by equiv-new-class.

� Case e = cast(U, e′): By inverting the last rule in the derivation of Γ `iFJ cast(U, e′) : T ′,
we get

U = T ′

Γ `iFJ e′ : U ′

Obviously, `iFJ U ′ ≤ Object, so Γ `iFJ e′ ≡ e′ : Object follows from the I.H. The claim now
follows with rule equiv-cast.

314



C.3 Translation Preserves Dynamic Semantics

� Case e = getdict(I, e′): By inverting the last rule in the derivation of Γ `iFJ getdict(I, e′) :
T ′, we get

T ′ = DictI

Γ `iFJ e′ : U

As in the preceding case, Γ `iFJ e′ ≡ e′ : Object, so the claim follows by rule equiv-getdict.

� Case e = letU x = e1 in e2: By inverting the last rule in the derivation of Γ `iFJ letU x =
e1 in e2 : T ′, we get

Γ `iFJ e1 : U ′

`iFJ U ′ ≤ U
Γ, x : U `iFJ e2 : T ′

Applying the I.H. yields

Γ `iFJ e1 ≡ e1 : U

Γ, x : U `iFJ e2 ≡ e2 : T

The claim now follows with rule equiv-let.

End case distinction on the form of e.

Lemma C.3.4 (Symmetry of ≡). If Γ `iFJ e1 ≡ e2 : T then Γ `iFJ e2 ≡ e1 : T .

Proof. Straightforward induction on the derivation of Γ `iFJ e1 ≡ e2 : T .

Lemma C.3.5. If fieldsiFJ(C) = T f and fieldsiFJ(C) = U g then T f = U g.

Proof. The claim holds because iFJ does not support field shadowing (see well-formedness criterion
wf-ifj-3).

Lemma C.3.6. If Γ `iFJ e : T and Γ `iFJ e : U then T = U .

Proof. We proceed by induction on the derivation of Γ `iFJ e : T . It is obvious that the derivations
of Γ `iFJ e : T and Γ `iFJ e : U end with the same rule. If this rule is exp-var-ifj, exp-new-ifj,
exp-cast-ifj, or exp-getdict-ifj, then the claim holds trivially. If the last rule of the two deriva-
tions is exp-field-ifj, then the claim follows with the I.H. and Lemma C.3.5. If the last rule is
exp-invoke-ifj, then the claim follows with the I.H. and Lemma C.1.6. Finally, if the last rule is
exp-let-ifj, then the claim follows from the I.H.

Lemma C.3.7. If `iFJ C ≤ D1 and `iFJ C ≤ D2 then either `iFJ D1 ≤ D2 or `iFJ D2 ≤ D1.

Proof. By Lemma C.1.3, we may assume `iFJ-a C ≤ D1 and `iFJ-a C ≤ D2. By induction on these
two derivations and with Lemma C.1.4, we get that either `iFJ-a D1 ≤ D2 or `iFJ-a D2 ≤ D1. An
application of Lemma C.1.3 then finishes the proof.

Lemma C.3.8. Suppose that the iFJ program under consideration is in the image of the translation
from CoreGI [ to iFJ. If topmost(T,m) and topmost(U,m) and there exists a type V such that
`iFJ V ≤ T and `iFJ V ≤ U , then T = U .

Proof. Case distinction on the forms of T and U .

315



C Formal Details of Chapter 4

� Case T = I and U = J : From topmost(I,m) and topmost(J,m) we know that both
interfaces I and J define a method of name m. The only places where the translation from
CoreGI[ to iFJ generates interfaces is rule ok-idef[. Also, we know that distinct interfaces
in CoreGI[ define methods with disjoint names (Convention 4.2).

Thus, unless I = J , w.l.o.g. J = DictI . Because the namespaces for regular interfaces such
as I and dictionary interfaces such as DictI are disjoint (Convention 4.4), it is straightfor-
ward to verify that no type V exists with both `iFJ V ≤ I and `iFJ V ≤ DictI . Hence I = J
as required.

� Case T = N and U = M : Class Object does not define any methods, so with topmost(N,m)
and topmost(M,m) we know that N = C and M = D. With Lemma C.1.4 we get that
V = C ′ for some C ′, so with Lemma C.3.7 either `iFJ C ≤ D or `iFJ D ≤ C. In both cases,
it is easy to see that topmost(C,m) and topmost(D,m) imply C = D as required.

� Case T = N and U = I: With both topmost(N,m) and topmost(I,m), it is straightforward
to verify that N = C for some C and that `iFJ C ≤ I does not hold. Moreover, with
`iFJ V ≤ C and Lemma C.1.4, we know that V = D for some D. With `iFJ D ≤ I we also
know C 6= D.

In CoreGI[, the namespaces of class and interface methods is disjoint and names of interface
methods are unique (Convention 4.1 and Convention 4.2). However, topmost(C,m) and
topmost(I,m) imply that both C and I define a method of name m, so the only way how
the translation can insert m into class C is via rule ok-idef[ or via rule ok-impl[.

In the first case, we have C = WrapI , and in the second case, we have C = DictI,N
′

for some N ′. However, the translation never uses classes such as WrapI or DictI,N
′

as
superclasses of other classes. (Note that the namespaces for regular classes, for wrapper
classes, and for dictionary classes are disjoint by Convention 4.4.) Thus, no class D 6= C
can exist with `iFJ D ≤ C. But this is a contradiction.

� Case T = I and U = N : Analogously to the preceding case.

End case distinction on the forms of T and U .

Lemma C.3.9. If Γ `iFJ e1 ≡ e2 : T then Γ `iFJ e1 : U1 and Γ `iFJ e2 : U2 such that `iFJ U1 ≤ T
and `iFJ U2 ≤ T .

Proof. By Lemma C.3.4, it suffices to prove the claim for e1. We proceed by induction on the
derivation of Γ `iFJ e1 ≡ e2 : T . If the last rule of this derivation is equiv-var, then the claim
holds obviously. If the last rule is equiv-field-wrapped, then we have

e1 = new WrapI(e′1).wrapped

e2 = new WrapJ(e′2).wrapped

T = Object

Γ `iFJ e′1 ≡ e′2 : Object

Applying the I.H. yields

Γ `iFJ e′1 : Object

With well-formedness criterion wf-ifj-6 and rule exp-new-ifj then

Γ `iFJ new WrapI(e′1) : WrapI

Rule exp-field-ifj and well-formedness criterion wf-ifj-6 then yield Γ `iFJ e1 : T as required.

316



C.3 Translation Preserves Dynamic Semantics

In all other cases, the claims follows from the I.H., using Lemma C.1.5 if the last rule is
equiv-field, Lemma C.1.6 if the last rule is equiv-invoke, and well-formedness criterion wf-ifj-6
if the last rule is either rule equiv-new-wrap or rule equiv-new-object-left.

Lemma C.3.10. If defines-field(C, f) and defines-field(D, f) and either `iFJ C ≤ D or `iFJ D ≤ C,
then C = D.

Proof. W.l.o.g., assume `iFJ C ≤ D. Using Lemma C.1.3, we then have `iFJ-a C ≤ D; that is, D
is a superclass of C. Well-formedness criterion wf-ifj-3 then implies C = D.

The notation D :: J names the derivation of judgment J as D.

Lemma C.3.11 (Transitivity of ≡). Suppose that the iFJ program under consideration is in the
image of the translation from CoreGI [ to iFJ. If now D1 :: Γ `iFJ e1 ≡ e2 : T and D2 :: Γ `iFJ e2 ≡
e3 : T then Γ `iFJ e1 ≡ e3 : T .

Proof. We proceed by induction on the combined height of D1 and D2.
Case distinction on the form of e2.

� Case e2 = x: Then D1 and D2 both end with equiv-var and the claim holds trivially.

� Case e2 = e′2.f :

Case distinction on the last rules of D1 and D2.

– Case equiv-field / equiv-field: Then

e1 = e′1.f

Γ `iFJ e′1 ≡ e′2 : C

defines-field(C, f)

fieldsiFJ(C) = U f

f = fi

`iFJ Ui ≤ T

and also

e3 = e′3.f

Γ `iFJ e′2 ≡ e′3 : C ′

defines-field(C ′, f)

fieldsiFJ(C
′) = U ′ f ′

f = f ′i

`iFJ U ′i ≤ T

By Lemma C.3.9 we get

Γ `iFJ e′2 : C2

`iFJ C2 ≤ C
Γ `iFJ e′2 : C ′2

`iFJ C ′2 ≤ C ′

By Lemma C.3.6 then C2 = C ′2, so with Lemma C.3.7 either `iFJ C ≤ C ′ or `iFJ
C ′ ≤ C. With Lemma C.3.10 we then get C = C ′. Applying the I.H. then yields
Γ `iFJ e′1 ≡ e′3 : C, so the claim follows with rule equiv-field.

317



C Formal Details of Chapter 4

– Case equiv-field-wrapped / equiv-field-wrapped: Then

e1 = new WrapI1(e′1).wrapped

e2 = new WrapI2(e′2).wrapped

e3 = new WrapI3(e′3).wrapped

Γ `iFJ e′1 ≡ e′2 : Object

Γ `iFJ e′2 ≡ e′3 : Object

Applying the I.H. yields Γ `iFJ e′1 ≡ e′3 : Object, so the claim follows with rule
equiv-field-wrapped.

– Case equiv-field-wrapped / equiv-field: Then

e1 = new WrapI1(e′1).wrapped

e2 = new WrapI2(e′2).wrapped

e3 = e′3.wrapped

Γ `iFJ e′1 ≡ e′2 : Object

Γ `iFJ new WrapI2(e′2) ≡ e′3 : C (C.3.1)

Obviously, the derivation of (C.3.1) ends with rule equiv-new-class. Inverting the
rule yields, together with wf-ifj-6,

e′3 = new WrapI2(e′′3)

Γ `iFJ e′2 ≡ e′′3 : Object

Applying the I.H. yields Γ `iFJ e′1 ≡ e′′3 : Object, so the claim follows by rule
equiv-field-wrapped.

– Case equiv-field / equiv-field-wrapped: Analogously to the preceding case.

End case distinction on the last rules of D1 and D2.

� Case e2 = e20.m(e2): Then D1 and D2 both end with equiv-invoke, so we have

e1 = e10.m(e1)

Γ `iFJ e10 ≡ e20 : V

topmost(V,m)

(∀i) Γ `iFJ e1i ≡ e2i : Ui

mtypeiFJ(m,V ) = U x→ U

`iFJ U ≤ T

and also

e3 = e30.m(e3)

Γ `iFJ e20 ≡ e30 : V ′

topmost(V ′,m)

(∀i) Γ `iFJ e2i ≡ e3i : U ′i

mtypeiFJ(m,V
′) = U ′ x′ → U ′

`iFJ U ′ ≤ T

318



C.3 Translation Preserves Dynamic Semantics

By Lemma C.3.6 and Lemma C.3.9 we have

Γ `iFJ e20 : W

`iFJ W ≤ V
`iFJ W ≤ V ′

Because the program under consideration is in the image of the translation from CoreGI[ to
iFJ, we get with Lemma C.3.8 that V = V ′. Thus, we also have U = U ′ by Lemma C.1.6.
Moreover, the I.H. yields

Γ `iFJ e10 ≡ e30 : V

(∀i) Γ `iFJ e1i ≡ e3i : Ui

Thus, the claim follows from rule equiv-invoke.

� Case e2 = newN(e2): The following table lists all possible combinations for the last rules
of D1 and D2 (we omit the prefix “equiv-new-” from the rule names):

class wrap object-left object-right

class I.H. ? ? I.H.
wrap ? I.H. E E

object-left I.H. E I.H. I.H.
object-right I.H. E I.H. I.H.

For the combinations marked with “I.H.”, the claim follows directly from the induction
hypothesis. Combinations marked with “?” require the I.H. and well-formedness criterion
wf-ifj-6. Combinations marked with “E” can never occur because they put conflicting
constraints on the form of T .

� Case e2 = cast(T2, e
′
2): Hence, both D1 and D2 end with rule equiv-cast. The claim then

follows directly from the I.H.

� Case e2 = getdict(I2, e′2): Hence, both D1 and D2 end with rule equiv-getdict. The claim
then follows directly from the I.H.

� Case e2 = letU x = e21 in e22: In this case, both D1 and D2 end with rule equiv-let. Thus,
the claim follows directly from the I.H.

End case distinction on the form of e2.

Proof of Theorem 4.14. Follows from Lemmas C.3.3, C.3.4, and C.3.11.

C.3.2 Proof of Theorem 4.15

Theorem 4.15 states that substitution preserves equivalence modulo wrappers.

Lemma C.3.12. If `iFJ Object ≤ T then T = Object.

Proof. With `iFJ Object ≤ T we have `iFJ-a Object ≤ T by Lemma C.1.3. The claim now follows
because the derivation of `iFJ-a Object ≤ T must end with rule sub-alg-object-ifj.

Lemma C.3.13. If Γ `iFJ e1 ≡ e2 : T and `iFJ T ≤ U then Γ `iFJ e1 ≡ e2 : U .

319



C Formal Details of Chapter 4

Proof. We proceed by induction on the derivation of Γ `iFJ e1 ≡ e2 : T . If the last rule of this
derivation is equiv-let, then the claim follows from the I.H. If the last rule is equiv-field-wrapped,
equiv-new-object-left, or equiv-new-object-right, then U = Object by Lemma C.3.12, so the
claim obviously holds. In any other case, the premise of the last rule in the derivation allows us
to lift T to U using transitivity of subtyping.

Proof of Theorem 4.15. We proceed by induction on the derivation of Γ, x : U `iFJ e1 ≡ e2 : T . If
the last rule in the derivation is not equiv-var, the claim follows from the I.H. If the last rule in
the derivation is equiv-var then e1 = e2 = y and `iFJ (Γ, x : U)(y) ≤ T . If y 6= x then the claim
holds obviously. Otherwise, we have [d1/x]e1 = d1, [d2/x]e2 = d2, and `iFJ U ≤ T . The claim
then follows from the assumption Γ `iFJ d1 ≡ d2 : U and Lemma C.3.13.

C.3.3 Proof of Theorem 4.16

Theorem 4.16 states that evaluation in iFJ preserves equivalence modulo wrappers.

Lemma C.3.14. If `iFJ J1 ≤ I and `iFJ J2 ≤ I and topmost(I,m) then getmdefiFJ(m,WrapJ1) =
getmdefiFJ(m,WrapJ2).

Proof. By Convention 4.4, wrapper classes are not part of standalone iFJ programs, so the un-
derlying iFJ program must be in the image of the translation from CoreGI[. Moreover, wrapper
classes are only generated for interfaces originally contained in the CoreGI[ program. Thus, the iFJ
interfaces J1 and J2 are translation of CoreGI[ interfaces. Because the translation from CoreGI[

to iFJ leaves the superinterface hierarchy of such interfaces unchanged, the iFJ interface I must
also be the translation of a CoreGI[ interface.

With topmost(I,m) we know that interface I contains a definition of m. Because J1, J2, and I
are translations of CoreGI[ interfaces, we get by Convention 4.2 that I is the only superinterface
of J1 and J2 that contains a definition of m. By rule wrapper-methods[ we then have that
wrapper-methods(J1) and wrapper-methods(J2) each contain exactly one definition of m and that
this definition is identical. Examining rule ok-idef-ifj and the definition of getmdef iFJ yields the
desired result.

Lemma C.3.15. If topmost(I,m) then topmost(DictI ,m).

Proof. By topmost(I,m) we know that I defines method m. Examining rule ok-idef[ yields that
interface DictI also contains a definition of m. Thus, topmost(DictI ,m).

Lemma C.3.16. If Γ `iFJ v ≡ w : Object and unwrap(v) = newN(v) then unwrap(w) = newN(w)
and Γ ` newN(v) ≡ newN(w) : N .

Proof. We proceed by induction on the derivation of Γ `iFJ v ≡ w : Object.

Case distinction on the last rule in the derivation of Γ `iFJ v ≡ w : Object.

� Case rule equiv-new-class: Then

v = newM(v′)

w = newM(w′)

fieldsiFJ(M) = U f

(∀i) Γ `iFJ v′i ≡ w′i : Ui

320



C.3 Translation Preserves Dynamic Semantics

If M is not a wrapper class, then the claim obviously holds by equiv-new-class. Otherwise,
M = WrapI and, together with well-formedness criterion wf-ifj-6 and the definition of
unwrap,

v′ = v′1

w′ = w′1

U f = Object f1

unwrap(v) = unwrap(v′1)

unwrap(w) = unwrap(w′1)

Thus, Γ ` v′1 ≡ w′1 : Object, so applying the I.H. yields the desired result.

� Case rule equiv-new-wrap: Impossible because Object 6= I for any interface I.

� Case rule equiv-new-object-left: Follows from the I.H. and the definition of unwrap.

� Case rule equiv-new-object-right: Follows from the I.H. and the definition of unwrap.

� Case any other rule: Impossible.

End case distinction on the last rule in the derivation of Γ `iFJ v ≡ w : Object.

Lemma C.3.17. If Γ `iFJ e ≡ d : T and e is a value, then d is also a value.

Proof. Straightforward induction on the derivation of Γ `iFJ e ≡ d : T .

Lemma C.3.18. For all iFJ evaluation contexts E1 and E2, there exists an iFJ evaluation context
E3 such that for all expressions e it holds that E1[E2[e]] = E3[e].

Proof. Straightforward induction on the structure of E1.

Lemma C.3.19. Assume e −→iFJ e
′. Then E [e] −→iFJ E [e′] for any evaluation context E.

Proof. We get from e −→iFJ e
′ by inverting rule dyn-context-ifj that there exist E ′, d, d′ such

that

e = E ′[d]

e′ = E ′[d′]
d 7−→iFJ d

′

By Lemma C.3.18 we get the existence of E ′′ such that

E [E ′[d]]︸ ︷︷ ︸
=E[e]

= E ′′[d]

E [E ′[d′]]︸ ︷︷ ︸
=E[e′]

= E ′′[d′]

Hence, rule dyn-context-ifj yields E [e] −→iFJ E [e′].

Lemma C.3.20 (Weakening lemma for type-directed equivalence modulo wrappers). If Γ `iFJ
e1 ≡ e2 : T and Γ ⊆ Γ′ then Γ′ `iFJ e1 ≡ e2 : T .

Proof. Straightforward induction on the derivation of Γ `iFJ e1 ≡ e2 : T .

321



C Formal Details of Chapter 4

Lemma C.3.21 (Top-level evaluation preserves ≡). If Γ `iFJ e ≡ d : T and e 7−→iFJ e
′ then

d −→iFJ d
′ such that Γ `iFJ e′ ≡ d′ : T .

Proof. Induction on the derivation of Γ `iFJ e ≡ d : T .
Case distinction on the last rule in the derivation of Γ `iFJ e ≡ d : T .

� Case rule equiv-var: Impossible because there is no reduction rule for variables.

� Case rule equiv-field: We then have

e = e′′.fj

d = d′′.fj

Γ `iFJ e′′ ≡ d′′ : C

defines-field(C, fj)

fieldsiFJ(C) = U f

`iFJ Uj ≤ T

Moreover, the reduction e 7−→iFJ e
′ must have been performed through rule dyn-field-ifj.

Thus

e′′ = newN(v)

fieldsiFJ(N) = V g

fj = gk

e′ = vk

By Lemma C.3.9 and inverting rule exp-new-ifj we know

Γ `iFJ newN(v) : N

`iFJ N ≤ C

By Lemma C.1.5 we have that

V g = U f, V ′ g′

k = j

A case analysis on the last rule of the derivation of Γ `iFJ newN(v) ≡ d′′ : C reveals that
this derivation must end with rule equiv-new-class. Thus, together with Lemma C.3.17

d′′ = newN(w)

(∀i) Γ `iFJ vi ≡ wi : Vi

We then have by rules dyn-field-ifj and dyn-context-ifj

newN(w).fj︸ ︷︷ ︸
=d

−→iFJ wk︸︷︷︸
=:d′

and because j = k we get Γ `iFJ vk ≡ wk : Uj . With `iFJ Uj ≤ T and Lemma C.3.13 we
finally get

Γ `iFJ e′ ≡ d′ : T

322



C.3 Translation Preserves Dynamic Semantics

� Case rule equiv-field-wrapped: We have

e = new WrapI(e0).wrapped

d = new WrapJ(d0).wrapped

Γ `iFJ e0 ≡ d0 : Object (C.3.2)

T = Object

Obviously, the reduction e 7−→iFJ e
′ has been performed through dyn-field-ifj. Inverting

the rule yields, together with well-formedness criterion wf-ifj-6,

e′ = e0

Also by rule dyn-field-ifj and well-formedness criterion wf-ifj-6,

d 7−→iFJ d0

The claim now follows with (C.3.2) and rule dyn-context-ifj.

� Case rule equiv-invoke: By inverting the rule and because the reduction e 7−→iFJ e
′ must

have been performed through rule dyn-invoke-ifj, we get

e = v0.m(v)

d = d0.m(d)

Γ `iFJ v0 ≡ d0 : V (C.3.3)

topmost(V,m) (C.3.4)

(∀i) Γ `iFJ vi ≡ di : Ui (C.3.5)

mtypeiFJ(m,V ) = U x→ U (C.3.6)

`iFJ U ≤ T (C.3.7)

v0 = newN(w) (C.3.8)

getmdef iFJ(m,N) = U ′ x′ → U ′ {e′′} (C.3.9)

e′ = [v0/this, v/x′]e′′

By Lemma C.3.9 and inverting rule exp-new-ifj we know

Γ `iFJ newN(w) : N

`iFJ N ≤ V

Thus, by Lemma C.1.7

U x→ U = U ′ x′ → U ′ (C.3.10)

Case distinction on the form of V .

– Case V = Object : Contradiction to topmost(V,m).

– Case V = C: Then the derivation of (C.3.3) ends with rule equiv-new-class. Thus,
(C.3.8) together with Lemma C.3.17 yields

Γ `iFJ v0 ≡ d0 : N (C.3.11)

d0 = newN(w′)

`iFJ N ≤ C

323



C Formal Details of Chapter 4

From (C.3.5) and Lemma C.3.17

d = v′

Thus, by rules dyn-invoke-ifj and dyn-context-ifj

d −→iFJ [d0/this, d/x]e′′︸ ︷︷ ︸
=:d′

We have by (C.3.9), (C.3.10), and Lemma C.1.8 that

this : N ′, x : U `iFJ e′′ : U ′′ (C.3.12)

`iFJ U ′′ ≤ U (C.3.13)

`iFJ N ≤ N ′

By (C.3.11) and Lemma C.3.13 we have

Γ `iFJ v0 ≡ d0 : N ′

We get from (C.3.12), (C.3.13), (C.3.7), transitivity of subtyping, and Lemma C.3.3
that

this : N ′, x : U `iFJ e′′ ≡ e′′ : T

Hence, with (C.3.5) and possibly repeated applications of Theorem 4.15

∅ `iFJ [v0/this, v/x]e′′︸ ︷︷ ︸
=e′

≡ [d0/this, d/x]e′′︸ ︷︷ ︸
=d′

: T

An application of Lemma C.3.20 then finishes this case.

– Case V = I: Then the derivation of (C.3.3) must end with rule equiv-new-wrap, so
we have

v0 = new

=N︷ ︸︸ ︷
WrapJ(w1)

d0 = new WrapJ
′
(w′1)

`iFJ J ′ ≤ I
`iFJ J ≤ I

Γ `iFJ w1 ≡ w′1 : Object (C.3.14)

With (C.3.5) and Lemma C.3.17

d = v′

By Lemma C.3.14, (C.3.4), (C.3.9), and (C.3.10) we then get

getmdef iFJ(m,WrapJ
′
) = U x→ U {e′′}

Hence, by rules dyn-invoke-ifj and dyn-context-ifj

new WrapJ
′
(w′1).m(d)︸ ︷︷ ︸

=d

−→iFJ [d0/this, d/x]e′′︸ ︷︷ ︸
=:d′

324



C.3 Translation Preserves Dynamic Semantics

Because wrapper classes are generated only by the translation from CoreGI[ to iFJ, we
know by inverting rules ok-idef[ and wrapper-methods[ that

e′′ = getdict(I, this.wrapped).m(this.wrapped, x)

By rule equiv-field-wrapped and (C.3.14)

Γ `iFJ v0.wrapped ≡ d0.wrapped : Object

Hence, by rule equiv-getdict

Γ `iFJ [v0/this, v/x]getdict(I, this.wrapped) ≡
[d0/this, d/x]getdict(I, this.wrapped) : DictI

By Lemma C.3.15 applied to (C.3.4), and V = I we have

topmost(DictI ,m)

With Lemma C.2.19, (C.3.6), and V = I we get

mtypeiFJ(m,DictI) = Object y, U x→ U

Thus, with (C.3.5) and (C.3.7) we get by rule equiv-invoke

Γ `iFJ [v0/this, v/x]e′′︸ ︷︷ ︸
=e′

≡ [d0/this, d/x]e′′︸ ︷︷ ︸
=d′

: T

as required.

End case distinction on the form of V .

� Case rule equiv-new-class: Impossible because e would then have the form newN(e), but
such expressions are not reducible via 7−→iFJ.

� Case rule equiv-new-wrap: Impossible, for the same reason as in the preceding case.

� Case rule equiv-new-object-left: Impossible, for the same reason as in the case for rule
equiv-new-class.

� Case rule equiv-new-object-right: We then have from the premise of this rule

d = new WrapI(d′′)

T = Object

Γ `iFJ e ≡ d′′ : Object

Applying the I.H. yields

d′′ −→iFJ d
′′′

Γ `iFJ e′ ≡ d′′′ : Object

By Lemma C.3.19

d −→iFJ new WrapI(d′′′)︸ ︷︷ ︸
=:d′

and by rule equiv-new-object-right

Γ `iFJ e′ ≡ d′ : Object

325



C Formal Details of Chapter 4

� Case rule equiv-cast: Then we have

e = cast(U, e′′)

d = cast(U, d′′)

Γ `iFJ e′′ ≡ d′′ : Object

`iFJ U ≤ T (C.3.15)

It is obvious that e 7−→iFJ e
′ must have been derived either through rule dyn-cast-ifj or

rule dyn-cast-wrap-ifj. In both cases, we have

e′′ = v

unwrap(v) = newN(v)

We then get by Lemma C.3.17 for some value w that

d′′ = w

By Lemma C.3.16

unwrap(w) = newN(w)

Γ `iFJ newN(v) ≡ newN(w) : N (C.3.16)

Case distinction on the rule used to derive e 7−→iFJ e
′.

– Case rule dyn-cast-ifj: Then

`iFJ N ≤ U (C.3.17)

e′ = newN(v)

Thus, by rule dyn-cast-ifj

d︸︷︷︸
=cast(U,w)

7−→iFJ newN(w)︸ ︷︷ ︸
:=d′

Finally, we get with (C.3.15), (C.3.17), (C.3.16), transitivity of subtyping and an
application of Lemma C.3.13 that

Γ `iFJ e′ ≡ d′ : T

– Case rule dyn-cast-wrap-ifj: Then

U = I

not `iFJ N ≤ U
class DictI,M . . .

`iFJ N ≤M
e′ = new WrapI(newN(v)) (C.3.18)

By rule dyn-cast-wrap-ifj then

d 7−→iFJ new WrapI(newN(w))︸ ︷︷ ︸
=:d′

326



C.3 Translation Preserves Dynamic Semantics

With (C.3.16) and Lemma C.3.13 we get

Γ `iFJ newN(v) ≡ newN(w) : Object

With (C.3.18), the definition of d′, rule equiv-new-wrap, (C.3.15), and Lemma C.3.13
then

Γ `iFJ e′ ≡ d′ : T

End case distinction on the rule used to derive e 7−→iFJ e
′.

� Case rule equiv-getdict: Then we have

e = getdict(I, e′′)

d = getdict(I, d′′)

Γ `iFJ e′′ ≡ d′′ : Object

`iFJ DictI ≤ T (C.3.19)

From e 7−→iFJ e
′ we get

e′′ = v

unwrap(e′′) = newN(v)

mindictiFJ{class DictI,N
′
. . . | `iFJ N ≤ N ′} = M

e′ = newM()

We then get by Lemma C.3.17 for some value w that

d′′ = w

By Lemma C.3.16

unwrap(w) = newN(w)

Thus, by rule dyn-getdict-ifj

d 7−→iFJ newM()︸ ︷︷ ︸
=:d′

By well-formedness criterion wf-ifj-5 and rule mindict-ifj we get

`iFJ M ≤ DictI

Thus, with rule equiv-new-class, (C.3.19), Lemma C.3.3, and transitivity of subtyping

Γ `iFJ e′ ≡ d′ : T

� Case rule equiv-let: Thus, together with e 7−→iFJ e
′

e = (letU x = v in e2)

e′ = [v/x]e2

d = (letU x = d1 in d2)

Γ `iFJ v ≡ d1 : U

Γ, x : U `iFJ e2 ≡ d2 : T

327



C Formal Details of Chapter 4

From Lemma C.3.17 we get for some value w that d1 = w. By rule dyn-let-ifj then

d 7−→iFJ [w/x]d2︸ ︷︷ ︸
=:d′

Moreover, by Theorem 4.15

Γ `iFJ [v/x]e2︸ ︷︷ ︸
=e′

≡ d′ : T

End case distinction on the last rule in the derivation of Γ `iFJ e ≡ d : T .

Lemma C.3.22. If Γ `iFJ E [e1] ≡ d : T and e1 7−→iFJ e2 then there exist E ′, d1, and d2 such that
d = E ′[d1] and d1 −→iFJ d2 and Γ `iFJ E [e2] ≡ E ′[d2] : T .

Proof. The proof of this claim is by induction on the derivation of Γ `iFJ E [e1] ≡ d : T .
Case distinction on the form of E .

� Case E = �: Follows with Lemma C.3.21 for E ′ = �.

� Case E = E ′′.f : If the last rule in the derivation of Γ `iFJ E [e1] ≡ d : T is equiv-field, then
the claim follows by inverting the rule and from the I.H. Otherwise, the derivation ends
with rule equiv-field-wrapped. Then

f = wrapped

T = Object

E ′′[e1] = new WrapI(e′1)

d = new WrapJ(d′).wrapped

Γ `iFJ e′1 ≡ d′ : Object

Expressions of the form new WrapI(e′1) are not reducible via 7−→iFJ, so E ′′ 6= �. Thus

E ′′ = new WrapI(E ′′′)
e′1 = E ′′′[e1]

Applying the I.H. yields existence of E4, d1, d2 with

d′ = E4[d1]

d1 −→iFJ d2

Γ `iFJ E ′′′[e2] ≡ E4[d2] : Object

Define E ′ := new WrapI(E4).wrapped. Then E ′[d1] = d. Moreover, an application of rule
equiv-field-wrapped yields

Γ `iFJ new WrapI(E ′′′[e2]).wrapped︸ ︷︷ ︸
=E′′[e2].wrapped=E[e2]

≡ new WrapJ(E4[d2]).wrapped︸ ︷︷ ︸
=E′[d2]

: T

� Case E = E ′′.m(e′): Follows by inverting rule equiv-invoke and the I.H.

� Case E = e.m(v, E ′′, e′): Follows by inverting rule equiv-invoke and the I.H.

� Case E = newN(v, E ′′, e′):
Case distinction on the last rule in the derivation of Γ `iFJ E [e1] ≡ d : T .

328



C.3 Translation Preserves Dynamic Semantics

– Case rule equiv-new-class: Follows by the I.H.

– Case rule equiv-new-wrap: Follows by the I.H.

– Case rule equiv-new-object-left: Then

N = WrapI

v = • = e′

Γ `iFJ E ′′[e1] ≡ d : Object

Applying the I.H. yields the existence of E ′, d1, d2 such that

d = E ′[d1]

d1 −→iFJ d2

Γ `iFJ E ′′[e2] ≡ E ′[d2] : Object

By rule equiv-new-object-left, we also have

Γ `iFJ E [e2] ≡ E ′[d2] : Object

– Case rule equiv-new-object-right: Then

d = new WrapI(d′)

Γ `iFJ E [e1] ≡ d : Object

Applying the I.H. yields the existence of E ′′′, d1, d2 such that

d = E ′′′[d1]

d1 −→iFJ d2

Γ `iFJ E [e2] ≡ E ′′′[d2] : Object

Define E ′ = new WrapI(E ′′′). Then, by rule equiv-new-object-right

Γ `iFJ E [e2] ≡ E ′[d2] : Object

– Case other rule: Impossible.

End case distinction on the last rule in the derivation of Γ `iFJ E [e1] ≡ d : T .

� Case E = cast(U, E ′′): Follows by inverting rule equiv-cast and the I.H.

� Case E = getdict(I, E ′′): Follows by inverting rule equiv-getdict and the I.H.

� Case E = letU x = E ′′ in e: Follows by inverting rule equiv-let and the I.H.

End case distinction on the form of E .

Proof of Theorem 4.16. From e −→iFJ e
′ we get by inverting rule dyn-context the existence of

an evaluation context E and expressions e1, e2 such that e = E [e1] and e′ = E [e2] and e1 7−→iFJ e2.
Using Lemma C.3.22, we get the existence of an evaluation context E ′ and expressions d1, d2 such
that d = E ′[d1] and d1 −→iFJ d2 and Γ `iFJ e′ ≡ E ′[d2] : T . By Lemma C.3.19 then d −→iFJ E ′[d2].
Defining d′ := E ′[d2] finishes the proof.

329



C Formal Details of Chapter 4

C.3.4 Proof of Theorem 4.18

Theorem 4.18 states that ≡ is sound with respect to contextual equivalence.

Proof of Theorem 4.18. We get with Lemma C.3.9 that

Γ `iFJ e1 : T1

`iFJ T1 ≤ T
Γ `iFJ e2 : T2

`iFJ T2 ≤ T

Now assume that d is an expression with Γ, χ : T `iFJ d : U for some type U . With Lemma C.3.3
then

Γ, χ : T `iFJ d ≡ d : U

Thus, Theorem 4.15 yields

Γ `iFJ [e1/χ]d ≡ [e2/χ]d : U

W.l.o.g., assume that [e1/χ]d terminates; that is,

[e1/χ]d −→iFJ d1 −→iFJ . . . −→iFJ dn

for some normal form dn. We proceed by induction on n to show that [e2/χ]d terminates as well.

� If n = 0 then [e1/χ]d is already a normal form. Thus, [e2/χ]d is also a normal form,
otherwise Theorem 4.16 and Lemma C.3.4 would lead to a contradiction.

� If n > 0 then, with Theorem 4.16,

[e2/χ]d −→iFJ d
′
1

Γ `iFJ d1 ≡ d′1 : U

Applying the I.H. proves that d′1 terminates, so [e2/χ]d terminates as well.

C.3.5 Proof of Theorem 4.19

Theorem 4.19 states that translation and single-step evaluation in CoreGI[ commute modulo
wrappers.

Lemma C.3.23 (Transitivity of CoreGI[ subtyping). For all types T it holds that `[ T ≤ T  nil.

Proof. Easy because the relations E[c and E[i are reflexive.

Lemma C.3.24. If `[ I ≤ T  nil then either T = Object or T = J for some J with I E[i J .

Proof. The derivation of `[ I ≤ T  nil must end with rule sub-kernel[. Thus, `[′ I ≤ T . The
last rule in this derivation is either sub-object[ or sub-iface[. In both cases, the claim obviously
holds.

Lemma C.3.25. If `[ T ≤ N  I? then I? = nil and either N = Object or N = C, T = D for
some C,D with D E[c C.

Proof. The derivation of `[ T ≤ N  I? must end with rule sub-kernel[. Thus, I? = nil and
`[′ T ≤ N . Inspecting the rules defining this relation finishes the proof.

330



C.3 Translation Preserves Dynamic Semantics

Lemma C.3.26 (Transitivity of CoreGI[ kernel subtyping). If `[′ T ≤ U and `[′ U ≤ V then
`[′ T ≤ V .

Proof. It is straightforward to verify that the relations E[c and E[i are transitive. The original
claim now follows by case distinction on the last rules in the derivations of `[′ T ≤ U and
`[′ U ≤ V .

Definition C.3.27. The function trans(I?, T, J?) is defined as follows:

trans(I?, T, J?) =


J? if J? 6= nil

T if J? = nil, I? 6= nil, and T 6= Object

nil otherwise

Lemma C.3.28. If `[ T ≤ U  I? and `[ U ≤ V  J? then `[ T ≤ V  trans(I?, V, J?).

Proof. We proceed by cast distinction on the rules used to derive `[ T ≤ U  I? and `[ U ≤
V  J?.

Case distinction on the rules used to derive `[ T ≤ U  I?,`[ U ≤ V  J?.

� Case rules sub-kernel[ / sub-kernel[: In this case, the claim follows from Lemma C.3.26.

� Case rules sub-kernel[ / sub-impl[: In this case, the claim follows with Lemma C.3.26 and
rule sub-impl[.

� Case rules sub-impl[ / sub-kernel[: We then have

U = I

I? = I

`[
′
T ≤ N (C.3.20)

implementation I [N ] . . .

`[
′
I ≤ V

J? = nil

Case distinction on the form of V .

– Case V = Object : Then trans(I, V, nil) = nil and `[ T ≤ Object  nil.

– Case V = C: Impossible.

– Case V = J : Then I E[i J and trans(I, V, nil) = V = J . Using well-formedness
criterion wf-impl-1 and Lemma C.3.26, an easy induction shows

implementation J [M ] . . .

`[
′
N ≤M

By Lemma C.3.26 and (C.3.20) then `[′ T ≤M , so with rule sub-impl[

`[ T ≤ J  J

End case distinction on the form of V .

331



C Formal Details of Chapter 4

� Case rules sub-impl[ / sub-impl[: Then

U = I

I? = I

V = J

J? = J

implementation J [M ] . . .

`[
′
I ≤M

trans(I?, V, J?) = J

By examining the rules defining the `[′ · ≤ · relation, we see that M = Object . Thus, by
rules sub-object[ and sub-impl[

`[ T ≤ J  J

End case distinction on the rules used to derive `[ T ≤ U  I?,`[ U ≤ V  J?.

Lemma C.3.29. If mtype[(m,T ) = msig  I? and `[ T ′ ≤ T  J? then mtype[(m,T ′) =
msig  I ′? such that

I ′? =

{
J ′ if I? = nil and J? = J , where J ′ such that J E[i J

′

I? otherwise

Moreover, I ′? 6= I? implies that I ′? 6= nil is the interface that defines m.

Proof. We proceed by case distinction on whether m is a class or interface method.
Case distinction on the form of m.

� Case m = mc: Then I? = nil and T = C. From Lemma C.2.3 we know that J? = nil.
With Lemma C.3.25 then T ′ = C ′ for some C ′ such that C ′ E[c C. An easy induction on
the derivation of C ′ E[c C then shows

mtype[(m,C ′) = msig ′  nil

Moreover, the premise of rule ok-override[ ensures msig = msig ′. Note that nil = I? = I ′?.

� Case m = mi: Hence, the derivation of mtype[(m,T ) = msig  I? ends with rule
mtype-iface[, so we have

interface I extends J {m : msig }
`[ T ≤ I  I?

m = mk

msig = msigk

Case distinction on the form of I? and the form of J?.

– Case I? = nil and J? 6= nil: Then J? = J for some J . By Lemma C.2.3 and
Lemma C.2.5

T = J

J Ei I

332



C.3 Translation Preserves Dynamic Semantics

We then get `[ T ′ ≤ I  I by Lemma C.3.28 (note trans(J?, I, I?) = trans(J, I, nil) =
I) so by rule mtype-iface[

mtype[(m,T ′) = msig  I

and I is the interface defining m. Setting I ′? := I finishes this case.

– Case I? 6= nil or J? = nil: We get `[ T ′ ≤ I  I? by Lemma C.3.28 (note that
I? = nil implies J? = nil). The claim then follows by rule mtype-iface[.

End case distinction on the form of I? and the form of J?.

End case distinction on the form of m.

Lemma C.3.30. If fields[(C) = U f and `[ T ≤ C  I? then fields[(T ) = U f, V g and f, g are
pairwise disjoint.

Proof. With `[ T ≤ C  I? and Lemma C.3.25 we get I? = nil, T = D, and D E[c C. A

straightforward induction on the derivation of D E[c C shows fields[(T ) = U f, V g. The claim
that f, g are pairwise disjoint follows with well-formedness criterion wf[-class-1

Lemma C.3.31. If Γ `iFJ e1 ≡ wrap(I?, e2) : T and there exists T ′, U such that `[ T ′ ≤ T  I?

and `[ T ≤ U  J?, then it holds that Γ `iFJ wrap(J?, e1) ≡ wrap(trans(I?, U, J?), e2) : U .

Proof. We proceed by case distinction on the form of J?.
Case distinction on the form of J?.

� Case J? 6= nil: Then J? = J for some J and trans(I?, U, J?) = J . By Lemma C.2.3 U = J .
Assume that Γ `iFJ e1 ≡ e2 : Object holds. The claim then follows by rule equiv-new-wrap.

We now prove Γ `iFJ e1 ≡ e2 : Object by case distinction on the form of I?.

Case distinction on the form of I?.

– Case I? = nil: Then Γ `iFJ e1 ≡ e2 : T by the assumption and Lemma C.3.13
establishes the claim.

– Case I? 6= nil: By Lemma C.2.3 T = I. Thus, the derivation of Γ `iFJ e1 ≡
new WrapI(e2) : T (given in the assumption) must end with rule equiv-new-wrap.
Hence,

e1 = new WrapI
′
(e′1)

`iFJ I ′ ≤ I
Γ `iFJ e′1 ≡ e2 : Object

We then get Γ `iFJ e1 ≡ e2 : Object by rule equiv-new-object-left.

End case distinction on the form of I?.

� Case J? = nil: In this case, we perform another case distinction on the forms of I? and U .

Case distinction on the forms of I? and U .

– Case I? 6= nil and U 6= Object: Thus, I? = I for some I and

trans(I?, U, J?) = U

By Lemma C.2.3 and Lemma C.3.24 then

T = I

U = J for some J

I E[i J

333



C Formal Details of Chapter 4

Thus, the derivation of Γ `iFJ e1 ≡ new WrapI(e2) : T must end with an application
of rule equiv-new-wrap. Hence,

e1 = new WrapI
′
(e′1)

`iFJ I ′ ≤ I
Γ `iFJ e′1 ≡ e2 : Object

With I E[i J we get by rule sub-iface[ and Lemma C.2.1 that `iFJ I ≤ J . With tran-
sitivity of subtyping we then have also `iFJ I ′ ≤ J . Thus, with rule equiv-new-wrap

Γ `iFJ e1︸︷︷︸
=wrap(J?,e1)

≡ new WrapJ(e2)︸ ︷︷ ︸
=wrap(trans(I?,U,J?),e2)

: J︸︷︷︸
=U

as required.

– Case I? = nil or U = Object: In this case, trans(I?, U, J?) = nil. Moreover, by
Lemma C.2.2 `iFJ T ≤ U .

* If I? = nil then the claim follows with Lemma C.3.13.

* If I? 6= nil then U = Object, I? = I for some I, and, by Lemma C.2.3, T = I.
Thus, the derivation of Γ `iFJ e1 ≡ new WrapI(e2) : T (from the assumption)
must end with rule equiv-new-wrap. Hence,

e1 = new WrapI
′
(e′1)

Γ `iFJ e′1 ≡ e2 : Object

We then get by rule equiv-new-object-left that

Γ `iFJ e1 ≡ e2 : Object︸ ︷︷ ︸
=U

End case distinction on the forms of I? and U .

End case distinction on the form of J?.

Lemma C.3.32. If Γ `iFJ e ≡ wrap(I, e′) : I and `iFJ I ≤ J then Γ `iFJ e ≡ wrap(J, e′) : J .

Proof. Case distinction on the last rule in the derivation of Γ `iFJ e ≡ wrap(I, e′) : I.

� Case rule equiv-new-class: Thus e = new WrapI(e′′), so with well-formedness criterion
wf-ifj-6 and the premise of the rule

Γ `iFJ e′′ ≡ e′ : Object

It is now straightforward to verify that the claim follows by applying rule equiv-new-wrap.

� Case rule equiv-new-wrap: Then the claim follows with rule equiv-new-wrap.

� Case any other rule: Impossible.

End case distinction on the last rule in the derivation of Γ `iFJ e ≡ wrap(I, e′) : I.

Lemma C.3.33. If mtype[(m,T ) = msig  nil then there exists a type U such that `iFJ T ≤ U ,
mtypeiFJ(m,U) = msig, and topmost(U,m).

Proof. Follows with Lemma C.2.6 and Lemma C.3.2.

334



C.3 Translation Preserves Dynamic Semantics

Lemma C.3.34 (Substitution lemma for CoreGI[). If Γ, x : U `[ e : T  d and Γ `[ e′ :
U ′  d′ with `[ U ′ ≤ U  I?, then Γ `[ [e′/x]e : T ′  d′′ with `[ T ′ ≤ T  J? and
Γ `iFJ [wrap(I?, d′)/x]d ≡ wrap(J?, d′′) : T .

Proof. We proceed by induction on the derivation of Γ, x : U `[ e : T  d.
Case distinction on the last rule in the derivation of Γ, x : U `[ e : T  d.

� Case rule exp-var[: Then e = y = d.

Case distinction on whether or not x = y.

– Case x = y: Then [e′/x]e = e′ and T = U . Thus, we have for T ′ := U ′ and d′′ := d′

and J? := I? that

Γ `[ [e′/x]e : T ′  d′′

`[ T ′ ≤ T  J?

With Γ `[ e′ : U ′  d′ and Theorem 4.11 we get

Γ `iFJ d′ : U ′

so with `[ U ′ ≤ U  I? and Lemma C.2.4

Γ `iFJ wrap(I?, d′) : U ′′

`iFJ U ′′ ≤ U

for some U ′′. Moreover, [wrap(I?, d′)/x]d = wrap(I?, d′), T = U , I? = J?, and
d′′ = d′, so with Lemma C.3.3

Γ `iFJ [wrap(I?, d′)/x]d ≡ wrap(J?, d′′) : T

as requested.

– Case x 6= y: Then [e′/x]e = e and [wrap(I?, d′)/x]d = d. Define d′′ := d, T ′ := T ,
and J? := nil, and we get by the assumptions and Lemma C.3.23

Γ `[ [e′/x]e : T ′  d′′

`[ T ′ ≤ T  J?

Moreover, wrap(J?, d′′) = d and, with Theorem 4.11 Γ `iFJ d : T , so with Lemma C.3.3

Γ `iFJ [wrap(I?, d′)/x]d ≡ wrap(J?, d′′) : T

End case distinction on whether or not x = y.

� Case rule exp-field[: Then e = e0.f . We get from the premise of the rule

Γ, x : U `[ e0 : C  e′0

fields[(C) = V f
n

fj = f

Vj = T

d = e′0.f

335



C Formal Details of Chapter 4

Applying the I.H. and Lemma C.2.3 yields

Γ `[ [e′/x]e0 : C ′  e′′0

`[ C ′ ≤ C  nil

Γ `iFJ [wrap(I?, d′)/x]e′0 ≡ e′′0 : C (C.3.21)

By Lemma C.3.30 we have

fields[(C ′) = V f, V ′ f ′

Thus, by rule exp-field

Γ `[ [e′/x]e : T : e′′0 .f︸︷︷︸
=:d′′

By Lemma C.2.7 and Lemma C.3.1 we know that there exists some D such that

`iFJ C ≤ D
defines-field(D, f)

fieldsiFJ(D) = V f
m

m ≥ j

With (C.3.21) and Lemma C.3.13

Γ `iFJ [wrap(I?, d′)/x]e′0 ≡ e′′0 : D

Thus, by rule equiv-field

Γ `iFJ [wrap(I?, d′)/x](e′0.f ) ≡ e′′0 .f : T

Noting that d = e′0.f and d′′ = e′′0 .f , defining T ′ := T and J? := nil, and applying
Lemma C.3.23 to get `[ T ′ ≤ T  J? finishes this case.

� Case rule exp-invoke[: Then e = eo.m(e). We get from the premise of the rule

Γ, x : U `[ e0 : T0  d0

mtype[(m,T0) = V x→ T  I?
0 (C.3.22)

(∀i) Γ, x : U `[ ei : V ′i  di

(∀i) `[ V ′i ≤ Vi  I?
i

d′0 = wrap(I?
0 , d0)

(∀i) d′i = wrap(I?
i , di) (C.3.23)

and we have d = d′0.m(d′).

In the following, we define ϕ := [e′/x] and ϕ′ := [wrap(I?, d′)/x].

Applying the I.H. yields

Γ `[ ϕe0 : T ′0  d′′0 (C.3.24)

`[ T ′0 ≤ T0  J?
0 (C.3.25)

Γ `iFJ ϕ′d0 ≡ wrap(J?
0 , d
′′
0) : T0 (C.3.26)

(∀i) Γ `[ ϕei : V ′′i  d′′i (C.3.27)

(∀i) `[ V ′′i ≤ V ′i  J?
i

(∀i) Γ `iFJ ϕ′di ≡ wrap(J?
i , d
′′
i ) : V ′i

336



C.3 Translation Preserves Dynamic Semantics

With Lemma C.3.28

(∀i) `[ V ′′i ≤ Vi  trans(J?
i , Vi, I

?
i ) (C.3.28)

and with Lemma C.3.31

(∀i) Γ `iFJ wrap(I?
i , ϕ

′di) ≡ wrap(trans(J?
i , Vi, I

?
i ), d′′i ) : Vi (C.3.29)

Moreover, we get from Lemma C.3.29 that

mtype[(m,T ′0) = V x→ T  I ′?0 (C.3.30)

I ′?0 =

{
J ′0 if I?

0 = nil and J?
0 = J0 such that J0 E[i J

′
0

I?
0 otherwise

I ′?0 6= I?
0 implies that I ′?0 6= nil defines m

We get with (C.3.24), (C.3.30), (C.3.27), (C.3.28), and rule exp-invoke[ that

Γ `[ ϕ(e0.m(e)) : T  d′′′0 .m(d′′′) (C.3.31)

where

d′′′0 = wrap(I ′?0 , d
′′
0)

(∀i) d′′′i = wrap(trans(J?
i , Vi, I

?
i ), d′′i ) (C.3.32)

Our goal is now to prove that

Γ `iFJ ϕ′(d′0.m(d′)) ≡ d′′′0 .m(d′′′) : T (C.3.33)

Defining d′′ := d′′′0 .m(d′′′) and J? := nil then finishes the claim because we have (C.3.31),
d = d′0.m(d′), and `[ T ≤ T  nil by Lemma C.3.23.

We now prove (C.3.33).

Case distinction on I?
0 and J?

0 .

– Case J?
0 = J0 and I?

0 = nil: Then I ′?0 = J ′0 for some J ′0 defining m such that J0 E[i J
′
0.

Thus, by definition of d′0 and d′′′0 we get

d′0 = d0

d′′′0 = wrap(J ′0, d
′′
0)

With (C.3.25) and Lemma C.2.3 we get T0 = J0. By Lemma C.2.1, we know that
J0 E[i J

′
0 implies `iFJ J0 ≤ J ′0, so with (C.3.26) and Lemma C.3.32 we have

Γ `iFJ ϕ′d′0 ≡ wrap(J ′0, d
′′
0)︸ ︷︷ ︸

=d′′′0

: J ′0

Because J ′0 defines m, we have

topmost(J ′0,m)

With T0 = J0, J0 E[i J
′
0, Convention 4.2, and (C.3.22) it is easy to see that

mtypeiFJ(m,J
′
0) = V x→ T

Using (C.3.29), (C.3.23), and (C.3.32) we get

(∀i) Γ `iFJ ϕ′d′i ≡ d′′′i : Vi

Thus, rule equiv-invoke shows that (C.3.33) holds.

337



C Formal Details of Chapter 4

– Case J?
0 = nil or I?

0 6= nil: In this case, we have I ′?0 = I?
0 .

Case distinction on the form of I?
0 .

* Case I?
0 = I0: With (C.3.22), Lemma C.2.8, and the definition of topmost, we

see that

`[ T0 ≤ I0  I0 (C.3.34)

mtypeiFJ(m, I0) = V x→ T

topmost(I0,m)

With (C.3.26), (C.3.25), (C.3.34), and Lemma C.3.31, we get

Γ `iFJ ϕ′wrap(I0, d0) ≡ wrap(trans(J?
0 , I0, I0)︸ ︷︷ ︸

=I0

, d′′0) : I0

* Case I?
0 = nil: In this case also J?

0 = nil. With (C.3.22) and Lemma C.3.33 we
get the existence of a type W such that

mtypeiFJ(m,W ) = V x→ T

topmost(W,m)

`iFJ T0 ≤W

Using (C.3.26), the fact that I?
0 = nil = J?

0 , and Lemma C.3.13 we get

Γ `iFJ wrap(I?
0 , ϕ

′d0) ≡ wrap(I?
0 , d
′′
0) : W

End case distinction on the form of I?
0 .

In both cases, we have seen that there exists a type W such that

Γ `iFJ ϕ′
=d′0︷ ︸︸ ︷

wrap(I?
0 , d0) ≡

=d′′′0︷ ︸︸ ︷
wrap(I?

0 , d
′′
0) : W

mtypeiFJ(m,W ) = V x→ T

topmost(W,m)

With (C.3.29) we get

(∀i) Γ `iFJ ϕ′d′i ≡ d′′′i : Vi

Using rule equiv-invoke, we conclude that (C.3.33) holds.

End case distinction on I?
0 and J?

0 .

This finishes the proof of (C.3.33) and thus the proof of this case.

� Case rule exp-new[: Then e = newN (e) and we get from the premise of the rule

(∀i) Γ, x : U `[ ei : Ti  di

`[ N ok

fields[(N) = U f

(∀i) `[ Ti ≤ Ui  J?
i

(∀i) d′i = wrap(J?
i , di)

d = newN(d′)

T = N

338



C.3 Translation Preserves Dynamic Semantics

Applying the I.H. yields for all suitable i

Γ `[ [e′/x]ei : T ′i  d′′i

`[ T ′i ≤ Ti  J ′i
?

Γ `iFJ [wrap(I?, d′)/x]di ≡ wrap(J ′i
?
, d′′i ) : Ti

By Lemma C.3.28, we get

(∀i) `[ T ′i ≤ Ui  trans(J ′i
?
, Ui, J

?
i )

Define

(∀i) d′′′i := wrap(trans(J ′i
?
, Ui, J

?
i ), d′′i )

Now by rule exp-new[

Γ `[ [e′/x]e : T  newN(d′′′)︸ ︷︷ ︸
=:d′′

Define T ′ := T and J? := nil. Then by Lemma C.3.23 `[ T ′ ≤ T  J?. Moreover, by
Lemma C.3.31

Γ `iFJ wrap(J?
i , [wrap(I?, d′)/x]di)︸ ︷︷ ︸

=[wrap(I?,d′)/x]d′i

≡ d′′′i : Ui

Then by rule equiv-new-class

Γ `iFJ [wrap(I?, d′)/x] newN(d′)︸ ︷︷ ︸
=d

≡ newN(d′′′)︸ ︷︷ ︸
=wrap(J?,d′′)

: T

� Case rule exp-cast[: Then e = (T ) e0 and from the premise of the rule

`[ T ok

Γ, x : U `[ e0 : V  d0

d = cast(T, d0)

Applying the I.H. yields

Γ `[ [e′/x]e0 : V ′  d′0

`[ V ′ ≤ V  J ′
?

(C.3.35)

Γ `iFJ [wrap(I?, d′)/x]d0 ≡ wrap(J ′
?
, d′0) : V (C.3.36)

We get with rule exp-cast[

Γ `[ [e′/x]e : T  cast(T, d′0)︸ ︷︷ ︸
=:d′′

Define T ′ := T and J? := nil. Then by Lemma C.3.23 `[ T ′ ≤ T  J?.

Obviously, `[ V ≤ Object  nil. Thus, we get with (C.3.35), (C.3.36), and Lemma C.3.31
that

Γ `iFJ [wrap(I?, d′)/x]d0 ≡ wrap(trans(J ′
?
,Object, nil), d′0) : Object

339



C Formal Details of Chapter 4

By Definition C.3.27, we have trans(J ′
?
,Object, nil) = nil. Hence,

Γ `iFJ [wrap(I?, d′)/x]d0 ≡ d′0 : Object

Rule equiv-cast then yields

Γ `iFJ cast(T, [wrap(I?, d′)/x]d0)︸ ︷︷ ︸
=[wrap(I?,d′)/x]d

≡ cast(T, d′0)︸ ︷︷ ︸
=wrap(J?,d′′)

: T

as required.

End case distinction on the last rule in the derivation of Γ, x : U `[ e : T  d.

Lemma C.3.35. If Γ `[ e : T  d then fv(e) = fv(d) ⊆ dom(Γ).

Proof. Straightforward induction on the derivation of Γ `[ e : T  d.

Lemma C.3.36 (Multi-variable substitution lemma for CoreGI[). If Γ, x : U
n `[ e : T  d and,

for all i ∈ [n], Γ `[ ei : U ′i  di and `[ U ′i ≤ Ui  I?
i , then Γ `[ [e/x

n
]e : T ′  d′ with

`[ T ′ ≤ T  J? and Γ `iFJ [wrap(I?
i , di)/xi

i∈[n]
]d ≡ wrap(J?, d′) : T .

Proof. We proceed by induction on n. If n = 0 then the claim follows from Lemma C.3.23,
Lemma C.3.3, and Theorem 4.11. Suppose the claim already holds for n. Hence, for M =
{2, . . . , n+ 1}

Γ, x1 : U1 `[ [ei/xi
i∈M

]e : T ′′  d′′ (C.3.37)

`[ T ′′ ≤ T  J ′?

Γ, x1 : U1 `iFJ [wrap(I?
i , di)/xi

i∈M
]d ≡ wrap(J ′?, d′′) : T (C.3.38)

We now show the claim for n+ 1. Applying Lemma C.3.34 to (C.3.37) yields

Γ `[ [e1/x1]([ei/xi
i∈M

]e) : T ′  d′ (C.3.39)

`[ T ′ ≤ T ′′  J ′′?

Γ `iFJ [wrap(I?
1 , d1)/x1]︸ ︷︷ ︸
=:ϕ

d′′ ≡ wrap(J ′′?, d′) : T ′′

Define J? := trans(J ′′?, T, J ′?). Then by Lemma C.3.28

`[ T ′ ≤ T  J? (C.3.40)

Thus, by Lemma C.3.31

Γ `iFJ wrap(J ′?, ϕd′′) ≡ wrap(J?, d′) : T (C.3.41)

From the assumptions, Theorem 4.11, and Lemma C.2.4, we get

Γ `iFJ wrap(I?
1 , d1) : U ′′1

`iFJ U ′′1 ≤ U1

We now apply Theorem 4.15 (together with Lemma C.3.3) to (C.3.38) and get

Γ `iFJ ϕ[wrap(I?
i , di)/xi

i∈M
]d ≡ ϕwrap(J ′?, d′′) : T (C.3.42)

340



C.3 Translation Preserves Dynamic Semantics

From the assumptions and Lemma C.3.35, we get x1 /∈ fv(ei
i∈M ) and x1 /∈ fv(di

i∈M
). Thus

[e1/x1]([ei/xi
i∈M

]e) = [ei/xi
i∈[n+1]

]e

ϕ([wrap(I?
i , di)/xi

i∈M
]d) = [wrap(I?

i , di)/xi
i∈[n+1]

]d

Then (C.3.41) and (C.3.42) and Lemma C.3.11 yield

Γ `iFJ [wrap(I?
i , di)/xi

i∈[n+1]
]d ≡ wrap(J?, d′) : T

The claim now follows with (C.3.39) and (C.3.40).

Lemma C.3.37. If Γ `[ v : T  e then e is a value.

Proof. We proceed by induction on the derivation of Γ `[ v : T  e. We know v = newN (v), so
the derivation ends with rule exp-new[. Applying the I.H. yields that all arguments vi translate
to iFJ values wi, so the resulting iFJ expression e is a value newN(w).

Lemma C.3.38. Assume that m is a class method. If mtype[(m,N) = msig  nil and moreover

getmdef[(m,N) = mdef then mdef = msig {e} and mtypeiFJ(m,N) = msig and getmdefiFJ(m,N) =
msig {d} such that this : N, x : T `[ e : T ′  d′ and `[ T ′ ≤ T  I? and d = wrap(I?, d′).

Proof. The claim “mdef = msig {e}” is obvious by the definitions of mtype[ and getmdef[. The
claim“mtypeiFJ(m,N) = msig”follows by Lemma C.2.6. The claim“getmdef iFJ(m,N) = msig {d}”
holds by definition of getmdef iFJ. The rest of the lemma holds by the premises of the rules
ok-cdef[, ok-mdef-in-class[, and ok-mdef[.

Lemma C.3.39. If mtype[(m,N) = msig  I and getmdef[(m,N) = mdef then

interface I extends J {m : msig }

such that m = mi for some i and msig = msig i and

least-impl[{implementation I [M ] . . . | N E[c M}
= implementation I [M ] {m : mdef }

for some M such that N E[c M and mdef = mdef i = msig {e} for some e.

Proof. The derivation of mtype[(m,N) = msig  I must end with rule mtype-iface[. Inverting
the rule and using Lemma C.2.3 show that m is defined in interface I. By Convention 4.1 we
know that m cannot be defined in a class. Hence, the derivation of getmdef[(m,N) = mdef ends
with rule dyn-mdef-iface[. Inverting this rule, together with the premises of rules ok-impl[ and
impl-meth[, proves the rest of the lemma.

Lemma C.3.40. Assume that a CoreGI [ interface I defines a method m of arity k. Then it holds
that new WrapI(v).m(vk) −→+

iFJ getdict(I, v).m(v, vk).

Proof. Assume that m is defined as T x
k → U in interface I. The translation of I in rules ok-idef[

and wrapper-methods[ then places a method definition

mdef = T x
k → U { getdict(I, this.wrapped).m(this.wrapped, x)} }

in class WrapI . Thus, getmdef iFJ(m,WrapI) = mdef . The claim now follows by an application of
rule dyn-invoke-ifj, followed by two applications of rule dyn-field-ifj. (Class WrapI has a single
field wrapped by well-formedness criterion wf-ifj-6.)

341



C Formal Details of Chapter 4

Lemma C.3.41. For all class types N and M , it holds that N E[c M if, and only if, `iFJ N ≤M .

Proof. If N E[c M then `[′ N ≤M by rule sub-class[, so `iFJ N ≤M by Lemma C.2.1. On the
other hand, if `iFJ N ≤ M then `iFJ-a N ≤ M by Lemma C.1.3. Then N E[c M by induction on
the derivation of `iFJ-a N ≤M .

Lemma C.3.42. If N E[c M and

least-impl[{implementation I [M ] . . . | N E[c M}
= implementation I [M ] {m : mdef }

then getdict(I,newN(v)) 7−→iFJ new DictI,M ().

Proof. By using Lemma C.3.41, by examining the translation of implementations (rule ok-impl[),

and by the definitions of least-impl[ and mindictiFJ, it is easy to see that

mindictiFJ{class DictI,M . . . |`iFJ N ≤M} = class DictI,M . . .

Obviously, the class type N denotes a CoreGI[ class, so N is not a wrapper (Convention 4.4).
Thus, unwrap(newN(v)) = newN(v), so the claim follows with rule dyn-getdict-ifj.

Lemma C.3.43. Suppose that the underlying iFJ program is in the image of the translation from
CoreGI [. If `[ N ≤ I  I then there exists an iFJ class of the form class DictI,M . . . with
`iFJ N ≤M .

Proof. The derivation of `[ N ≤ I  I must end with rule sub-impl[, so we have

[ N implements I

Thus, there exists M and an implementation I [M ] . . . such that `[′ N ≤ M . We have
`iFJ N ≤M by Lemma C.2.1. The existence of class DictI,M . . . follows from the premise of rule
ok-impl[.

Lemma C.3.44. Suppose that the underlying iFJ program is in the image of the translation from
CoreGI [. If `iFJ N ≤ I then N is a wrapper class.

Proof. From `iFJ N ≤ I we get by Lemma C.1.3 that `iFJ-a N ≤ I. This derivation must end
with rule sub-alg-class-iface-ifj. Inverting the rule yields

`iFJ-a N ≤ C
class C extends M implements J . . .

`iFJ-a Ji ≤ I

Now assume that N is not a wrapper class; that is, N appears in the CoreGI[ program of which
the underlying iFJ program is the translation of. By examining rule ok-class[ we see that C
must also appear in this CoreGI[ program. However, then J = • by rule ok-class[. But this is a
contradiction to `iFJ-a Ji ≤ I. Hence, N must be a wrapper class.

Lemma C.3.45. If ∅ `[ e1 : T  e′1 and e1 7−→[ e2, then e′1 −→+
iFJ e

′
2 such that ∅ `[ e2 : T ′  e′′2

and `[ T ′ ≤ T  I? and ∅ `iFJ wrap(I?, e′′2) ≡ e′2 : T .

Proof. Case distinction on the rule used for the reduction e1 7−→[ e2.

342



C.3 Translation Preserves Dynamic Semantics

� Case rule dyn-field[: Then

e1 = newN (v).f

fields[(N) = U f

f = fi

e2 = vi (C.3.43)

The derivation of ∅ `[ e1 : T  e′1 must end with rule exp-field and its subderivation for

newN (v) must end with rule exp-new. Thus, with Lemma C.3.37 and because fields[ is
deterministic (by Lemmas C.3.5 and C.2.7), we have

∅ `[ newN (v) : N  newN(w) (C.3.44)

N = C for some C

`[ N ok

(∀i) ∅ `[ vi : Vi  w′i (C.3.45)

(∀i) `[ Vi ≤ Ui  J?
i (C.3.46)

(∀i) wi = wrap(J?
i , w

′
i)

e′1 = newN(w).f

T = Ui

With Lemma C.2.7, we have fieldsiFJ(N) = U f , so by rule dyn-field-ifj

e′1 7−→iFJ wi

With rule dyn-context-ifj then for e′2 := wi

e′1 −→iFJ e
′
2

Moreover, with (C.3.43), (C.3.45), T ′ := Vi, and e′′2 := w′i

∅ `[ e2 : T ′  e′′2

With (C.3.46) and I? := J?
i we have

`[ T ′ ≤ T  I?

With (C.3.45) and Theorem 4.11 we get ∅ `iFJ w′i : Vi. With Lemma C.2.4 and (C.3.46)
then ∅ `iFJ wrap(J?

i , w
′
i) : U ′i for some U ′i with `iFJ U ′i ≤ Ui. Obviously, wrap(J?

i , w
′
i) =

wrap(I?, e′′2) and wrap(J?
i , w

′
i) = e′2, so with T = Ui and Lemma C.3.3

∅ `iFJ wrap(I?, e′′2) ≡ e′2 : T

� Case rule dyn-invoke[: Then

e1 = v.m(v)

v = newN (w) (C.3.47)

getmdef[(m,N) = T x→ T {e}

e2 = [v/this, v/x]e

343



C Formal Details of Chapter 4

Obviously, the derivation of ∅ `[ e1 : T  e′1 must end with rule exp-invoke[. Hence, with
Lemma C.3.37

∅ `[ v : U  v′ (C.3.48)

mtype[(m,U) = V y → V  J? (C.3.49)

(∀i) ∅ `[ vi : Ui  v′i (C.3.50)

(∀i) `[ Ui ≤ Vi  J?
i (C.3.51)

(∀i) v′′i = wrap(J?
i , v
′
i)

v′′ = wrap(J?, v′)

e′1 = v′′.m(v′′)

With (C.3.47) and (C.3.48) we get by inverting rule exp-new[

U = N (C.3.52)

(∀i) ∅ `[ wi : Wi  w′i

fields[(N) = W ′ f

(∀i) `[ Wi ≤W ′i  J ′?i

(∀i) w′′i = wrap(J ′?i , w
′
i)

v′ = newN(w′′)

Case distinction on the form of J?.

– Case J? = nil: Assume thatm is an interface method. Thus, the derivation of (C.3.49)
ends with rule mtype-iface[. Inverting this rule then yields `[ U ≤ J  nil for some
interface J . With (C.3.52) we then have `[ N ≤ J  nil, which is a contradiction to
Lemma C.2.5. Hence, m is not an interface method but a class method.

By Lemma C.3.38 we then get

T x→ T = V y → V

mtypeiFJ(m,N) = T x→ T

getmdef iFJ(m,N) = T x→ T {d}
this : N, x : T `[ e : T ′′  d′ (C.3.53)

`[ T ′′ ≤ T  J ′?

d = wrap(J ′?, d′)

By rules dyn-invoke-ifj and dyn-context-ifj we then have

v′.m(v′′)︸ ︷︷ ︸
=e′1

−→iFJ wrap(J ′?, [v′/this, v′′/x]d′)︸ ︷︷ ︸
=:e′2

(C.3.54)

Applying Lemma C.3.36 to (C.3.53), (C.3.50), (C.3.51), and (C.3.48) together with
Lemma C.3.23 yield

∅ `[
=e2︷ ︸︸ ︷

[v/this, v/x]e : T ′  e′′2 (C.3.55)

`[ T ′ ≤ T ′′  J ′′?

∅ `iFJ [v′/this, v′′/x]d′ ≡ wrap(J ′′?, e′′2) : T ′′

344



C.3 Translation Preserves Dynamic Semantics

Define I? := trans(J ′′?, T, J ′?). By Lemma C.3.28 we then have

`[ T ′ ≤ T  I? (C.3.56)

Moreover, Lemma C.3.31 yields

∅ `iFJ wrap(J ′?, [v′/this, v′′/x]d′)︸ ︷︷ ︸
=e′2

≡ wrap(I?, e′′2) : T

Applying Lemma C.3.4 to this equation and using (C.3.54), (C.3.55), and (C.3.56)
then yields the desired result.

– Case J? = J : By Lemma C.3.39 we get

interface J extends J {m : msig }
m = mk

msigk = V y → V

least-impl[{implementation J [M ] . . . | N E[c M}
= implementation J [M ] {m : mdef }

N E[c M

T x→ T {e} = mdef k

T x→ T = V y → V

Moreover, we have

v′′ = new WrapJ(v′)

By Lemma C.3.40 and Lemma C.3.42 we have

e′1 −→+
iFJ getdict(J, v′).m(v′, v′′)

−→iFJ new DictJ,M ().m(v′, v′′) (C.3.57)

Using rules mtype-class-base-ifj, ok-mdef[, impl-meth[, and ok-impl[, it is straight-
forward to verify that

getmdef iFJ(m,DictJ,M ) = Object z, T x→ T {e′}
this : M,x : T `[ e : T ′′  e′′ (C.3.58)

`[ T ′′ ≤ T  J ′? (C.3.59)

e′ = letM z′ = cast(M, z) in [z′/this]wrap(J ′?, e′′)

z, z′ fresh

Thus, we have

new DictJ,M ().m(v′, v′′)

7−→iFJ [new DictJ,M ()/this, v′/z, v′′/x]e′ (C.3.60)

= letM z′ = cast(M,v′) in [z′/this, v′′/x]wrap(J ′?, e′′) (C.3.61)

−→iFJ letM z′ = v′ in [z′/this, v′′/x]wrap(J ′?, e′′) (C.3.62)

7−→iFJ [v′/this, v′′/x]wrap(J ′?, e′′) (C.3.63)

345



C Formal Details of Chapter 4

(Reduction (C.3.60) follows by dyn-invoke-ifj, equation (C.3.61) holds because z, z′

are fresh and values like v′ are closed, reduction (C.3.62) follows by dyn-context-ifj

and dyn-cast-ifj, and reduction (C.3.63) follows by dyn-let-ifj.)

Together with (C.3.57) we have

e′1 −→+
iFJ

=:ϕ︷ ︸︸ ︷
[v′/this, v′′/x] wrap(J ′?, e′′)︸ ︷︷ ︸

=:e′2

(C.3.64)

With (C.3.58), (C.3.48), (C.3.50), (C.3.51), and Lemma C.3.36 we get

∅ `[
=e2︷ ︸︸ ︷

[v/this, v/x]e : T ′  e′′2 (C.3.65)

`[ T ′ ≤ T ′′  J ′′? (C.3.66)

∅ `iFJ ϕe′′ ≡ wrap(J ′′?, e′′2) : T ′′

By Lemma C.3.28 we get with (C.3.59) and (C.3.66) that

`[ T ′ ≤ T  trans(J ′′?, T, J ′?)︸ ︷︷ ︸
:=I?

With Lemma C.3.31 then

∅ `iFJ wrap(J?, ϕe′′)︸ ︷︷ ︸
=e′2

≡ wrap(I?, e′′2) : T

Then (C.3.64), (C.3.65), and Lemma C.3.4 finish this case.

End case distinction on the form of J?.

� Case rule dyn-cast[: Then

e1 = (U) v

e2 = v = newN (v) (C.3.67)

`[ N ≤ U  J? (C.3.68)

Obviously, the derivation of ∅ `[ e1 : T  e′1 ends with rule exp-cast[. Hence, with
Lemma C.3.37, we have

U = T (C.3.69)

`[ U ok

∅ `[ v : V  w (C.3.70)

e′1 = cast(U,w)

With v = newN (v), we know that the derivation of (C.3.70) ends with an application of

346



C.3 Translation Preserves Dynamic Semantics

rule exp-new[. Inverting the rule yields

(∀i) ∅ `[ vi : Ti  w′i

`[ N ok

fields[(N) = U f

(∀i) `[ Ti ≤ Ui  J?
i

(∀i) wi = wrap(J?
i , w

′
i)

V = N (C.3.71)

w = newN(w) (C.3.72)

By Convention 4.4, we know that N is not a wrapper class, so

unwrap(w) = w

Moreover, we get with Theorem 4.11, Lemma C.2.4, Lemma C.2.7, and rule exp-new-ifj

that

∅ `iFJ w : N (C.3.73)

Case distinction on whether or not `iFJ N ≤ U .

– Case `iFJ N ≤ U : Then by rule dyn-cast-ifj

cast(U,w)︸ ︷︷ ︸
=e′1

7−→iFJ w︸︷︷︸
=:e′2

With (C.3.67), (C.3.70), (C.3.71), and (C.3.72), we get for T ′ := N that

∅ `[ e2 : T ′  e′2

Moreover, we get for I? := J? with (C.3.68) and (C.3.69) that

`[ T ′ ≤ I  I?

Case distinction on the form of I?.

* Case I? = nil: Define e′′2 := w. Then wrap(I?, e′′2) = w = e′2, so by (C.3.73),
`iFJ N ≤ U , and Lemma C.3.3

∅ `iFJ wrap(I?, e′′2) ≡ e′2 : T

as required.

* Case I? = J : Then, by Lemma C.2.3, U = T = J . Lemma C.3.44 applied to `iFJ
N ≤ U reveals that N is a wrapper class. But this contradicts Convention 4.4.

End case distinction on the form of I?.

– Case not `iFJ N ≤ U : With (C.3.68) and Lemma C.2.2 we get

J? = J

for some J . With (C.3.68), (C.3.69), and Lemma C.2.3 then

U = T = J (C.3.74)

347



C Formal Details of Chapter 4

With (C.3.68) and Lemma C.3.43 then

class DictJ,M . . .

`iFJ N ≤M

By rule dyn-cast-wrap-ifj then

cast(U,w)︸ ︷︷ ︸
=e′1

7−→iFJ new WrapJ(w)︸ ︷︷ ︸
=:e′2

Define T ′ := N and e′′2 := w. Then, with (C.3.67), (C.3.70), and (C.3.71),

∅ `[ e2 : T ′  e′′2

For I? := J , we get with (C.3.68) that

`[ T ′ ≤ T  I?

By (C.3.73) and Lemma C.3.3

∅ `iFJ w ≡ w : Object

With rule equiv-new-wrap and (C.3.74) then

∅ `iFJ wrap(I?, e′′2) ≡ e′2 : T

End case distinction on whether or not `iFJ N ≤ U .

End case distinction on the rule used for the reduction e1 7−→[ e2.

Lemma C.3.46. If e 7−→[ e′′ then fv(e) = ∅.

Proof. Immediate by inspecting the rules defining the 7−→[ evaluation relation.

Lemma C.3.47. If Γ `[ e : T  e′ and fv(e) = ∅ then ∅ `[ e : T  e′.

Proof. Straightforward induction on the derivation of Γ `[ e : T  e′.

Lemma C.3.48 (Weakening for CoreGI[ typing). If Γ `[ e : T  e′ and Γ ⊆ Γ′ then Γ′ `[ e :
T  e′.

Proof. Straightforward induction on the derivation of Γ `[ e : T  e′.

Proof of Theorem 4.19. From e1 −→iFJ e2 we get by inverting rule dyn-context the existence of
an evaluation context E and expressions d1, d2 such that e1 = E [d1] and e2 = E [d2]. Thus, it
suffices to show the following claim:

If Γ `[ E [d1] : T  e1 and d1 7−→[ d2, then e1 −→+
iFJ e2 such that Γ `[ E [d2] :

T ′  e′2 and `[ T ′ ≤ T  I? and Γ `iFJ wrap(I?, e′2) ≡ e2 : T .

The proof of this claim is by induction on E .
Case distinction on the form of E .

� Case E = �: In this case, we have with Lemma C.3.46 and Lemma C.3.47 that ∅ `[ E [d1] :
T  e1. The claim then follows from Lemma C.3.45, Lemma C.3.48, and Lemma C.3.20.

348



C.3 Translation Preserves Dynamic Semantics

� Case E = E ′.f : Thus, the derivation of Γ `[ E [d1] : T  e1 ends with rule exp-field[, so
we have

Γ `[ E ′[d1] : C  e′1

e1 = e′1.f

fields[(C) = V f (C.3.75)

f = fi

T = Vi

Applying the I.H. yields

e′1 −→iFJ e
′′
2

Γ `[ E ′[d2] : U  e′′′2

`[ U ≤ C  J?

Γ `[ wrap(J?, e′′′2 ) ≡ e′′2 : C (C.3.76)

By Lemma C.3.25 J? = nil and U = M for some M .

We get by Lemma C.3.19

e′1.f︸︷︷︸
=e1

−→+
iFJ e

′′
2 .f︸︷︷︸

=e2

By Lemma C.3.30

fields[(U) = V f, V ′ f ′

Thus, by exp-field[

Γ `[ E ′[d2].f︸ ︷︷ ︸
=E[d2]

: T  e′′′2 .f︸ ︷︷ ︸
=:e′2

We get for T ′ := T and I? := nil by Lemma C.3.23 that

`[ T ′ ≤ T  I?

With (C.3.75), Lemma C.2.7, and Lemma C.3.1 we get the existence of C ′ such that

`iFJ C ≤ C ′

defines-field(C ′, fi)

fieldsiFJ(C
′) = U f

n

n ≥ i

With J? = nil, (C.3.76), and Lemma C.3.13 we get

Γ `iFJ e′′′2 ≡ e′′2 : C ′

Thus, we get by rule equiv-field

Γ `iFJ e′2︸︷︷︸
=e′′′2 .f=wrap(I?,e′2)

≡ e2︸︷︷︸
=e′′2 .f

: T

349



C Formal Details of Chapter 4

� Case E = E ′.m(d′): Thus, the derivation of Γ `[ E [d1] : T  e1 ends with rule exp-invoke[,
so we have

Γ `[ E ′[d1] : U  e0

mtype[(m,U) = V x→ T  J? (C.3.77)

(∀i) Γ `[ d′i : V ′i  d′′i (C.3.78)

(∀i) `[ V ′i ≤ Vi  I?
i (C.3.79)

(∀i) d′′′i = wrap(I?
i , d
′′
i )

e1 = wrap(J?, e0).m(d′′′)

Applying the I.H. yields

e0 −→+
iFJ e

′
0

Γ `[ E ′[d2] : U ′  e′′0

`[ U ′ ≤ U  J ′? (C.3.80)

Γ `iFJ wrap(J ′?, e′′0) ≡ e′0 : U (C.3.81)

By Lemma C.3.29 we have

mtype[(m,U ′) = V x→ T  J ′′? (C.3.82)

J ′′? =

{
I if J? = nil and J ′? = J where I such that J E[i I

J? otherwise

Thus, by rule exp-invoke[

Γ `[ E ′[d2].m(d′)︸ ︷︷ ︸
=E[d2]

: T︸︷︷︸
=:T ′

 wrap(J ′′?, e′′0).m(d′′′)︸ ︷︷ ︸
=:e′2

Moreover, by Lemma C.3.19

wrap(J?, e0).m(d′′′)︸ ︷︷ ︸
=e1

−→+
iFJ wrap(J?, e′0).m(d′′′)︸ ︷︷ ︸

=e2

We get by Lemma C.3.23 for I? := nil that

`[ T ′ ≤ T  I?

We still need to prove

Γ `iFJ wrap(J ′′?, e′′0).m(d′′′)︸ ︷︷ ︸
=wrap(I?,e′2)

≡ wrap(J?, e′0).m(d′′′)︸ ︷︷ ︸
=e2

: T (C.3.83)

From (C.3.78), (C.3.79), Theorem 4.11, Lemma C.2.4, Lemma C.3.13, and Lemma C.3.3
we get

(∀i) Γ `iFJ d′′′i ≡ d′′′i : Vi

We next show the following three claims:

(i) Γ `iFJ wrap(J ′′?, e′′0) ≡ wrap(J?, e′0) : U ′′ for some U ′′

350



C.3 Translation Preserves Dynamic Semantics

(ii) topmost(U ′′,m)

(iii) mtypeiFJ(m,U
′′) = V x→ T

Then (C.3.83) follows with rule equiv-invoke.

Case distinction on J? and J ′?.

– Case J? = nil and J ′? = J for some J : Then J ′′? = I for some I such that J E[i I.
By (C.3.82), Lemma C.2.8, and the definition of topmost then

`[ U ′ ≤ I  I

mtypeiFJ(m, I) = V x→ T

topmost(I,m)

Defining U ′′ := I proves claims (ii) and (iii). Lemma C.2.3, (C.3.80), and J ′? = J
imply U = J . Thus, (C.3.81), Lemma C.3.4, and Lemma C.3.32 yield

Γ `iFJ new WrapI(e′′0) ≡ e′0 : I

This proves claim (i).

– Case J? 6= nil or J ′? = nil: Then J ′′? = J?.

Case distinction on the form of J ′?.

* Case J ′? = nil: First, assume J? 6= nil; that is, J? = J for some J . From
(C.3.77), Lemma C.2.8, and the definition of topmost then

`[ U ≤ J  J

mtypeiFJ(m,J) = V x→ T

topmost(J,m)

Defining U ′′ := J proves claims (ii) and (iii). From (C.3.81) and Lemma C.3.13
we get

Γ `iFJ e′′0 ≡ e′0 : Object

Hence, with rule equiv-new-wrap

Γ `iFJ new WrapJ(e′′0)︸ ︷︷ ︸
=wrap(J′′?,e′′0 )

≡ new WrapJ(e′0)︸ ︷︷ ︸
=wrap(J?,e′0)

: J︸︷︷︸
=U ′′

which is what we need to prove claim (i).

Now assume J? = nil. By Lemma C.3.33 and (C.3.77) we get the existence of
U ′′ such that

`iFJ U ≤ U ′′

mtypeiFJ(m,U
′′) = V x→ T

topmost(U ′′,m)

This proves claims (ii) and (iii). Claim (i) follows from (C.3.81), J? = J ′? =
J ′′? = nil, and Lemma C.3.13

351



C Formal Details of Chapter 4

* Case J ′? 6= nil: Then J? 6= nil; that is, J? = J for some J . From (C.3.77),
Lemma C.2.8, and the definition of topmost then

`[ U ≤ J  J

mtypeiFJ(m,J) = V x→ T

topmost(J,m)

Defining U ′′ := J now proves claims (ii) and (iii). We get from (C.3.81) and
Lemma C.3.4 that

Γ `iFJ e′0 ≡ wrap(J ′?, e′′0) : U

With (C.3.80), `[ U ≤ J  J , and Lemma C.3.31 then

Γ `iFJ wrap(J, e′0) ≡ wrap(trans(J ′?, J, J)︸ ︷︷ ︸
=J

, e′′0) : J

With U ′′ = J = J? = J ′′? and Lemma C.3.4 we finally get claim (i).

End case distinction on the form of J ′?.

End case distinction on J? and J ′?.

� Case E = d.m(v, E ′, d′): W.l.o.g., v = •. We know that the derivation of Γ `[ E [d1] : T  e1

ends with rule exp-invoke[, so we have

Γ `[ d : U  d′ (C.3.84)

mtype[(m,U) = V0 x0, V x→ T  J? (C.3.85)

Γ `[ E ′[d1] : V ′0  d0

`[ V ′0 ≤ V0  I?
0

d′0 = wrap(I?
0 , d0)

(∀i) Γ `[ d′i : V ′i  d′′i

(∀i) `[ V ′i ≤ Vi  I?
i

(∀i) d′′′i = wrap(I?
i , d
′′
i )

e1 = wrap(J?, d).m(d′0, d
′′′)

Applying the I.H. yields

d0 −→+
iFJ d

′′
0

Γ `[ E ′[d2] : U  d′′′0

`[ U ≤ V ′0  I ′?0

Γ `iFJ wrap(I ′?0 , d
′′′
0 ) ≡ d′′0 : V ′0 (C.3.86)

By Lemma C.3.19 we get

e1 −→+
iFJ wrap(J?, d).m(wrap(I?

0 , d
′′
0), d′′′)︸ ︷︷ ︸

=:e2

By Lemma C.3.28

`[ U ≤ V0  trans(I ′?0 , V0, I
?
0)

352



C.3 Translation Preserves Dynamic Semantics

By rule exp-invoke[

Γ `[ E [d2]︸ ︷︷ ︸
=d.m(E′[d2],d′)

: T︸︷︷︸
=:T ′

 wrap(J?, d).m(wrap(trans(I ′?0 , V0, I
?
0), d′′′0 ), d′′′)︸ ︷︷ ︸

=:e′2

We get by Lemma C.3.23 for I? := nil that

`[ T ′ ≤ T  I?

From (C.3.84), we get by Theorem 4.11 that

Γ `iFJ d′ : U

Case distinction on the form of J?.

– Case J? = nil: Then by Lemma C.3.33 for some U ′

`iFJ U ≤ U ′

mtypeiFJ(m,U
′) = V0 x0, V x→ T

topmost(U ′,m)

By Lemma C.3.3

Γ `iFJ wrap(J?, d′) ≡ wrap(J?, d′) : U ′

– Case J? 6= nil: Then J? = J for some J . Hence, by Lemma C.2.8 and the definition
of topmost

`[ U ≤ J  J

mtypeiFJ(m,J) = V0 x0, V x→ T

topmost(J,m)

By Lemma C.2.4

Γ `iFJ wrap(J?, d′) : U ′′

for some type U ′′ with `iFJ U ′′ ≤ J . Thus, by Lemma C.3.3

Γ `iFJ wrap(J?, d′) ≡ wrap(J?, d′) : J

End case distinction on the form of J?.

In both cases, we have found a type U ′ such that

Γ `iFJ wrap(J?, d′) ≡ wrap(J?, d′) : U ′

mtypeiFJ(m,U
′) = V0 x0, V x→ T

topmost(U ′,m)

By Theorem 4.11, Lemma C.3.3, Lemma C.3.13, and Lemma C.2.4

(∀i) Γ `iFJ d′′′i ≡ d′′′i : Vi

We further get by Lemma C.3.4, Lemma C.3.31, and (C.3.86)

Γ `iFJ wrap(trans(I ′?0 , V0, I
?
0), d′′′0 ) ≡ wrap(I?

0 , d
′′
0) : V0

Thus, by rule equiv-invoke

Γ `iFJ wrap(I?, e′2) ≡ e2 : T

as required.

353



C Formal Details of Chapter 4

� Case E = newN (v, E ′, d′): W.l.o.g., v = •. We know that the derivation of Γ `[ E [d1] :
T  e1 must end with rule exp-new[, so we have

fields[(N) = U0 f0, U f

Γ `[ E ′[d1] : U ′0  d0

`[ U ′0 ≤ U0  I?
0

d′0 = wrap(I?
0 , d0)

(∀i) Γ `[ d′i : U ′i  d′′i

(∀i) `[ U ′i ≤ Ui  I?
0

(∀i) d′′′i = wrap(I?
0 , d
′′
i )

e1 = newN(d′0, d
′′′)

T = N

Applying the I.H. yields

d0 −→+
iFJ d

′′
0

Γ `[ E ′[d2] : U ′′0  d′′′0

`[ U ′′0 ≤ U ′0  I ′?0

Γ `iFJ wrap(I ′?0 , d
′′′
0 ) ≡ d′′0 : U ′0

By Lemma C.3.19 we get

e1 −→+
iFJ newN(wrap(I?

0 , d
′′
0), d′′′)︸ ︷︷ ︸

=:e2

By Lemma C.3.28

`[ U ′′0 ≤ U0  trans(I ′?0 , U0, I
?
0)

We then get by rule exp-new[

Γ `[ E [d2]︸ ︷︷ ︸
=newN (E′[d2],d′)

: N︸︷︷︸
=:T ′

 newN(wrap(trans(I ′?0 , U0, I
?
0), d′′′0 ), d′′′)︸ ︷︷ ︸

=:e′2

We get by Lemma C.3.23 for I? := nil that

`[ T ′ ≤ T  I?

By Theorem 4.11, Lemma C.3.3, Lemma C.3.13, and Lemma C.2.4

(∀i) Γ `iFJ d′′′i ≡ d′′′i : Ui

We further get by Lemma C.3.4, Lemma C.3.31, and (C.3.86)

Γ `iFJ wrap(trans(I ′?0 , U0, I
?
0), d′′′0 ) ≡ wrap(I?

0 , d
′′
0) : U0

Finally, by rule equiv-new-class

Γ `iFJ wrap(I?, e′2) ≡ e2 : T

354



C.3 Translation Preserves Dynamic Semantics

� Case E = (V ) E ′: We know that the derivation of Γ `[ E [d1] : T  e1 must end with rule
exp-cast[, so we have

Γ `[ E ′[d1] : U  e′1

e1 = cast(V, e′1)

T = V

`[ T ok

Applying the I.H. yields

e′1 −→+
iFJ e

′′
2

Γ `[ E ′[d2] : U ′  e′′′2

`[ U ′ ≤ U  J?

Γ `iFJ wrap(J?, e′′′2 ) ≡ e′′2 : U (C.3.87)

By Lemma C.3.19 we get

e1 −→+
iFJ cast(T, e′′2)︸ ︷︷ ︸

=:e2

By rule exp-cast[ we have

Γ `[ E [d2] : T  cast(T, e′′′2 )︸ ︷︷ ︸
=:e′2

Case distinction on the form of J?.

– Case J? = nil: Then by (C.3.87) and Lemma C.3.13

Γ `iFJ e′′′2 ≡ e′′2 : Object

– Case J? = J : Then U = J by Lemma C.2.3. From (C.3.87) then, by inverting rule
equiv-new-wrap,

e′′2 = new WrapJ
′
(ê)

`iFJ J ′ ≤ J
`iFJ e′′′2 ≡ ê : Object

By rule equiv-new-object-right then

Γ `iFJ e′′′2 ≡ e′′2 : Object

End case distinction on the form of J?.

In both cases, we get for I? := nil that

Γ `iFJ cast(T, e′′′2 )︸ ︷︷ ︸
=wrap(I?,e′2)

≡ cast(T, e′′2)︸ ︷︷ ︸
=e2

: T

by rule equiv-cast. Moreover, with T ′ := T we get by Lemma C.3.23 that

`[ T ′ ≤ T  I?

End case distinction on the form of E .

355



C Formal Details of Chapter 4

C.3.6 Proof of Theorem 4.20

Theorem 4.20 states that translation and multi-step evaluation commute modulo wrappers.

Proof of Theorem 4.20. By induction on the length n of the evaluation sequence e0 −→[∗ en.

� n = 0. In this case, the claim follows by Lemma C.3.23, Theorem 4.11, and Lemma C.3.3.

� n > 0. Then e0 −→[ e1 −→[∗ en. The diagram in Figure 4.28 sketches how we complete
the proof in this case. We first show that the individual parts of the diagram commute.

(a) Commutativity of (a) follows from Theorem 4.19:

e′0 −→+
iFJ e

′
1 (C.3.88)

Γ `[ e1 : T ′′  e′′1 (C.3.89)

`[ T ′′ ≤ T  J? (C.3.90)

Γ `iFJ wrap(J?, e′′1) ≡ e′1 : T (C.3.91)

(b) Applying the I.H. to e1 −→[∗ en and (C.3.89) yields commutativity of (b):

e′′1 −→∗iFJ d
Γ `[ en : T ′  e′ (C.3.92)

`[ T ′ ≤ T ′′  J ′? (C.3.93)

Γ `iFJ wrap(J ′?, e′) ≡ d : T ′′ (C.3.94)

(c) Part (c) of the diagram commutes by (possibly repeated) applications of Lemma C.3.19
to e′′1 −→∗iFJ d:

wrap(J?, e′′1) −→∗iFJ wrap(J?, d)

(d) Applying Theorem 4.16 to (C.3.91) proves that (d) also commutes:

e′1 −→∗iFJ e (C.3.95)

Γ `iFJ wrap(J?, d) ≡ e : T (C.3.96)

Next, we note that (C.3.88) and (C.3.95) imply

e′0 −→∗iFJ e (C.3.97)

Then we define I? := trans(J ′?, T, J?). By Lemma C.3.28, (C.3.90), and (C.3.93) then

`[ T ′ ≤ T  I? (C.3.98)

Together with (C.3.94), (C.3.90), (C.3.93), Lemma C.3.4, and Lemma C.3.31 we then have

Γ `iFJ wrap(I?, e′) ≡ wrap(J?, d) : T

Finally, using Lemma C.3.11 and (C.3.96) yields

Γ `iFJ wrap(I?, e′) ≡ e : T (C.3.99)

The claim now follows from (C.3.97), (C.3.92), (C.3.98), and (C.3.99).

356



C.4 Relating CoreGI [ and CoreGI

C.4 Relating CoreGI[ and CoreGI

This section presents all details of the proof that CoreGI[ is a subset of CoreGI. It implicitly assumes
that all syntactic CoreGI entities mentioned are restricted and that the underlying CoreGI program
is the image according to Bp of the underlying CoreGI[ program.

C.4.1 Proof of Theorem 4.24

Theorem 4.24 states that subtyping in CoreGI[ and restricted CoreGI is equivalent.

Lemma C.4.1. If N E[c N ′ then Bt JNK Ec Bt JN ′K and ∆ ` Bt JNK ≤ Bt JN ′K for any ∆.
Furthermore, If K E[i K

′ then Bt JKK Ei Bt JK ′K and ∆ ` Bt JKK ` Bt JK ′K for any ∆.

Proof. By rule inductions.

Lemma C.4.2. If `[′ T ≤ U then ∆ ` Bt JT K ≤ Bt JUK and ∆ q̀
′ Bt JT K ≤ Bt JUK for any ∆.

Proof. Follows with Lemma C.4.1.

Lemma C.4.3. If N Ec N
′ then B−1

t JNK E[c B−1
t JN ′K. Moreover, if I Ei I

′ then B−1
t JIK E[i

B−1
t JI ′K.

Proof. By rule inductions.

Lemma C.4.4. If ∅ q̀
′ T ≤ U then `[′ B−1

t JT K ≤ B−1
t JUK.

Proof. Follows with Lemma C.4.3.

Proof of Theorem 4.24. The first part follows easily using Lemma C.4.2. For the second part, we
have ∅ q̀ V ≤W with Theorem 3.12. The claim then follows using Lemma C.4.3, Lemma C.4.4,
and Lemma B.1.7.

C.4.2 Proof of Theorem 4.25

Theorem 4.25 states that the dynamic semantics of CoreGI[ and restricted CoreGI is equivalent.

Lemma C.4.5. If `[ N ≤M then N E[c M .

Proof. Obviously, the derivation of `[ N ≤ M ends with rule sub-kernel[. Hence, `[′ N ≤ M .
If this derivation ends with rule sub-class[ then we are done. Otherwise, it ends with rule
sub-object[, so M = Object . The claim then holds because every class ultimately inherits from
Object .

Lemma C.4.6 (Equivalence of dynamic method lookup).

(i) If getmdef[(mc, N) = mdef then getmdefc(mc,Bt JNK) = Bmd Jmdef K.

(ii) If getmdef[(mi, N) = mdef then getmdefi(mi,Bt JNK , N) = Bmd Jmdef K for any CoreGI
types N .

(iii) If getmdefc(mc, N) = mdef then getmdef[(mc,B−1
t JNK) = B−1

mdJmdef K.

(iv) If getmdefi(mi, N,N) = mdef then getmdef[(mi,B−1
t JNK) = B−1

mdJmdef K.

357



C Formal Details of Chapter 4

Proof. Claims (i) and (iii) follow by rule inductions.
Claim (ii) follows by inverting rule dyn-mdef-iface[ and Lemma C.4.1.
Claim (iv) follows by inverting rule dyn-mdef-iface and Lemmas 4.24 and C.4.5.

Lemma C.4.7. If fields[(N) = U f then fields(Bt JNK) = Bt JUiK f . Furthermore, if fields(N) =

U f then fields[(B−1
t JNK) = B−1

t JUiK f .

Proof. By rule inductions.

Proof of Theorem 4.25. We prove (i) and (ii) by case distinctions on the reduction rules used,
relying on Lemma C.4.7, Lemma C.4.6, and Theorem 4.24. Then (iii) and (iv) follow from (i)
and (ii).

C.4.3 Proof of Theorem 4.26

Theorem 4.26 states that expression typing in CoreGI[ and restricted CoreGI is equivalent.

Lemma C.4.8 (Equivalence of well-formedness of types).

(i) If `[ T ok then ∆ ` Bt JT K ok for any ∆.

(ii) If ∅ ` T ok then `[ B−1
t JT K ok.

Proof. By case distinctions on the last rules used in the derivations given.

Lemma C.4.9. If `[ T ≤ I then ∆ q̀
′ Bt JT K ≤ U and ∆ ?

a U implements I < • > _
U implements I < • > for any ∆ and some U .

Furthermore, ∅ q̀
′ T ≤ U and ∅ ?

a U implements I < • > _ U implements I < • > imply
`[ B−1

t JT K ≤ I

Proof. Assume `[ T ≤ I. If the corresponding derivation ends with rule sub-kernel[, then
T = J and J E[i I. Define U := Bt JIK. Then ∆ q̀

′ Bt JT K ≤ U for any ∆ by Lemma C.4.1
and rule sub-q-alg-iface. Furthermore, ∆ ?

a U implements I < • > _ U implements I < • > by
rule ent-nil-alg-iface2. If the derivation of `[ T ≤ I ends with rule sub-impl[ then we have
`[′ T ≤ N and implementation I [N ] . . ., so defining U := Bt JNK yields ∆ q̀

′ Bt JT K ≤ U for
any ∆ by Lemma C.4.2 and ∆ ?

a U implements I < • > _ U implements I < • > for any ∆ by
rule ent-nil-alg-impl.

Assume ∅ q̀
′ T ≤ U and ∅ ?

a U implements I <•>_ U implements I <•>. If the derivation
of the latter ends with ent-nil-alg-impl, then we get the existence of implementation I [N ] . . .
with ∅ q̀

′ U ≤ N . Then Lemma B.1.7 and Lemma C.4.4 yield `[′ B−1
t JT K ≤ B−1

t JNK,
so rule sub-impl[ gives us `[ B−1

t JT K ≤ I as required. If the last rule in the derivation of
∅ ?

a U implements I < • > _ U implements I < • > is either rule ent-nil-alg-iface1 or rule
ent-nil-alg-iface2 (rule ent-nil-alg-env is impossible), then we have ∅ q̀

′ U ≤ I < • >, so the
claim follows with Lemma B.1.7, Lemma C.4.4, and rule sub-kernel[.

Lemma C.4.10 (Equivalence of method types).

(i) If mtype[(m,T ) = msig then a-mtype∆(m,Bt JT K , T ) = Bms JmsigK for any ∆ and any T .

(ii) If a-mtype∅(m,T, T ) = msig then mtype[(m,B−1
t JT K) = B−1

ms JmsigK.

Proof. If m is a class method, then both claims follow by rule inductions. Otherwise, m is
an interface method. The first claim then follows by inverting rule mtype-iface[ and using
Lemma C.4.9; the second claim follows by inverting rule alg-mtype-iface and using Lemma C.4.9.

358



C.4 Relating CoreGI [ and CoreGI

Proof of Theorem 4.26. For the first claim, we prove ∆;Bt JΓK à Be JeK : Bt JT K for any ∆. This
proof is by rule induction, using Lemma C.4.7, Lemma C.4.10, Theorem 4.24, and Lemma C.4.8.
Then (i) follows with Theorem 3.35 and Lemma C.4.8.

The second claim first uses Theorem 3.36 to obtain ∅; Γ à e : U ′ for some U ′ with ∅ `
U ′ ≤ T . A straightforward rule induction, using Lemma C.4.7, Lemma C.4.10, Theorem 4.24,
and Lemma C.4.8, then yields B−1

t JΓK `[ B−1
e JeK : B−1

t JU ′K. Define U := B−1
t JU ′K. Then

`[ U ≤ B−1
t JT K by Theorem 4.24.

C.4.4 Proof of Theorem 4.27

Theorem 4.27 states that program typing in CoreGI[ and restricted CoreGI is equivalent.

Lemma C.4.11 (Equivalence of well-formedness criteria).

(i) If a CoreGI [ program prog fulfills all of CoreGI [’s well-formedness criteria, then Bp JprogK
fulfills all of CoreGI’s well-formedness criteria.

(ii) If a CoreGI program prog fulfills all of CoreGI’s well-formedness criteria, then B−1
p JprogK

fulfills all of CoreGI [’s well-formedness criteria.

Proof. Straightforward. The proof that wf[-impl-1 implies wf-impl-1 is by induction on sup as
mentioned in wf-impl-1, using Lemma C.4.5 and Lemma C.4.1. The implication from wf-impl-1
to wf[-impl-1 follows by Lemma B.2.8 and Theorem 4.24.

Lemma C.4.12.

(i) Assume that the underlying CoreGI [ program is well-typed and that class C contains a defi-

nition of method m with signature msig. If override-ok[(m : msig , C) then override-ok∆(m :
Bms JmsigK ,Bt JCK) for any ∆.

(ii) If the underlying CoreGI program has invariant return types and override-ok∅(m : msig , N)

and N 6= Object then override-ok[(m : B−1
ms JmsigK,B−1

t JNK).

Proof. We prove both claims separately.

(i) Define N := Bt JCK. Assume ∆ ` N ≤ N ′ and mtype∆(m,N ′) = msig ′. We now show
Bms JmsigK = msig ′. Then the claim follows by rule ok-override. With ∆ ` N ≤ N ′ we get
∆ q̀ N ≤ N ′ by Theorem 3.12, so obviously N Ec N

′. If N = N ′ then Bms JmsigK = msig ′

trivially holds. Assume N 6= N ′. Then there exists a class D such that

class D extends N ′

N Ec D< • >

Because the underlying CoreGI[ is well-typed, a straightforward induction on the derivation
of N Ec D< • > shows that

override-ok[(m : msig , D) (C.4.1)

With mtype∆(m,N ′) = msig ′ and the fact that m must be a class method, we get that N ′

defines m with signature msig ′. Thus,

mtype[(m,B−1
t JN ′K) = B−1

ms Jmsig ′K nil

With (C.4.1) then

msig = B−1
ms Jmsig ′K

Theorem 4.22 then yields Bms JmsigK = msig ′ as required.

359



C Formal Details of Chapter 4

(ii) Because N 6= Object we have N = C< • > and

class C< • > extends M . . .

Assume mtype[(m,B−1
t JMK) = msig ′  nil. It is easy to verify that this implies the

existence of M ′ such that ∅ ` M ≤ M ′ and mtype∅(m,M
′) = Bms Jmsig ′K. We get from

the assumption override-ok∅(m : msig , N), so inverting rule ok-override yields msig =
Bms Jmsig ′K because the underlying CoreGI program has invariant return types. But then

B−1
ms JmsigK = msig ′ by Theorem 4.22, so override-ok[(m : B−1

ms JmsigK, C) follows via rule
ok-override[.

Proof of Theorem 4.27. Easy, using Theorem 4.24, Lemma C.4.8, Theorem 4.26, Lemma C.4.11,
and Lemma C.4.12.

360



D
Formal Details of Chapter 5

D.1 Interfaces as Implementing Types

This section contains the proofs of Theorem 5.3 (undecidability of subtyping in IIT), Theorem 5.6
(Restriction 5.5 ensures decidability of subtyping in IIT), and Theorem 5.8 (Restriction 5.7 implies
Restriction 5.5).

D.1.1 Proof of Theorem 5.3

Theorem 5.3 states the subtyping in IIT is decidable. This section completes the proof sketch for
this theorem from Section 5.1.2.

The following lemma proves basic properties of the encoding scheme for words over Σ:

Lemma D.1.1. Suppose η, ζ ∈ Σ∗ and T is a type.

(i) JηK = JζK if, and only if, η = ζ.

(ii) η # (ζ # T ) = ηζ # T .

(iii) η # JζK = JηζK.

Proof. Straightforward.

The next lemma ensures that the types occurring in a derivation of

`i S<JηiK, JζiK> ≤ G

are of a certain form. Metavariables I and J range over (possible empty) sequences of indices, and
IJ is the concatenation of I and J. For I = i1 . . . ir, the notation ηI denotes the word ηi1 . . . ηir .
We implicitly assume a fixed PCP instance P = {(η1, ζ1), . . . , (ηn, ζn)} such that the underlying
IIT program is the encoding thereof (according to the encoding defined in the proof sketch for
Theorem 5.3 from Section 5.1.2).

Lemma D.1.2. Suppose `i T ≤ W . Let U and V be types such that neither S nor G occur in U
or V . Assume that either T = S<U, V > or T = G. Then one of the following holds:

(a) W = S<U, V >, or

361



D Formal Details of Chapter 5

(b) W = S<ηI # U, ζI # V > for a non-empty sequence I, or

(c) W = G.

With the additional assumption that W = G, one of the following holds:

(a) T = G, or

(b) U = V , or ηI # U = ζI # V for some non-empty sequence I.

Proof. We prove the first claim by induction on the derivation of `i T ≤W .
Case distinction on the last rule used.

� Case rule iit-refl: Then T = W , so the claim follows trivially.

� Case rule iit-trans: Then `i T ≤ V and `i V ≤ W for some V . Applying the I.H. to
`i T ≤ V gives us that one of the following holds:

(a) V = S<U, V >, or

(b) V = S<ηI′ # U, ζ#I′V > for some non-empty sequence I′, or

(c) V = G.

The claim now follows by applying the I.H. to `i V ≤W , possibly using Lemma D.1.1(ii).

� Case rule iit-impl: Then

implementation<X> I <U> [J<T>]

T = [V/X]J<T>

W = [V/X]I <U>

There are two possibilities:

– The implementation is defined by (5.1) on page 113:

X = X,Y

I <U> = S<ηi #X, ζi # Y >

J<T> = S<X,Y >

Hence, T is of the form S<U, V >, so [V/X] = [U/X, V/Y ]. Thus, W = S<ηi #U, ζi #
V >.

– The implementation is defined by (5.2) on page 113. In this case, W = G.

End case distinction on the last rule used.
The proof of the second claim is also by induction on the derivation of `i T ≤W .

Case distinction on the last rule used.

� Case rule iit-refl: Trivial.

� Case rule iit-trans: Then `i T ≤ V and `i V ≤ W for some V . We now apply the first
part of this lemma to `i T ≤ V and get that for V either (a), (b), or (c) from case iit-trans

in the proof of the first part holds. We now can apply the I.H. for the current part of the
proof to `i V ≤W and get that one of the following holds:

(a) V = G. Then the claim follows by applying the I.H. to `i T ≤ V .

(b) Either U = V or, with Lemma D.1.1(ii), ηI#U = ζI#V for some non-empty sequence
I. But this is exactly what we need to prove.

362



D.1 Interfaces as Implementing Types

� Case rule iit-impl: Then

implementation<X> I <U> [J<T>]

T = [V/X]J<T>

W = [V/X]I <U>

Because W = G we know that the implementation definition defined by (5.2) on page 113
must have been used. Thus

X = X

J<T> = S<X,X>

But then U = V as required.

End case distinction on the last rule used.

Proof of Theorem 5.3. To complete the proof sketch for Theorem 5.3 from Section 5.1.2, we still
need to verify to following claim:

The PCP instance P = {(η1, ζ1), . . . , (ηn, ζn)} has a solution if and only if there
exists i ∈ {1, . . . , n} such that `i S<JηiK, JζiK> ≤ G is derivable.

We prove the two implications separately.

“⇒”: We first show for any non-empty sequence of indices i1 . . . ik that

`i S<JηikK, JζikK> ≤ S<Jηi1 . . . ηikK, Jζi1 . . . ζikK> (D.1.1)

The proof is by induction on k. The base case (k = 1) follows from reflexivity of subtyping. For
the inductive step, the induction hypothesis yields

`i S<Jηik+1
K, Jζik+1

K> ≤ T (D.1.2)

where T = S<Jηi2 . . . ηik+1
K, Jζi2 . . . ζik+1

K>. Choosing a suitable implementation definition from
(5.1) on page 113, we get with Lemma D.1.1(iii) and rule iit-impl that

`i T ≤ S<Jηi1 . . . ηik+1
K, Jζi1 . . . ζik+1

K>

Claim (D.1.1) now follows with (D.1.2) and transitivity of subtyping.
Now suppose that I = i1 . . . ir is a solution to P. Then we have from (D.1.1)

`i S<JηirK, JζirK> ≤ S<JηIK, JζIK>

Because ηI = ζI we get JηIK = JζIK by Lemma D.1.1(i), so implementation definition (5.2) on
page 113 yields together with rule iit-impl and transitivity of subtyping

`i S<JηirK, JζirK> ≤ G

as required.

“⇐”: Given that `i S<JηiK, JζiK> ≤ G is derivable for some i ∈ {1, . . . , n}, we get from
Lemma D.1.2 that either JηiK = JζiK or that there exists a non-empty sequence I such that
ηI # JηiK = ζI # JζiK. For the first case, we have ηi = ζi by Lemma D.1.1(i); for the second case,
we get JηIηiK = JζIζiK by Lemma D.1.1(iii), and ηIηi = ζIζi by Lemma D.1.1(i). Hence, P has
a solution.

363



D Formal Details of Chapter 5

Figure D.1 Subtyping for IIT without transitivity rule.

`i
′ T ≤ U

iit-refl’

`i
′ T ≤ T

iit-impl’

[V/X]J<U> 6= T implementation<X> I <T> [J<U>] `i
′ [V/X]I <T> ≤ T

`i
′ [V/X]J<U> ≤ T

D.1.2 Proof of Theorem 5.6

Theorem 5.6 states that subtyping in IIT is decidable under Restriction 5.5. Figure D.1 defines
the relation `i

′ T ≤ U , a variant of the subtyping relation of IIT without a built-in transitivity
rule. We first verify that `i T ≤ U and `i

′ T ≤ U are equivalent.

Lemma D.1.3. If `i
′ T ≤ U then `i T ≤ U .

Proof. Straightforward induction on the derivation of `i
′ T ≤ U .

Lemma D.1.4. If `i
′ T ≤ U and `i

′ U ≤ V then `i
′ T ≤ V

Proof. Follows by induction on the derivation of `i
′ T ≤ U .

Lemma D.1.5. If `i T ≤ U then `i
′ T ≤ U .

Proof. Follows by case distinction on the last rule in the derivation of `i T ≤ U , making use of
Lemma D.1.4 if this rule is iit-trans.

Next, we check that ìa T ≤ U and `i
′ T ≤ U are equivalent.

Lemma D.1.6. If ìa T ≤ U then `i
′ T ≤ U .

Proof. A straightforward rule induction shows that G ìa T ≤ U implies `i
′ T ≤ U for any G .

Inverting ìa T ≤ U yields {T} ìa T ≤ U , so the claim holds.

Lemma D.1.7. If `i
′ T ≤ U then ìa T ≤ U .

Proof. Let D1 be the derivation of `i
′ T ≤ U and let D2 be the immediate subderivation of D1,

let D3 be the immediate subderivation of D2, and so on. It is easy to verify that all Di have
the form `i

′ Ti ≤ U for types T = T1, . . . , Tn. We may safely assume that all types T1, . . . , Tn
are pairwise disjoint. (Otherwise, there are two derivations with identical conclusions, so we
simply replace the larger derivation with the smaller one.) With these considerations in place, a
straightforward induction shows that `i

′ T ≤ U implies {T} ìa T ≤ U . Thus, we get ìa T ≤ U
by rule iit-alg-sub.

364



D.2 Bounded Existential Types with Lower and Upper Bounds

Proof of Theorem 5.6. With Lemmas D.1.3, D.1.5, D.1.6, and D.1.7, it follows that ` T ≤ U and

ìa T ≤ U are equivalent. Thus, we only need to verify that the algorithm induced by ìa T ≤ U
terminates. Suppose that G ìa T

′ ≤ U ′ is a subderivation in an attempt to prove the original
goal ìa T ≤ U . A straightforward induction on the number of rule applications needed to reach
the subderivation shows that G ⊆ ST . Thus, |ST | − |G | ∈ N. Furthermore, rule iit-alg-impl

ensures that the measure |ST | − |G | decreases when moving from the conclusion to the premise.
Hence, the algorithm induced by ìa T ≤ U terminates.

D.1.3 Proof of Theorem 5.8

Theorem 5.8 states that Restriction 5.7 implies Restriction 5.5.
Assume that def 1, . . . , def n are the implementation definitions of the underlying IIT program.

Define a graph G = (V ,E ) such that

V = {def 1, . . . , def n}
E = {(def , def ′) ∈ V × V | if def = implementation<X> J<U> [I <T>]

then def ′ = implementation<Y > I ′<W> [J<V >]}

G is acyclic because Restriction 5.7 holds. Thus, there exists an upper bound L ∈ N on the length
of any path in G.

In the following, write T
def−→ U if, and only if,

def = implementation<X> I <T> [J<U>]

and there exists a substitution [V/X] with [V/X]J<U> = T and [V/X]I <T> = U . It is straight-
forward to verify that U ∈ ST if, and only if, there exists a path def 1, . . . , def m in G such that

T
def 1−→ . . .

def m−→ U .
Define the size of types and implementation definitions as follows:

size(X) = 1

size(I <T
k
>) = 1 +

k∑
i=1

size(Ti)

size(implementation<X> J<U> [I <T>]) = size(J<U>)

Then T
def−→ U implies size(U) ≤ size(def ) · size(T )+ size(def ). If now δ ∈ N is an upper bound on

the size of all implementation definitions of the underlying program, then T
def 1−→ . . .

def m−→ U implies
that size(U) ≤ δm · size(T ) +

∑m
i=1 δ

i. Thus, U ∈ ST implies size(U) ≤ δL · size(T ) +
∑L
i=1 δ

i, so
the set ST is finite because there exist only finitely many types with a bounded size.

D.2 Bounded Existential Types with Lower and Upper Bounds

This section contains the proofs of Theorem 5.17 (undecidability of subtyping in EXuplo), Theo-
rem 5.19 (decidability of subtyping in EXuplo without lower bounds), and Theorem 5.21 (decid-
ability of subtyping in EXuplo without upper bounds and with only variable-bounded existentials).

D.2.1 Proof of Theorem 5.17

Theorem 5.17 states that subtyping in EXuplo is undecidable. We first show that ∆ `ex T ≤ U
if, and only if, ∆ `ex

′ T ≤ U .

365



D Formal Details of Chapter 5

Lemma D.2.1. For all types T , ∆ `ex
′ T ≤ T .

Proof. The only interesting case is T = ∃XwhereP .N . Then we have

exuplo-open’

exuplo-abstract’
N = N (∀i) ∆, P ex

′ Pi

∆, P `ex
′ N ≤ ∃XwhereP .N X ∩ ftv(∆, T ) = ∅

∆ `ex
′ ∃XwhereP .N ≤ ∃XwhereP .N

It is easy to verify that ∆ ′ P for any P ∈ ∆.

Definition D.2.2. The size of an EXuplo type or constraint is defined as follows:

size(X) = 1

size(C<T>) = 1 + size(T )

size(Object) = 1

size(∃XwhereP .N) = 1 + size(P ) + size(N)

size(X extendsT ) = size(T )

size(X superT ) = size(T )

The notation size(ξ) abbreviates
∑
i size(ξi).

Lemma D.2.3. If ∆ `ex
′ T ≤ U and ∆ `ex

′ U ≤ V then ∆ `ex
′ T ≤ V .

Proof. The proof makes essential use of the fact that type variables do not have both lower and
upper bounds and that only type variables may occur as type arguments of generic classes. Define
the domain of a type environment ∆ as dom(∆) = {X | X extendsT ∈ ∆ or X superT ∈ ∆},
and the range of a type environment ∆ as rng(∆) = {T | X extendsT ∈ ∆ or X superT ∈ ∆}.

We strengthen the claim as follows:

Let n ∈ N.

(i) Assume size(U) = n. If ∆ `ex
′ T ≤ U and ∆ `ex

′ U ≤ V , then ∆ `ex
′ T ≤ V .

(ii) Assume size(P ) = n. If ∆′, P `ex
′ W1 ≤W2 and [Y/X]∆′ ex

′ [Y/X]P for all
P ∈ P and X ∩ dom(∆′) = ∅, then [Y/X]∆′ `ex

′ [Y/X]W1 ≤ [Y/X]W2.

We now prove that claims (i) and (ii) hold for all n ∈ N by complete induction. Suppose n ∈ N
and assume the I.H. stating that

(i) and (ii) hold for all n′ ∈ N with n′ < n. (D.2.1)

We now have to prove that (i) and (ii) hold for n.

(i) We prove claim (i) by induction on the combined size of the derivations of ∆ `ex
′ T ≤ U

and ∆ `ex
′ U ≤ V . We perform a case analysis on the last rules used in these derivations.

The following tables lists all possible combinations; the rows contain the last rule used in
∆ `ex

′ T ≤ U , the columns the last rule used in ∆ `ex
′ U ≤ V . (The table omits the prefix

“exuplo-” from the rule names.)

Refl’ Object’ Extends’ Super’ Open’ Abstract’

Refl’ 3 3 3 3 3 3
Object’ 3 3 E 3 E (a)
Extends’ 3 3 3 3 3 3
Super’ 3 3 (b) 3 E E

Open’ 3 3 3 3 3 3
Abstract’ 3 3 E 3 (c) E

366



D.2 Bounded Existential Types with Lower and Upper Bounds

Cases marked with 3 are trivial or follow directly from the inner induction hypothesis; cases
marked with E can never occur because they put conflicting constraints on the form of U .
We now deal with the remaining cases.

(a) Then U = Object and V = ∃XwhereP .N . Further, the premise of rule exuplo-abstract’

requires Object = [Y/X]N , so N = Object . But this contradicts Restriction 5.13.

(b) Then U = X and ∆ contains an lower and upper bound for X. This is a contradiction
to Restriction 5.15.

(c) Then T = M and U = ∃XwhereP .N and

M = [Y/X]N

(∀i) ∆ ex
′ [Y/X]Pi

∆ `ex
′ M ≤ ∃XwhereP .N

∆, P `ex
′ N ≤ V

ftv(∆, V ) ∩X = ∅
∆ `ex

′ ∃XwhereP .N ≤ V

We have

size(P ) < size(U) = n

With (D.2.1) we then get

[Y/X]∆ `ex
′ [Y/X]N ≤ [Y/X]V

Because T = [Y/X]N and X ∩ ftv(∆, V ) = ∅, we have

∆ `ex
′ T ≤ V

as required.

(ii) We proceed by induction on the derivation D of ∆′, P `ex
′ W1 ≤W2. We have already

proved (i) for n, so with (D.2.1)

(i) holds for all n′ ∈ N with n′ ≤ n (D.2.2)

Case distinction on the last rule used in D.

� Case rule exuplo-refl’: Follows with Lemma D.2.1.

� Case rule exuplo-object’: Trivial.

� Case rule exuplo-extends’: We then have W1 = X and

X extendsW ′2 ∈ ∆′, P ∆′, P `ex
′ W ′2 ≤W2

∆′, P `ex
′ X ≤W2

Applying the inner I.H. yields

[Y/X]∆′ `ex
′ [Y/X]W ′2 ≤ [Y/X]W2 (D.2.3)

– If X extendsW ′2 ∈ P then

[Y/X]∆′ `ex
′ [Y/X]X ≤ [Y/X]W ′2 (D.2.4)

by the assumption. We also have

size([Y/X]W ′2) = size(W ′2) ≤ size(P ) = n

Using (D.2.2) on (D.2.4) and (D.2.3) yields

[Y/X]∆′ `ex
′ [Y/X]X ≤ [Y/X]W2

as required.

367



D Formal Details of Chapter 5

– If X extendsW ′2 ∈ ∆′ then [Y/X]X = X because X ∩ dom(∆) = ∅. With
(D.2.3) and rule exuplo-extends’, we get the required result.

� Case rule exuplo-super’: Follows analogously.

� Case rule exuplo-open’: Then W1 = ∃ZwhereQ .N and

∆′, P ,Q `ex
′ N ≤W2 Z ∩ ftv(∆′, P ,W2) = ∅

∆′, P `ex
′ ∃ZwhereQ .N ≤W2

Because the Z are sufficiently fresh, we may assume

[Y/X](∃ZwhereQ .N) = ∃Zwhere ([Y/X]Q) . ([Y/X]N)

Z ∩ ftv([Y/X]∆, [Y/X]W2) = ∅

Using the inner I.H. yields

[Y/X](∆′, Q) `ex
′ [Y/X]N ≤ [Y/X]W2

Thus with exuplo-open’

[Y/X]∆′ `ex
′ [Y/X](∃ZwhereQ .N) ≤ [Y/X]W2

� Case rule exuplo-abstract’: Then W2 = ∃ZwhereQ .N and

W1 = [Y ′/Z]N (∀i) ∆′, P ex
′ [Y ′/Z]Qi

∆′, P `ex
′ W1 ≤ ∃ZwhereQ .N

Using the inner I.H., we can easily verify that

(∀i) [Y/X]∆′ ex
′ [Y/X][Y ′/Z]Qi

Because the Z are sufficiently fresh, we may assume

[Y/X](∃ZwhereQ .N) = ∃Zwhere ([Y/X]Q) . ([Y/X]N)

Z ∩ Y = ∅

Moreover, for ϕ = [[Y/X]Y ′/Z], we have

[Y/X][Y ′/Z]N = ϕ[Y/X]N

[Y/X][Y ′/Z]Q = ϕ[Y/X]Q

Hence,

[Y/X]W1 = ϕ[Y/X]N

(∀i) [Y/X]∆′ ex
′ ϕ[Y/X]Qi

The claim now follows with rule exuplo-abstract’.

End case distinction on the last rule used in D.

This finishes the proof of (D.2.1).

Now we can prove that ∆ `ex T ≤ U and ∆ `ex
′ T ≤ U coincide.

368



D.2 Bounded Existential Types with Lower and Upper Bounds

Lemma D.2.4. ∆ `ex T ≤ U if, and only, if ∆ `ex
′ T ≤ U .

Proof. Both directions of the lemma are proved by a straightforward induction on the derivation
given. For the “⇒” direction, we note two things:

� When the derivation of ∆ `ex T ≤ U ends with rule exuplo-trans, we apply the I.H. to
the two subderivations and combine the two resulting derivations using Lemma D.2.3.

� When the derivation of ∆ `ex T ≤ U ends with rule exuplo-abstract, we have N =
[T/X]M as a premise. But the corresponding rule exuplo-abstract’ requiresN = [Y/X]M .
We can easily show T = Y for some Y because N has the form C<Z> (see the syntax in
Figure 5.3).

Our next goal is to show that JΩK− `ex
′ JτK− ≤ Jτ ′K+ implies Ω D̀ τ ≤ τ ′. Before proving

this fact, we need to establish some more lemmas. In the following, we use the notation D :: J
to denote that D is a derivation for judgment J and define height(D) as the height of D.

Lemma D.2.5. Suppose X /∈ ftv(∆, T, U, V ). If either D :: ∆, X superT `ex
′ U ≤ V or D ::

∆, X extendsT `ex
′ U ≤ V , then D′ :: ∆ `ex

′ U ≤ V with height(D) = height(D′).

Proof. Straightforward induction on D.

Lemma D.2.6.

(i) If D :: ∆, X superT `ex
′ U ≤ X with X /∈ ftv(∆, T, U), then D′ :: ∆ `ex

′ U ≤ T with
height(D′) ≤ height(D).

(ii) If D :: ∆, X extendsT `ex
′ X ≤ U with X /∈ ftv(∆, T, U), then D′ :: ∆ `ex

′ T ≤ U with
height(D′) ≤ height(D).

Proof.

(i) Induction on D.

Case distinction on the last rule of D.

� Case rule exuplo-refl’: Impossible.

� Case rule exuplo-object’: Impossible.

� Case rule exuplo-extends’: Follows by I.H. and rule exuplo-extends’.

� Case rule exuplo-super’: Then ∆, X superT `ex
′ U ≤ T from the premise and the

claim follows with Lemma D.2.5.

� Case rule exuplo-open’: Then U = ∃Y whereQ .N and

exuplo-open’

exuplo-super’
D1 :: ∆, X superT,Q `ex

′ N ≤ T
∆, X superT,Q `ex

′ N ≤ X Y ∩ ftv(∆, X, T ) = ∅
D :: ∆, X superT `ex

′ ∃Y whereQ .N ≤ X

We have X /∈ ftv(Q,N) because X /∈ ftv(U). With Lemma D.2.5

D′1 :: ∆, Q `ex
′ N ≤ T

height(D1) = height(D′1)

The claim now follows with rule exuplo-open’.

� Case rule exuplo-abstract’: Impossible.

End case distinction on the last rule of D.

369



D Formal Details of Chapter 5

(ii) Case distinction on the last rule of D.

� Case rule exuplo-refl’: Impossible.

� Case rule exuplo-object’: Trivial.

� Case rule exuplo-extends’: Then ∆, X extendsT `ex
′ T ≤ U from the premise and

the claim follows with Lemma D.2.5.

� Case rule exuplo-super’: Follows by I.H. and rule exuplo-super’.

� Case rule exuplo-open’: Impossible.

� Case rule exuplo-abstract’: Impossible.

End case distinction on the last rule of D.

Lemma D.2.7. Let τ− and σ+ be FD≤ types. Then JτK− 6= JσK+.

Proof. Obvious.

Lemma D.2.8. If JΩK− `ex
′ JτK− ≤ Jτ ′K+ then Ω D̀ τ ≤ τ ′.

Proof. Let JΩK− = ∆, JτK− = T , and Jτ ′K+ = U . Proceed by induction on the given derivation.

Case distinction on the last rule of this derivation.

� Case rule exuplo-refl’: Then T = U so JτK− = Jτ ′K+ which is impossible by Lemma D.2.7.

� Case rule exuplo-object’: Then τ ′ = Top and the claim follows by d-top.

� Case rule exuplo-extends’: Then T = Xα and τ = α and

X extendsT ′ ∈ ∆ ∆ `ex
′ T ′ ≤ U

∆ `ex
′ Xα ≤ U

Because ∆ = JΩK−, we have T ′ = JσK− and Ω(α) = σ−. Applying the I.H. yields

Ω D̀ σ ≤ τ ′

so the claim follows by rule d-var.

� Case rule exuplo-super’: Impossible because n-positive types are not variables.

� Case rule exuplo-open’: Hence T = ∃XwhereP .N and

∆, P `ex
′ N ≤ T X ∩ ftv(∆, U) = ∅

∆ `ex
′ ∃XwhereP .N ≤ U

From T = JτK− we have

τ = ∀α0 . . . αn .¬σ

T = ¬

=T ′︷ ︸︸ ︷
∃Xα0 . . . Xαn Y whereY extends JσK+

.C<Y,Xα0 . . . Xαn>

= ∃XwhereX superT ′ .D<X>

370



D.2 Bounded Existential Types with Lower and Upper Bounds

From U = Jτ ′K+ we get that either U = Object (then τ ′ = Top and we are done) or that

τ ′ = ∀α0≤τ−0 . . . αn≤τ−n .¬σ′

U = ¬

=U ′︷ ︸︸ ︷
∃Xα0 . . . Xαn Y whereXα0 extends Jτ0K− . . .

Xαn extends JτnK−
Y extends Jσ′K−
.C<Y,Xα0 . . . Xαn>

= ∃XwhereX superU ′ .D<X>

From ∆ `ex
′ T ≤ U we get by inverting the rules:

exuplo-open’

exuplo-abstract’

exuplo-super’
D :: ∆, X superT ′ `ex

′ U ′ ≤ X
∆, X superT ′ `ex

′ X superU ′

∆, X superT ′ `ex
′ D<X> ≤ ∃XwhereX superU ′ .D<X> X /∈ ftv(∆, U)

∆ `ex
′ ∃XwhereX superT ′ .D<X> ≤
∃XwhereX superU ′ .D<X>

We have X /∈ ftv(∆, T ′, U ′) so with Lemma D.2.6

D′ :: ∆ `ex
′ U ′ ≤ T ′

height(D′) ≤ height(D)

D′ must end with rule exuplo-open’. Define

∆′ = ∆, Xα0 extends Jτ0K−, . . . , Xαn extends JτnK−

∆′′ = ∆′, Y extends Jσ′K−

Inverting the rules yields

exuplo-open’

exuplo-abstract’
. . .

exuplo-extends
D′′ :: ∆′′ `ex

′ Y ≤ JσK+

∆′′ ex
′ Y extends JσK+ . . .

∆′′ `ex
′ C<Y,Xα0 . . . Xαn> ≤ T ′

D′ :: ∆ `ex
′ U ′ ≤ T ′

We have Y /∈ ftv(∆′, Jσ′K−, JσK+). Hence with Lemma D.2.6

D′′′ :: ∆′ `ex
′ Jσ′K− ≤ JσK+

height(D′′′) ≤ height(D′′)

Because D′′′ is smaller than the initial derivation, we can apply the I.H. and get

Ω, α0≤τ0 . . . αn≤τn D̀ σ′ ≤ σ

Then with rule d-all-neg

Ω D̀ ∀α0 . . . αn .¬σ ≤ ∀α0≤τ0 . . . αn≤τn .¬σ′

as required.

� Case rule exuplo-abstract’: Impossible because no class type N is in the image of the
J·K− translation.

371



D Formal Details of Chapter 5

Figure D.2 Constraint specificity.

∆ `ex P - Q

con-spec-upper

∆ `ex T ≤ T ′

∆ `ex X extendsT - X extendsT ′

con-spec-lower

∆ `ex T
′ ≤ T

∆ `ex X superT - X superT ′

∆ `ex P - Q

con-spec-multi

(∀i ∈ [n],∃j ∈ [m]) ∆,∆i `ex Pj - Qi with ∆i ⊆ P
∆ `ex P

m
- Q

n

End case distinction on the last rule of this derivation.

The next three lemmas are required to prove that Ω D̀ τ ≤ σ implies JΩ D̀ τ ≤ σK. We first
prove a standard weakening lemma.

Lemma D.2.9. If ∆ `ex T ≤ U and ∆ ⊆ ∆′ then ∆′ `ex T ≤ U .

Proof. Straightforward induction on the derivation given.

The next lemma shows that the negation operator for EXuplo types allows us to swap the left-
and right-hand sides of a subtyping judgment.

Lemma D.2.10. If ∆ `ex U ≤ T then ∆ `ex ¬T ≤ ¬U .

Proof. We have

¬T = ∃XwhereX superT .D<X>

¬U = ∃XwhereX superU .D<X>

Assume ∆ `ex U ≤ T . Then ∆, X superT `ex U ≤ T with Lemma D.2.9. Hence

exuplo-open

exuplo-abstract

exuplo-super

exuplo-super
∆, X superT `ex U ≤ T
∆, X superT `ex U ≤ X

∆, X superT `ex X superU

∆, X superT `ex D<X> ≤ ∃XwhereX superU .D<X> X /∈ ftv(∆,¬U)

∆ `ex ∃XwhereX superT .D<X> ≤ ∃XwhereX superU .D<X>

The relation ∆ `ex P - Q, defined in Figure D.2, expresses that the constraints P are more
specific than the constraints Q. We now connect - with subtyping on existentials.

Lemma D.2.11. If ∆ `ex P - Q then ∆ `ex ∃XwhereP .N ≤ ∃XwhereQ .N .

372



D.2 Bounded Existential Types with Lower and Upper Bounds

Proof. It is easy to see that ∆ `ex P - Q implies ∆, P `ex Q for all Q ∈ Q. Then we have

exuplo-open

exuplo-abstract
(∀i) ∆, P ex Qi

∆, P `ex N ≤ ∃XwhereQ .N
X ∩ ftv(∆,∃XwhereQ .N) = ∅

∆ `ex ∃XwhereP .N ≤ ∃XwhereQ .N

Now we are ready to prove undecidability of subtyping in EXuplo.

Proof of Theorem 5.17. We need to prove the following claim

Ω D̀ τ ≤ τ ′ if, and only if, JΩ `ex τ ≤ τ ′K.

We prove the two directions of the claim separately.

“⇒”: Assume Ω D̀ τ ≤ τ ′. We proceed by induction on the derivation of Ω D̀ τ ≤ τ ′.
Case distinction on the last rule used.

� Case rule d-top: Then Jτ ′K+ = Object and the claim is obvious.

� Case rule d-var: Then τ = α and

Ω D̀ Ω(α) ≤ τ ′ τ ′ 6= Top

Ω D̀ α ≤ τ ′

Then

Xα extends JΩ(α)K− ∈ JΩK−

and by the I.H.

JΩK− `ex JΩ(α)K− ≤ Jτ ′K+

The claim now follows with rules exuplo-extends and exuplo-trans.

� Case rule d-all-neg: Then

Ω, α0 ≤ τ0 . . . αn ≤ τn D̀ σ′ ≤ σ
Ω D̀ ∀α0 . . . αn .¬σ︸ ︷︷ ︸

=τ

≤ ∀α0 ≤ τ0 . . . αn ≤ τn .¬σ′︸ ︷︷ ︸
=τ ′

and

JτK− = ¬

=T︷ ︸︸ ︷
∃Xα0 . . . Xαn Y whereY extends JσK+

.C<Y,Xα0 . . . Xαn>

Jτ ′K+ = ¬

=U︷ ︸︸ ︷
∃Xα0 . . . Xαn Y whereXα0 extends Jτ0K− . . .

Xαn extends JτnK−
Y extends Jσ′K−
.C<Y,Xα0 . . . Xαn>

Define

∆ = JΩK−

∆′ = ∆, Xα0 extends Jτ0K− . . . Xαn extends JτnK−

373



D Formal Details of Chapter 5

Note that JΩ, α0 ≤ τ0 . . . αn ≤ τnK− = ∆′.

We must show ∆ `ex ¬T ≤ ¬U . By applying the I.H. we get

∆′ `ex Jσ′K− ≤ JσK+

Thus

∆′ `ex Y extends Jσ′K− - Y extends JσK+

Hence

∆ `ex X
α0 extends Jτ0K− . . . Xαn extends JτnK−, Y extends Jσ′K−

- Y extends JσK+

By Lemma D.2.11

∆ `ex U ≤ T

By Lemma D.2.10

∆ `ex ¬T ≤ ¬U

End case distinction on the last rule used.

“⇐”: Assume JΩ D̀ τ ≤ τ ′K. Let

∆ = JΩK−

T = JτK−

U = Jτ ′K+

Hence, ∆ `ex T ≤ U . By Lemma D.2.4 we then have ∆ `ex
′ T ≤ U . Thus, by Lemma D.2.8,

Ω `ex τ ≤ τ ′.

D.2.2 Proof of Theorem 5.19

Theorem 5.19 states that subtyping in EXuplo becomes decidable if all type environments involved
are contractive and if support for lower bounds is dropped. Lemma D.2.4 proves equivalence of
∆ `ex T ≤ U and ∆ `ex

′ T ≤ U , so we only need to prove that the algorithm induced by the
rules defining the judgment ∆ `ex

′ T ≤ U terminates.
Define

weight′′∆(X) := 1 + max{weight′′∆(T ) | X extendsT ∈ ∆}
weight′′∆(N) := 1

weight′′∆(∃XwhereP .N) := 1

This definition is proper (i.e., terminates) because ∆ is contractive. Using Definition D.2.2, which
defines the size of EXuplo types and constraints, specify a measure µ on subtyping judgments as
follows:

µ(∆ `ex
′ T ≤ U) = (size(U),weight′′∆(T ), size(T )) ∈ N× N× N

Then the measure µ decreases according to the usual lexicographic ordering on triples of natural
numbers when moving from conclusions to premises in a derivation of ∆ `ex

′ T ≤ U .
Case distinction on the last rule in the derivation of ∆ `ex

′ T ≤ U .

374



D.2 Bounded Existential Types with Lower and Upper Bounds

� Case rule exuplo-extends’: Then T = X and the premise contains the recursive invocation
∆ `ex

′ T ′ ≤ U with X extendsT ′ ∈ ∆. In this case, the measure decreases because
size(U) = size(U) and weight′′∆(T ) > weight′′∆(T ′).

� Case rule exuplo-open’: Then T = ∃XwhereP .N and the premise contains the recursive
invocation ∆, P `ex

′ N ≤ U . In this case, the measure decreases because size(U) = size(U),
weight′′∆(T ) = weight′′

∆,P
(N), and size(T ) > size(N).

� Case rule exuplo-abstract’: Then T = N , U = ∃XwhereP .M , and N = [Y/X]M .
Assume P ∈ P with P = V extendsW . (P cannot be a super-constraint because lower
bounds are not supported.) The premise now contains the recursive invocation ∆ `ex

′

[Y/X]V ≤ [Y/X]W . In this case, the measure decreases because size(U) > size(P ) =
size(W ) = size([Y/X]W ).

� Case rule exuplo-super’: Impossible because lower bounds are not supported.

� Case any other rule: Irrelevant because no recursive invocations are present.

End case distinction on the last rule in the derivation of ∆ `ex
′ T ≤ U .

D.2.3 Proof of Theorem 5.21

Theorem 5.21 states that subtyping in EXuplo becomes decidable if all type environments in-
volved are contractive, if support for upper bounds is dropped, and if all existentials are variable-
bounded. As in the preceding section, it suffices to show that the algorithm induced by the rules
defining the judgment ∆ `ex

′ T ≤ U terminates.
Define

weight′′′∆(X) := 1 + max{weight′′′∆(T ) | X superT ∈ ∆}
weight′′′∆(N) := 1

weight′′′∆(∃XwhereP .N) := 1

This definition is proper (i.e., terminates) because ∆ is contractive. Using Definition D.2.2, which
defines the size of EXuplo types and constraints, specify a measure µ on subtyping judgments as
follows:

µ(∆ `ex
′ T ≤ U) = (size(T ),weight′′′∆(U)) ∈ N× N

Then the measure µ decreases according to the usual lexicographic ordering on pairs of natural
numbers when moving from conclusions to premises in a derivation of ∆ `ex

′ T ≤ U .
Case distinction on the last rule in the derivation of ∆ `ex

′ T ≤ U .

� Case rule exuplo-super’: Then U = X and the premise contains the recursive invocation
∆ `ex

′ T ≤ U ′ with X superU ′ ∈ ∆. In this case, the measure decreases because size(T ) =
size(T ) and weight′′′∆(U) > weight′′′∆(U ′).

� Case rule exuplo-open’: Then T = ∃XwhereP .N and the premise contains the recursive
invocation ∆ `ex

′ N ≤ U . In this case, the measure decreases because size(T ) > size(N).

� Case rule exuplo-abstract’: Then T = N , U = ∃XwhereP .M , and N = [Y/X]M .
Assume P ∈ P with P = V superW . (P cannot be an extends-constraint because lower
bounds are not supported.) All existentials are variable-bounded, so W = Z for some
Z. The premise now contains the recursive invocation ∆ `ex

′ [Y/X]Z ≤ [Y/X]V . With
Restriction 5.13 and N = [Y/X]M , we get size(T ) = size(N) > 1. Thus, the measure
decreases because size(T ) > size([Y/X]Z).

375



D Formal Details of Chapter 5

� Case rule exuplo-extends’: Impossible because upper bounds are not supported.

� Case any other rule: Irrelevant because no recursive invocations are present.

End case distinction on the last rule in the derivation of ∆ `ex
′ T ≤ U .

376



Bibliography and Index

377





Bibliography

[1] Eric Allen, Joseph J. Hallett, Victor Luchangco, Sukyoung Ryu, and Guy L. Steele Jr.
Modular multiple dispatch with multiple inheritance. In ACM Symposium on Applied
Computing (SAC), pages 1117–1121, Seoul, Korea, 2007. ACM Press.

[2] Davide Ancona and Elena Zucca. True modules for Java-like languages. In European
Conference on Object-Oriented Programming (ECOOP), volume 2072 of Lecture Notes in
Computer Science, pages 354–380, Budapest, Hungary, 2001. Springer-Verlag.

[3] Apache Software Foundation. Apache Tomcat, 2009. http://tomcat.apache.org/.

[4] Apple Inc. The Objective-C programming language, 2009. http://developer.apple.com/
documentation/Cocoa/Conceptual/ObjectiveC/ObjC.pdf.

[5] Deborah J. Armstrong. The quarks of object-oriented development. Communications of
the ACM, 49(2):123–128, 2006.

[6] AspectJ Team. The AspectJ development environment guide, 2009. http://www.eclipse.
org/aspectj/doc/released/devguide/index.html.

[7] AspectJ Team. The AspectJ programming guide, 2009. http://www.eclipse.org/
aspectj/doc/released/progguide/index.html.

[8] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

[9] Bruce H. Barnes and Terry B. Bollinger. Making reuse cost-effective. IEEE Software,
8(1):13–24, 1991.

[10] Gerald Baumgartner, Martin Jansche, and Konstantin Läufer. Half & Half: Multi-
ple dispatch and retroactive abstraction for Java. Technical Report OSU-CISRC-5/01-
TR08, Revised 3/02, Ohio State University, 2002. http://www.csc.lsu.edu/~gb/Brew/
Publications/HalfNHalf.pdf.

[11] Kent Beck and Cynthia Andres. Extreme Programming Explained: Embrace Change.
Addison-Wesley, 2nd edition, 2004.

[12] Alexander Bergel, Stéphane Ducasse, Oscar Nierstrasz, and Roel Wuyts. Classboxes: Con-
trolling visibility of class extensions. Computer Languages, Systems & Structures, 31(3–
4):107–126, 2005.

[13] Alexandre Bergel, Stéphane Ducasse, and Oscar Nierstrasz. Classbox/J: Controlling the
scope of change in Java. In ACM SIGPLAN Conference on Object Oriented Programming,
Systems, Languages, and Applications (OOPSLA), pages 177–189, San Diego, CA, USA,
2005. ACM Press.

379



Bibliography

[14] Alexandre Bergel, Stéphane Ducasse, and Roel Wuyts. Classboxes: A minimal module
model supporting local rebinding. In Joint Modular Languages Conference (JMLC), volume
2789 of Lecture Notes in Computer Science, pages 122–131, Klagenfurt, Austria, 2003.
Springer-Verlag.

[15] Alexandre Bergel, Stéphane Ducasse, Oscar Nierstrasz, and Roel Wuyts. Stateful traits and
their formalization. Computer Languages, Systems & Structures, 34(2–3):83–108, 2008.

[16] Jean-Philippe Bernardy, Patrik Jansson, Marcin Zalewski, Sibylle Schupp, and Andreas
Priesnitz. A comparison of C++ concepts and Haskell type classes. In ACM SIGPLAN
Workshop on Generic Programming, pages 37–48, Victoria, BC, Canada, 2008. ACM Press.

[17] David L. Bird and Carlos Urias Munoz. Automatic generation of random self-checking test
cases. IBM Systems Journal, 22(3):229–245, 1983.

[18] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S.
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z.
Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, B. Moss,
Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben
Wiedermann. The DaCapo benchmarks: Java benchmarking development and analysis. In
ACM SIGPLAN Conference on Object Oriented Programming, Systems, Languages, and
Applications (OOPSLA), pages 169–190, Portland, OR, USA, 2006. ACM Press.

[19] Barry W. Boehm. A spiral model of software development and enhancement. ACM SIG-
SOFT Software Engineering Notes, 11(4):14–24, 1986.

[20] Daniel Bonniot. Using kinds to type partially-polymorphic methods. Electronic Notes in
Theoretical Computer Science, 75:21–40, 2003.

[21] Daniel Bonniot, Bryn Keller, and Francis Barber. The Nice user’s manual, 2003. http:
//nice.sourceforge.net/manual.html.

[22] Viviana Bono, Ferruccio Damiani, and Elena Giachino. On traits and types in a Java-like
setting. In IFIP International Conference On Theoretical Computer Science (TCS), pages
367–382, Milano, Italy, 2008. Springer-Verlag.

[23] François Bourdoncle and Stephan Merz. Type checking higher-order polymorphic multi-
methods. In ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL), pages 302–315, Paris, France, 1997. ACM Press.

[24] Gilad Bracha. Generics in the Java programming language, 2004. http://java.sun.com/
j2se/1.5/pdf/generics-tutorial.pdf.

[25] Gilad Bracha and William Cook. Mixin-based inheritance. In Conference on Object-
Oriented Programming Systems, Languages, and Applications / European Conference on
Object-Oriented Programming (OOPSLA/ECOOP), pages 303–311, Ottawa, ON, Canada,
1990. ACM Press.

[26] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. Making the future
safe for the past: Adding genericity to the Java programming language. In ACM SIG-
PLAN Conference on Object Oriented Programming, Systems, Languages, and Applications
(OOPSLA), pages 183–200, Vancouver, BC, Canada, 1998. ACM Press.

[27] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and François Yergeau. Exten-
sible markup language (XML) 1.0 (fifth edition), 2008. http://www.w3.org/TR/REC-xml.

[28] Manfred Broy, Wassiou Sitou, and Tony Hoare, editors. Engineering Methods and Tools for
Software Safety and Security, volume 22 of NATO Science for Peace and Security Series -
D: Information and Communication Security. IOS Press BV, 2009.

380



Bibliography

[29] Kim B. Bruce, Luca Cardelli, Giuseppe Castagna, Jonathan Eifrig, Scott F. Smith, Valery
Trifonov, Gary T. Leavens, and Benjamin C. Pierce. On binary methods. Theory and
Practice of Object Systems, 1(3):221–242, 1995.

[30] Kim B. Bruce and J. Nathan Foster. LOOJ: Weaving LOOM into Java. In European
Conference on Object-Oriented Programming (ECOOP), volume 3086 of Lecture Notes in
Computer Science, pages 389–413, Oslo, Norway, 2004. Springer-Verlag.

[31] Kim B. Bruce, Martin Odersky, and Philip Wadler. A statically safe alternative to virtual
types. In European Conference on Object-Oriented Programming (ECOOP), volume 1445
of Lecture Notes in Computer Science, pages 523–549, Brussels, Belgium, 1998. Springer-
Verlag.

[32] Kim B. Bruce, Leaf Petersen, and Adrian Fiech. Subtyping is not a good ”match” for object-
oriented languages. In European Conference on Object-Oriented Programming (ECOOP),
volume 1241 of Lecture Notes in Computer Science, pages 104–127, Jyväskylä, Finland,
1997. Springer-Verlag.

[33] Kim B. Bruce, Angela Schuett, and Robert van Gent. PolyTOIL: A type-safe polymor-
phic object-oriented language. In European Conference on Object-Oriented Programming
(ECOOP), volume 952 of Lecture Notes in Computer Science, pages 27–51, Åarhus, Den-
mark, 1995. Springer-Verlag.

[34] Kim B. Bruce, Angela Schuett, Robert van Gent, and Adrian Fiech. PolyTOIL: A type-safe
polymorphic object-oriented language. ACM Transactions on Programming Languages and
Systems, 25(2):225–290, 2003.

[35] Martin Büchi and Wolfgang Weck. Compound types for Java. In ACM SIGPLAN Confer-
ence on Object Oriented Programming, Systems, Languages, and Applications (OOPSLA),
pages 362–373, Vancouver, BC, Canada, 1998. ACM Press.

[36] Nicholas Cameron and Sophia Drossopoulou. On subtyping, wildcards, and existential
types. In International Workshop on Formal Techniques for Java-like Programs (FTfJP),
pages 1–7, Genova, Italy, 2009. ACM Press.

[37] Nicholas Cameron, Sophia Drossopoulou, and Erik Ernst. A model for Java with wild-
cards. In European Conference on Object-Oriented Programming (ECOOP), volume 5142
of Lecture Notes in Computer Science, pages 2–26, Paphos, Cyprus, 2008. Springer-Verlag.

[38] Nicholas Cameron, Erik Ernst, and Sophia Drossopoulou. Towards an existential types
model for Java wildcards. In Workshop on Formal Techniques for Java-like Programs
(FTfJP), informal proceedings, pages 1–13, 2007. http://cs.nju.edu.cn/boyland/ftjp/
proceedings.pdf.

[39] Peter Canning, William Cook, Walter Hill, Walter Olthoff, and John C. Mitchell. F-
bounded polymorphism for object-oriented programming. In Conference on Functional
Programming Languages and Computer Architecture (FPCA), pages 273–280, London, UK,
1989. ACM Press.

[40] Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and polymor-
phism. ACM Computing Surveys, 17:471–522, 1985.

[41] Manuel M. T. Chakravarty, Gabriele Keller, and Simon Peyton Jones. Associated type syn-
onyms. In ACM SIGPLAN International Conference on Functional Programming (ICFP),
pages 241–253, Tallinn, Estonia, 2005. ACM Press.

381



Bibliography

[42] Manuel M. T. Chakravarty, Gabriele Keller, Simon Peyton Jones, and Simon Marlow.
Associated types with class. In ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), pages 1–13, Long Beach, CA, USA, 2005. ACM Press.

[43] Craig Chambers. Object-oriented multi-methods in Cecil. In European Conference on
Object-Oriented Programming (ECOOP), volume 615 of Lecture Notes in Computer Sci-
ence, pages 33–56. Springer-Verlag, 1992.

[44] Craig Chambers and Gary T. Leavens. BeCecil, a core object-oriented language with
block structure and multimethods: Semantics and typing. Technical Report TR-96-12-02,
University of Washington, Department of Computer Science and Engineering, 1996.

[45] Craig Chambers and the Cecil Group. The Cecil language: Specification and rationale,
version 3.2, 2004. http://www.cs.washington.edu/research/projects/cecil/pubs/
cecil-spec.html.

[46] Juan Chen. Decidable subclassing-bounded quantification. In ACM SIGPLAN Interna-
tional Workshop on Types in Languages Design and Implementation (TLDI), pages 37–46,
Long Beach, CA, USA, 2005. ACM Press.

[47] James Clark and Steve DeRose. XML path language (XPath), version 1.0, 1999. http:
//www.w3.org/TR/xpath.

[48] Dave Clarke, Sophia Drossopoulou, James Noble, and Tobias Wrigstad. Tribe: A simple vir-
tual class calculus. In International Conference on Aspect-Oriented Software Development
(AOSD), pages 121–134, Vancouver, BC, Canada, 2007. ACM Press.

[49] Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd Millstein. MultiJava: Modular
open classes and symmetric multiple dispatch for Java. In ACM SIGPLAN Conference on
Object Oriented Programming, Systems, Languages, and Applications (OOPSLA), pages
130–145, Minneapolis, MN, USA, 2000. ACM Press.

[50] Curtis Clifton, Todd Millstein, Gary T. Leavens, and Craig Chambers. MultiJava: Design
rationale, compiler implementation, and applications. ACM Transactions on Programming
Languages and Systems, 28(3):517–575, 2006.

[51] William R. Cook. A proposal for making Eiffel type-safe. In European Conference on
Object-Oriented Programming (ECOOP), pages 57–70, Nottingham, UK, 1989. Cambridge
University Press.

[52] William R. Cook. Object-oriented programming versus abstract data types. In REX
School/Workshop on Foundations of Object-Oriented Languages, volume 489 of Lecture
Notes in Computer Science, pages 151–178, Noordwijkerhout, The Netherlands, 1991.
Springer-Verlag.

[53] William R. Cook, Walter Hill, and Peter S. Canning. Inheritance is not subtyping. In ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), pages
125–135, San Francisco, CA, USA, 1990. ACM Press.

[54] O.-J. Dahl, B. Myrhaug, and K. Nygaard. SIMULA 67 Common Base Language. Norwegian
Computing Center, Oslo, Norway, 1970. Revised version 1984.

[55] Mark Day, Robert Gruber, Barbara Liskov, and Andrew C. Myers. Subtypes vs. where
clauses: Constraining parametric polymorphism. In Conference on Object Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA), pages 156–168, Austin, TX,
USA, 1995. ACM Press.

[56] Tom DeMarco. Why Does Software Cost So Much? Dorset House Publishing, 1995.

382



Bibliography

[57] Dom4j — An open source XML framework for Java, 2008. http://www.dom4j.org/.

[58] Stéphane Ducasse. Putting traits in perspective. In International Conference on Soft-
ware Engineering (ICSE), volume 5634 of Lecture Notes in Computer Science, pages 5–8.
Springer-Verlag, 2009.

[59] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, Roel Wuyts, and Andrew P. Black.
Traits: A mechanism for fine-grained reuse. ACM Transactions on Programming Languages
and Systems, 28(2):331–388, 2006.

[60] Eclipse — An open development platform, 2009. http://www.eclipse.org/.

[61] Eclipse Foundation. Eclipse public license, 2004. http://www.eclipse.org/legal/
epl-v10.html.

[62] Eclipse Foundation. Eclipse compiler for Java, 2008. http://download.eclipse.org/
eclipse/downloads/drops/R-3.4.1-200809111700/index.php.

[63] ECMA International. Standard 334: C# language specification, 2nd edition, 2002. http:
//www.ecma-international.org/publications/standards/Ecma-334-arch.htm.

[64] ECMA International. Standard 334: C# language specification, 3rd edition, 2005. http:
//www.ecma-international.org/publications/standards/Ecma-334-arch.htm.

[65] ECMA International. Standard 335: Common language infrastructure, 4th edition, 2006.
http://www.ecma-international.org/publications/standards/Ecma-335.htm.

[66] Burak Emir, Andrew Kennedy, Claudio V. Russo, and Dachuan Yu. Variance and general-
ized constraints for C# generics. In European Conference on Object-Oriented Programming
(ECOOP), volume 4067 of Lecture Notes in Computer Science, pages 279–303, Nantes,
France, 2006. Springer-Verlag.

[67] Erik Ernst. gbeta – a Language with Virtual Attributes, Block Structure, and Propagating,

Dynamic Inheritance. PhD thesis, Department of Computer Science, University of Åarhus,
Denmark, 1999.

[68] Erik Ernst. Family polymorphism. In European Conference on Object-Oriented Program-
ming (ECOOP), volume 2072 of Lecture Notes in Computer Science, pages 303–326, Bu-
dapest, Hungary, 2001. Springer-Verlag.

[69] Erik Ernst. Higher-order hierarchies. In European Conference on Object-Oriented Pro-
gramming (ECOOP), volume 2743 of Lecture Notes in Computer Science, pages 303–329,
Darmstadt, Germany, 2003. Springer-Verlag.

[70] Erik Ernst, Klaus Ostermann, and William R. Cook. A virtual class calculus. In ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), pages
270–282, Charleston, SC, USA, 2006. ACM Press.

[71] Michael Ernst, Craig Kaplan, and Craig Chambers. Predicate dispatching: A unified the-
ory of dispatch. In European Conference on Object-Oriented Programming (ECOOP), vol-
ume 1445 of Lecture Notes in Computer Science, pages 186–211, Brussels, Belgium, 1998.
Springer-Verlag.

[72] Matthew Flatt and Matthias Felleisen. Units: Cool modules for HOT languages. In ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI),
pages 236–248, Montreal, QC, Canada, 1998. ACM Press.

[73] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, 1995.

383



Bibliography

[74] Ronald Garcia, Jaakko Järvi, Andrew Lumsdaine, Jeremy Siek, and Jeremiah Willcock.
An extended comparative study of language support for generic programming. Journal of
Functional Programming, 17(02):145–205, 2007.

[75] Ronald Garcia, Jaakko Järvi, Andrew Lumsdaine, Jeremy G. Siek, and Jeremiah Will-
cock. A comparative study of language support for generic programming. In ACM SIG-
PLAN Conference on Object Oriented Programming, Systems, Languages, and Applications
(OOPSLA), pages 115–134, Anaheim, CA, USA, 2003. ACM Press.

[76] Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann. Dependent classes. In ACM SIG-
PLAN Conference on Object Oriented Programming, Systems, Languages, and Applications
(OOPSLA), pages 133–152, Montreal, QC, CA, 2007. ACM Press.

[77] Giorgio Ghelli and Benjamin Pierce. Bounded existentials and minimal typing. Theoretical
Computer Science, 193(1–2):75–96, 1998.

[78] Martin Giese. The Java pretty printer library, 2007. http://jpplib.sourceforge.net/.

[79] Joseph Gil and Itay Maman. Whiteoak: Introducing structural typing into Java. In ACM
SIGPLAN Conference on Object Oriented Programming, Systems, Languages, and Appli-
cations (OOPSLA), pages 73–90, Nashville, TN, USA, 2008. ACM Press.

[80] Jean-Yves Girard. Interpretation Fonctionnelle et Elimination des Coupures dans
l’Arithmetique d’Ordre Superieur. PhD thesis, University of Paris VII, 1972.

[81] Adele Goldberg and David Robson. Smalltalk 80: The Language. Addison-Wesley, 1989.

[82] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specification.
Addison-Wesley, 3rd edition, 2005.

[83] Douglas Gregor. Generic programming in ConceptC++, 2008. http://www.
generic-programming.org/languages/conceptcpp/.

[84] Douglas Gregor, Jaakko Järvi, Jeremy Siek, Bjarne Stroustrup, Gabriel Dos Reis, and
Andrew Lumsdaine. Concepts: Linguistic support for generic programming in C++. In
ACM SIGPLAN Conference on Object Oriented Programming, Systems, Languages, and
Applications (OOPSLA), pages 291–310, Portland, OR, USA, 2006. ACM Press.

[85] Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and Philip L. Wadler. Type
classes in Haskell. ACM Transactions on Programming Languages and Systems, 18(2):109–
138, 1996.

[86] William Harrison and Harold Ossher. Subject-oriented programming: A critique of pure
objects. In Conference on Object Oriented Programming, Systems, Languages, and Appli-
cations (OOPSLA), pages 411–428, Washington, D.C., USA, 1993. ACM Press.

[87] Richard Helm, Ian M. Holland, and Dipayan Gangopadhyay. Contracts: Specifying behav-
ioral compositions in object-oriented systems. In Conference on Object-Oriented Program-
ming Systems, Languages, and Applications / European Conference on Object-Oriented
Programming (OOPSLA/ECOOP), pages 169–180, Ottawa, ON, Canada, 1990. ACM
Press.

[88] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the
ACM, 12:576–580, 1969.

[89] Urs Hölzle. Integrating independently-developed components in object-oriented languages.
In European Conference on Object-Oriented Programming (ECOOP), volume 707 of Lecture
Notes in Computer Science, pages 36–56. Springer-Verlag, 1993.

384



Bibliography

[90] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley, 3rd edition, 2006.

[91] Shan Shan Huang, David Zook, and Yannis Smaragdakis. cJ: Enhancing Java with safe
type conditions. In International Conference on Aspect-Oriented Software Development
(AOSD), pages 185–198, Vancouver, BC, Canada, 2007. ACM Press.

[92] John Hughes. Why functional programming matters. The Computer Journal, 32(2):98–107,
1989.

[93] Oliver Hummel and Colin Atkinson. The managed adapter pattern: Facilitating glue code
generation for component reuse. In International Conference on Software Reuse (ICSR),
pages 211–224, Falls Church, VA, USA, 2009. Springer-Verlag.

[94] Jason Hunter and Brett McLaughlin. JDOM, 2007. http://www.jdom.org/.

[95] Atsushi Igarashi and Benjamin C. Pierce. On inner classes. Information and Computation,
177(1):56–89, 2002.

[96] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: A minimal
core calculus for Java and GJ. ACM Transactions on Programming Languages and Systems,
23(3):396–450, 2001.

[97] Atsushi Igarashi and Mirko Viroli. Variant path types for scalable extensibility. In ACM
SIGPLAN Conference on Object Oriented Programming, Systems, Languages, and Appli-
cations (OOPSLA), pages 113–132, Montreal, QC, CA, 2007. ACM Press.

[98] Daniel H. H. Ingalls. A simple technique for handling multiple polymorphism. In Confer-
ence on Object Oriented Programming, Systems, Languages, and Applications (OOPSLA),
Portland, OR, USA, 1986. ACM Press.

[99] Ivar Jacobson. Object-Oriented Software Engineering. Addison-Wesley, 1993. Revised
printing.

[100] Jaakko Järvi, Jeremiah Willcock, and Andrew Lumsdaine. Concept-controlled polymor-
phism. In International Conference on Generative Programming and Component Engineer-
ing (GPCE), volume 2830 of Lecture Notes in Computer Science, pages 228–244, Erfurt,
Germany, 2003. Springer-Verlag.

[101] Jaakko Järvi, Jeremiah Willcock, and Andrew Lumsdaine. Associated types and constraint
propagation for mainstream object-oriented generics. In ACM SIGPLAN Conference on
Object Oriented Programming, Systems, Languages, and Applications (OOPSLA), pages
1–19, San Diego, CA, USA, 2005. ACM Press.

[102] Jaxen — A universal Java XPath engine, 2008. http://jaxen.codehaus.org/.

[103] Mark P. Jones. A system of constructor classes: Overloading and implicit higher-order
polymorphism. In Conference on Functional Programming Languages and Computer Ar-
chitecture (FPCA), pages 52–61, Copenhagen, Denmark, 1993. ACM Press.

[104] Mark P. Jones. Qualified Types: Theory and Practice. Cambridge University Press, 1994.

[105] Mark P. Jones. Type classes with functional dependencies. In European Symposium on
Programming (ESOP), volume 1782 of Lecture Notes in Computer Science, pages 230–244,
Berlin, Germany, 2000. Springer-Verlag.

[106] Jean-Marc Jézéquel and Bertrand Meyer. Design by contract: The lessons of Ariane. IEEE
Computer, 30(1):129–130, 1997.

385



Bibliography

[107] Stefan Kaes. Parametric overloading in polymorphic programming languages. In European
Symposium on Programming (ESOP), volume 300 of Lecture Notes in Computer Science,
pages 131–144, Nancy, France, 1988. Springer-Verlag.

[108] Tetsuo Kamina and Tetsuo Tamai. Lightweight scalable components. In International
Conference on Generative Programming and Component Engineering (GPCE), pages 145–
154, Salzburg, Austria, 2007. ACM Press.

[109] Tetsuo Kamina and Tetsuo Tamai. Lightweight dependent classes. In ACM SIGPLAN In-
ternational Conference on Generative Programming and Component Engineering (GPCE),
pages 113–124, Nashville, TN, USA, 2008. ACM Press.

[110] Ralph Keller and Urs Hölzle. Binary component adaptation. In European Conference
on Object-Oriented Programming (ECOOP), volume 1445 of Lecture Notes in Computer
Science, pages 307–329, Brussels, Belgium, 1998. Springer-Verlag.

[111] Andrew Kennedy and Claudio Russo. Generalized algebraic data types and object-oriented
programming. In ACM SIGPLAN Conference on Object Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 21–40, San Diego, CA, USA, 2005. ACM
Press.

[112] Andrew Kennedy and Don Syme. Design and implementation of generics for the .NET
common language runtime. In ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 1–12, Snowbird, UT, USA, 2001. ACM Press.

[113] Andrew J. Kennedy and Benjamin C. Pierce. On decidability of nominal subtyping
with variance. In International Workshop on Foundations and Developments of Object-
Oriented Languages (FOOL/WOOD), informal proceedings, 2007. http://foolwood07.
cs.uchicago.edu/program/kennedy-abstract.html.

[114] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G.
Griswold. An overview of AspectJ. In European Conference on Object-Oriented Program-
ming (ECOOP), volume 2072 of Lecture Notes in Computer Science, pages 327–353, Bu-
dapest, Hungary, 2001. Springer-Verlag.

[115] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In European Confer-
ence on Object-Oriented Programming (ECOOP), volume 1241 of Lecture Notes in Com-
puter Science, pages 220–242, Jyväskylä, Finland, 1997. Springer-Verlag.

[116] Oleg Kiselyov and Ralf Lämmel. Haskell’s overlooked object system, 2005. http:
//homepages.cwi.nl/~ralf/OOHaskell/.

[117] Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. Strongly typed heterogeneous collections.
In ACM SIGPLAN Haskell Workshop, pages 96–107, Snowbird, UT, USA, September 2004.

[118] Oleg Kiselyov and Chung-chieh Shan. Functional pearl: Implicit configurations—or, type
classes reflect the values of types. In ACM SIGPLAN Haskell Workshop, pages 33–44,
Snowbird, UT, USA, September 2004.

[119] Ralf Lämmel and Klaus Ostermann. Software extension and integration with type classes.
In International Conference on Generative Programming and Component Engineering
(GPCE), pages 161–170, Portland, OR, USA, 2006. ACM Press.

[120] Konstantin Läufer, Gerald Baumgartner, and Vincent F. Russo. Safe structural confor-
mance for Java. The Computer Journal, 43(6):469–481, 2000.

386



Bibliography

[121] Gary T. Leavens and Todd D. Millstein. Multiple dispatch as dispatch on tuples. In
ACM SIGPLAN Conference on Object Oriented Programming, Systems, Languages, and
Applications (OOPSLA), pages 374–387, Vancouver, BC, Canada, 1998. ACM Press.

[122] Xavier Leroy. The Objective Caml system release 3.11, 2008. http://caml.inria.fr/
pub/docs/manual-ocaml/index.html.

[123] Nancy Leveson and Clark S. Turner. An investigation of the Therac-25 accidents. IEEE
Computer, 26(7):18–41, 1993.

[124] Wayne C. Lim. Effects of reuse on quality, productivity, and economics. IEEE Software,
11(5):23–30, 1994.

[125] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison-Wesley,
2nd edition, 1999.

[126] Luigi Liquori and Arnaud Spiwack. FeatherTrait: A modest extension of Featherweight
Java. ACM Transactions on Programming Languages and Systems, 30(2):1–32, 2008.

[127] Barbara Liskov, Russell Atkinson, Toby Bloom, Eliot Moss, J. Craig Schaffert, Robert
Scheifler, and Alan Snyder. CLU reference manual, volume 114 of Lecture Notes in Com-
puter Science. Springer-Verlag, 1981.

[128] Barbara Liskov, Dorothy Curtis, Mark Day, Sanjay Ghemawat, Robert Gruber, Paul
Johnson, and Andrew C. Myers. Theta reference manual, preliminary version, 1995.
http://www.pmg.csail.mit.edu/papers/thetaref.ps.gz.

[129] Barbara Liskov, Alan Snyder, Russell Atkinson, and Craig Schaffert. Abstraction mecha-
nisms in CLU. Communications of the ACM, 20(8):564–576, 1977.

[130] Vasily Litvinov. Constraint-bounded polymorphism: An expressive and practical type system
for object-oriented languages. PhD thesis, University of Washington, 2003.

[131] Vassily Litvinov. Contraint-based polymorphism in Cecil: Towards a practical and static
type system. In ACM SIGPLAN Conference on Object Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 388–411, Vancouver, BC, Canada, 1998.
ACM Press.

[132] Ole Lehrmann Madsen and Birger Møller-Pedersen. Virtual classes: A powerful mechanism
in object-oriented programming. In Conference on Object Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 397–406, New Orleans, LA, USA, 1989.
ACM Press.

[133] Ole Lehrmann Madsen, Birger Møller-Pedersen, and Kristen Nygaard. Object-Oriented
Programming in the BETA Programming Language. Addison-Wesley, 1993.

[134] Donna Malayeri and Jonathan Aldrich. Integrating nominal and structural subtyping. In
European Conference on Object-Oriented Programming (ECOOP), volume 5142 of Lecture
Notes in Computer Science, pages 260–284, Paphos, Cyprus, 2008. Springer-Verlag.

[135] Donna Malayeri and Jonathan Aldrich. Is structural subtyping useful? An empirical study.
In European Symposium on Programming (ESOP), volume 5502 of Lecture Notes in Com-
puter Science, pages 95–111, York, United Kingdom, 2009. Springer-Verlag.

[136] Michael Mattsson, Jan Bosch, and Mohamed E. Fayad. Framework integration problems,
causes, solutions. Communications of the ACM, 42(10):80–87, 1999.

[137] Karl Mazurak and Steve Zdancewic. Type inference for Java 5: Wildcards, F-bounds, and
undecidability, 2006. http://www.cis.upenn.edu/~stevez/note.html.

387



Bibliography

[138] Sean McDirmid, Matthew Flatt, and Wilson C. Hsieh. Jiazzi: New-age components for old-
fasioned Java. In ACM SIGPLAN Conference on Object Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 211–222, Tampa Bay, FL, USA, 2001. ACM
Press.

[139] Brian McNamara and Yannis Smaragdakis. Static interfaces in C++. In Workshop on
C++ Template Programming, informal proceedings, 2000. http://www.oonumerics.org/
tmpw00/mcnamara.pdf.

[140] Bertrand Meyer. Eiffel: The Language. Prentice-Hall, 1992.

[141] Bertrand Meyer. Static typing. ACM SIGPLAN OOPS Messenger, 6(4):20–29, 1995.

[142] Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall, 2nd edition, 1997.

[143] Mira Mezini and Klaus Ostermann. Integrating independent components with on-demand
remodularization. In ACM SIGPLAN Conference on Object Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA), pages 52–67, Seattle, WA, USA, 2002. ACM
Press.

[144] Mira Mezini, Linda Seiter, and Karl Lieberherr. Component integration with pluggable
composite adapters. In Mehmet Aksit, editor, Software Architectures and Component Tech-
nology: The State of the Art in Research and Practice. Kluwer Academic Publishers, 2000.

[145] Microsoft Corporation. Component object model (COM), 2009. http://www.microsoft.
com/com.

[146] Todd Millstein. Practical predicate dispatch. In ACM SIGPLAN Conference on Object
Oriented Programming, Systems, Languages, and Applications (OOPSLA), pages 345–364,
Vancouver, BC, Canada, 2004. ACM Press.

[147] Todd Millstein, Christopher Frost, Jason Ryder, and Alessandro Warth. Expressive and
modular predicate dispatch for Java. ACM Transactions on Programming Languages and
Systems, 31(2):1–54, 2009.

[148] Todd Millstein, Mark Reay, and Craig Chambers. Relaxed MultiJava: Balancing extensi-
bility and modular typechecking. In ACM SIGPLAN Conference on Object Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA), pages 224–240, Anaheim,
CA, USA, 2003. ACM Press.

[149] Todd D. Millstein and Craig Chambers. Modular statically typed multimethods. In Euro-
pean Conference on Object-Oriented Programming (ECOOP), volume 1628 of Lecture Notes
in Computer Science, pages 279–303, Lisbon, Portugal, 1999. Springer-Verlag.

[150] Robin Milner, Mads Tofte, Robert Harper, and Dave MacQueen. The Definition of Standard
ML (Revised). MIT Press, 1997.

[151] Markus Mohnen. Interfaces with default implementations in Java. In Conference on the
Principles and Practice of Programming in Java (PPPJ), pages 35–40, Dublin, Ireland,
2002. ACM Press.

[152] Adriaan Moors, Frank Piessens, and Martin Odersky. Generics of a higher kind. In ACM
SIGPLAN Conference on Object Oriented Programming, Systems, Languages, and Appli-
cations (OOPSLA), pages 423–438, Nashville, TN, USA, 2008. ACM Press.

[153] James Morris. Lambda Calculus Models of Programming Languages. PhD thesis, Mas-
sachusetts Institute of Technology, 1968.

388



Bibliography

[154] Radu Muschevici, Alex Potanin, Ewan Tempero, and James Noble. Multiple dispatch
in practice. In ACM SIGPLAN Conference on Object Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 563–582, Nashville, TN, USA, 2008. ACM
Press.

[155] Glenford J. Myers and Corey Sandler. The Art of Software Testing. John Wiley & Sons,
Inc., 2004.

[156] Nathan Myers. A new and useful template technique: “traits”. In Stanley B. Lippman,
editor, C++ gems, pages 451–457. SIGS Publications, Inc., 1996.

[157] MzScheme — Core virtual machine for PLT Scheme, 2009. http://www.plt-scheme.org/
software/mzscheme/.

[158] National Institute of Standards and Technology. Software errors cost U.S. economy $59.5
billion annually, 2002. http://www.nist.gov/public_affairs/releases/n02-10.htm.

[159] Peter Naur and Brian Randell. Software engineering: Report of a conference sponsored by
the NATO science committee, 1969. http://homepages.cs.ncl.ac.uk/brian.randell/
NATO/nato1968.PDF.

[160] Peter G. Neumann. The risks digest, 2009. http://catless.ncl.ac.uk/Risks.

[161] Nathaniel Nystrom, Stephen Chong, and Andrew C. Myers. Scalable extensibility via nested
inheritance. In ACM SIGPLAN Conference on Object Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 99–115, Vancouver, BC, Canada, 2004.
ACM Press.

[162] Nathaniel Nystrom, Xin Qi, and Andrew C. Myers. J&: Nested intersection for scalable
software composition. In ACM SIGPLAN Conference on Object Oriented Programming,
Systems, Languages, and Applications (OOPSLA), pages 21–36, Portland, OR, USA, 2006.
ACM Press.

[163] Nathaniel Nystrom, Vijay Saraswat, Jens Palsberg, and Christian Grothoff. Constrained
types for object-oriented languages. In ACM SIGPLAN Conference on Object Oriented
Programming, Systems, Languages, and Applications (OOPSLA), pages 457–474, Nashville,
TN, USA, 2008. ACM Press.

[164] Object Management Group. Common object request broker architecture (CORBA), version
3.1, 2008. http://www.omg.org/spec/CORBA/3.1.

[165] Object Management Group. Unified modeling language (UML), infrastructure specification,
version 2.2, 2009. http://www.omg.org/spec/UML/2.2/.

[166] Martin Odersky. The Scala language specification, version 2.7, 2009. Draft, http://www.
scala-lang.org/docu/files/ScalaReference.pdf.

[167] Martin Odersky and Matthias Zenger. Independently extensible solutions to the expres-
sion problem. In International Workshop on Foundations of Object-Oriented Languages
(FOOL), informal proceedings, 2005. http://homepages.inf.ed.ac.uk/wadler/fool/
program/10.html.

[168] Martin Odersky and Matthias Zenger. Scalable component abstractions. In ACM SIG-
PLAN Conference on Object Oriented Programming, Systems, Languages, and Applications
(OOPSLA), pages 41–58, San Diego, CA, USA, 2005. ACM Press.

[169] Harold Ossher and Peri Tarr. Using subject-oriented programming to overcome common
problems in object-oriented software development/evolution. In International Conference
on Software Engineering (ICSE), pages 687–688, Los Angeles, CA, USA, 1999. ACM Press.

389



Bibliography

[170] Harold Ossher and Peri Tarr. Hyper/J: Multi-dimensional separation of concerns for Java.
In International Conference on Software Engineering (ICSE), pages 734–737, Limerick,
Ireland, 2000. ACM Press.

[171] Klaus Ostermann. Nominal and structural subtyping in component-based programming.
Journal of Object Technology, 7(1):121–145, 2008. http://www.jot.fm/issues/issue_
2008_01/article4/.

[172] Claus H. Pedersen. Extending ordinary inheritance schemes to include generalization.
In Conference on Object Oriented Programming, Systems, Languages, and Applications
(OOPSLA), pages 407–417, New Orleans, LA, USA, 1989. ACM Press.

[173] Simon Peyton Jones, editor. Haskell 98 Language and Libraries, The Revised Report.
Cambridge University Press, 2003.

[174] Simon Peyton Jones, Mark Jones, and Erik Meijer. Type classes: An exploration of the
design space. In Haskell Workshop, Amsterdam, The Netherlands, 1997.

[175] Benjamin C. Pierce. Bounded quantification is undecidable. Information and Computation,
112(1):131–165, 1994.

[176] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

[177] Benjamin C. Pierce, editor. Advanced Topics in Types and Programming Languages. MIT
Press, 2005.

[178] Peter Pirkelbauer, Yuriy Solodkyy, and Bjarne Stroustrup. Open multi-methods for
C++. In International Conference on Generative Programming and Component Engineering
(GPCE), pages 123–134, Salzburg, Austria, 2007. ACM Press.

[179] Gordon Plotkin. A structural approach to operational semantics. Technical Report DAIMI

FN-19, Åarhus University, Denmark, 1981.

[180] Martin Plümicke. Java type unification with wildcards. In International Workshop on Uni-
fication (UNIF), Paris, France, 2007. http://www.lsv.ens-cachan.fr/Events/rdp07/
unif.html.

[181] Martin Plümicke. Typeless programming in Java 5.0 with wildcards. In Internation Sympo-
sium on the Principles and Practice of Programming in Java (PPPJ), pages 73–82, Lisboa,
Portugal, 2007. ACM Press.

[182] Emil L. Post. A variant of a recursivley unsolvable problem. Bulletin of the American
Mathematical Society, 53:264–268, 1946.

[183] Xin Qi and Andrew C. Myers. Sharing classes between families. In ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), pages 281–292,
Dublin, Ireland, 2009. ACM Press.

[184] Gabriel Dos Reis and Bjarne Stroustrup. Specifying C++ concepts. In ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL), pages 295–308,
Charleston, SC, USA, 2006. ACM Press.

[185] Didier Rémy and Jérôme Vouillon. Objective ML: An effective object-oriented extension
to ML. Theory and Practice of Object Systems, 4(1):27–50, 1998.

[186] Didier Rémy and Jérôme Vouillon. On the (un)reality of virtual types, 1998. http://
gallium.inria.fr/~remy/work/virtual/virtual.ps.gz.

390



Bibliography

[187] John C. Reynolds. Towards a theory of type structure. In Programming Symposium, Pro-
ceedings Colloque sur la Programmation, volume 19 of Lecture Notes in Computer Science,
pages 408–425, Paris, France, 1974. Springer-Verlag.

[188] John C. Reynolds. User-defined types and procedural data structures as complementary
approaches to data abstraction. In Stephen A. Schumann, editor, New Directions in Algo-
rithmic Languages. INRIA, 1975. Reprinted in [189].

[189] John C. Reynolds. User-defined types and procedural data structures as complementary
approaches to data abstraction. In Carl A. Gunter and John C. Mitchell, editors, Theoretical
Aspects of Object-Oriented Programming: Types, Semantics, and Language Design, pages
13–23. MIT Press, 1994. Originally published in [188].

[190] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In IEEE
Symposium on Logic in Computer Science (LICS), pages 55–74, Copenhagen, Denmark,
2002. IEEE Computer Society Press.

[191] Winston W. Royce. Managing the development of large software systems: Concepts and
techniques. In International Conference on Software Engineering (ICSE), pages 328–338,
Monterey, CA, USA, 1987. ACM Press.

[192] Didier Rémy and Jérôme Vouillon. Objective ML: A simple object-oriented extension
of ML. In ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL), pages 40–53, Paris, France, 1997. ACM Press.

[193] Chieri Saito and Atsushi Igarashi. Self type constructors. In ACM SIGPLAN Conference
on Object Oriented Programming, Systems, Languages, and Applications (OOPSLA), pages
263–282, Orlando, FL, USA, 2009. ACM Press.

[194] Chieri Saito, Atsushi Igarashi, and Mirko Viroli. Lightweight family polymorphism. Journal
of Functional Programming, 18(3):285–331, 2008.

[195] Johannes Sametinger. Software Engineering with Reusable Components. Springer-Verlag,
1997.

[196] Vijay Saraswat. Report on the programming language X10, version 2.0, 2009. http:
//dist.codehaus.org/x10/documentation/languagespec/x10-200.pdf.

[197] James Sasitorn and Robert Cartwright. Component NextGen: A sound and expressive
component framework for Java. In ACM SIGPLAN Conference on Object Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA), pages 153–170, Montreal,
QC, CA, 2007. ACM Press.

[198] K. Chandra Sekharaiah and D. Janaki Ram. Object schizophrenia problem in object
role system design. In International Conference on Object-Oriented Information Systems
(OOIS), pages 494–506, Montpellier, France, 2002. Springer-Verlag.

[199] Andrew Shalit. The Dylan Reference Manual: The Definitive Guide to the New Object-
Oriented Programming Language. Addison-Wesley, 1997.

[200] Jeremy Siek and Andrew Lumsdaine. Essential language support for generic programming.
In ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), pages 73–84, Chicago, IL, USA, 2005. ACM Press.

[201] Jeremy G. Siek. A Language for Generic Programming. PhD thesis, Indiana University,
2005.

[202] Jeremy G. Siek, Lee-Quan Lee, and Andrew Lumsdaine. The Boost Graph Library: User
Guide and Reference Manual. Addison-Wesley, 2002.

391



Bibliography

[203] Charles Smith and Sophia Drossopoulou. Chai: Typed traits in java. In European Confer-
ence on Object-Oriented Programming (ECOOP), volume 3586 of Lecture Notes in Com-
puter Science, pages 543–576, Glasgow, Scotland, 2005. Springer-Verlag.

[204] Daniel Smith and Robert Cartwright. Java type inference is broken: Can we fix it? In
ACM SIGPLAN Conference on Object Oriented Programming, Systems, Languages, and
Applications (OOPSLA), pages 505–524, Nashville, TN, USA, 2008. ACM Press.

[205] Guy Steele. Common LISP: The Language. Digital Press, 2nd edition, 1990.

[206] Alexander Stepanov and Meng Lee. The standard template library. Technical report,
WG21/N0482, ISO Programming Language C++ Project, 1995.

[207] David Stoutamire and Stephen Omohundro. The Sather 1.1 specification. Technical Report
TR-96-012, International Computer Science Institute, 1996.

[208] Rok Strnǐsa, Peter Sewell, and Matthew Parkinson. The Java module system: Core design
and semantic definition. In ACM SIGPLAN Conference on Object Oriented Programming,
Systems, Languages, and Applications (OOPSLA), pages 499–514, Montreal, QC, CA, 2007.
ACM Press.

[209] Martin Sulzmann. Extracting programs from type class proofs. In ACM SIGPLAN In-
ternational Conference on Principles and Practice of Declarative Programming (PPDP),
pages 97–108, Venice, Italy, 2006. ACM Press.

[210] Martin Sulzmann, Gregory J. Duck, Simon Peyton Jones, and Peter J. Stuckey. Under-
standing functional dependencies via constraint handling rules. Journal of Functional Pro-
gramming, 17(1):83–129, 2007.

[211] Sun Microsystems. The collections framework, 2004. http://java.sun.com/j2se/1.5.0/
docs/guide/collections/.

[212] Sun Microsystems. Java 2 platform standard edition 5.0 API specification, 2004. http:
//java.sun.com/j2se/1.5.0/docs/api/index.html.

[213] Sun Microsystems. Enterprise Java Beans Specification 3.0, 2006. http://java.sun.com/
products/ejb/docs.html.

[214] Sun Microsystems. JSR 277: Java module system, 2006. http://jcp.org/en/jsr/detail?
id=277.

[215] Sun Microsystems. Java servlet specification, version 2.5, 2007. http://java.sun.com/
products/servlet/.

[216] Sun Microsystems. JavaBeans API specification, version 1.01, 2007. http://java.sun.
com/javase/technologies/desktop/javabeans/docs/spec.html.

[217] Sun Microsystems. Project Fortress website, 2008. http://projectfortress.sun.com/.

[218] Sun Microsystems. Java platform standard edition, 2009. http://java.sun.com/javase/.

[219] Clemens Szyperski. Independently extensible systems — Software engineering potential and
challenges. In Australasian Computer Science Conference (ACSC), Melbourne, Australia,
1996.

[220] Clemens Szyperski. Component Software. Addison-Wesley, 2nd edition, 2002.

[221] Clemens Szyperski, Stephen Omohundro, and Stephan Murer. Engineering a program-
ming language: The type and class system of Sather. In International Conference on Pro-
gramming Languages and Systems Architecture, volume 782 of Lecture Notes in Computer
Science, pages 208–227, Zürich, Switzerland, March 1994. Springer-Verlag.

392



Bibliography

[222] S. Tucker Taft, Robert A. Duff, Randall L. Brukardt, Erhard Ploedereder, and Pascal
Leroy, editors. Ada 2005 Reference Manual. Language and Standard Libraries, volume
4348 of Lecture Notes in Computer Science. Springer-Verlag, 2006.

[223] Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton Jr. N degrees of sepa-
ration: Multi-dimensional separation of concerns. In International Conference on Software
Engineering (ICSE), pages 107–119, Los Angeles, CA, USA, 1999. ACM Press.

[224] Peter Thiemann. An embedded domain-specific language for type-safe server-side Web-
scripting. ACM Transactions on Internet Technology, 5(1):1–46, 2005.

[225] Peter Thiemann and Stefan Wehr. Interface types for Haskell. In Asian Symposium on
Programming Languages and Systems (APLAS), volume 5356 of Lecture Notes in Computer
Science, pages 256–272, Bangalore, India, 2008. Springer-Verlag.

[226] Kresten Krab Thorup. Genericity in Java with virtual types. In European Conference
on Object-Oriented Programming (ECOOP), volume 1241 of Lecture Notes in Computer
Science, pages 444–471, Jyväskylä, Finland, 1997. Springer-Verlag.

[227] Mads Torgersen. The expression problem revisited — Four new solutions using generics. In
European Conference on Object-Oriented Programming (ECOOP), volume 3086 of Lecture
Notes in Computer Science, pages 123–143, Oslo, Norway, 2004. Springer-Verlag.

[228] Mads Torgersen, Erik Ernst, and Christian Plesner Hansen. Wild FJ. In International
Workshop on Foundations of Object-Oriented Languages (FOOL), informal proceedings,
2005. http://homepages.inf.ed.ac.uk/wadler/fool/program/14.html.

[229] Mads Torgersen, Erik Ernst, Christian Plesner Hansen, Peter von der Ahé, Gilad Bracha,
and Neal Gafter. Adding wildcards to the Java programming language. Journal of Object
Technology, 3(11):97–116, 2004. http://www.jot.fm/issues/issue_2004_12/article5/.

[230] Valery Trifonov and Scott Smith. Subtyping constrained types. In International Symposium
on Static Analysis (SAS), volume 1145 of Lecture Notes in Computer Science, pages 349–
365, Aachen, Germany, 1996. Springer-Verlag.

[231] V-Modell XT, version 1.3, 2009. http://www.v-modell-xt.de/.

[232] Mirko Viroli. On the recursive generation of parametric types. Technical Report DEIS-
LIA-00-002, Università di Bologna, 2000.

[233] Mirko Viroli and Antonio Natali. Parametric polymorphism in Java: An approach to trans-
lation based on reflective features. In ACM SIGPLAN Conference on Object Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA), pages 146–165, Minneapolis,
MN, USA, 2000. ACM Press.

[234] W3C. XHTML 1.0, the extensible hypertext markup language (2nd edition), 2002. http:
//www.w3.org/TR/html/.

[235] Philip Wadler. The expression problem, 1998. Post to the Java Genericity mailing list.

[236] Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad-hoc. In ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), pages
60–76, Austin, TX, USA, 1989. ACM Press.

[237] Alessandro Warth, Milan Stanojevic, and Todd Millstein. Statically scoped object adap-
tation with expanders. In ACM SIGPLAN Conference on Object Oriented Programming,
Systems, Languages, and Applications (OOPSLA), pages 37–56, Portland, OR, USA, 2006.
ACM Press.

393



Bibliography

[238] Stefan Wehr. Problem with superclass entailment in “A Static Semantics for Haskell”,
2005. Post to the Haskell mailinglist, http://www.haskell.org//pipermail/haskell/
2005-October/016695.html.

[239] Stefan Wehr. JavaGI homepage, 2009. http://www.informatik.uni-freiburg.de/
~wehr/javagi.

[240] Stefan Wehr, Ralf Lämmel, and Peter Thiemann. JavaGI: Generalized interfaces for Java. In
European Conference on Object-Oriented Programming (ECOOP), volume 4609 of Lecture
Notes in Computer Science, pages 347–372, Berlin, Germany, 2007. Springer-Verlag.

[241] Stefan Wehr and Peter Thiemann. Subtyping existential types. In Workshop on Formal
Techniques for Java-like Programs (FTfJP), informal proceedings, pages 125–136, 2008.
http://www-sop.inria.fr/everest/events/FTfJP08/ftfjp08.pdf.

[242] Stefan Wehr and Peter Thiemann. JavaGI in the battlefield: Practical experience with
generalized interfaces. In ACM SIGPLAN International Conference on Generative Pro-
gramming and Component Engineering (GPCE), pages 65–74, Denver, CO, USA, 2009.
ACM Press.

[243] Stefan Wehr and Peter Thiemann. On the decidability of subtyping with bounded existential
types. In Asian Symposium on Programming Languages and Systems (APLAS), Seoul,
Korea, 2009.

[244] Andrew Wright and Matthias Felleisen. A syntactic approach to type soundness. Informa-
tion and Computation, 115(1):38–94, 1994.

[245] Dachuan Yu, Andrew Kennedy, and Don Syme. Formalization of generics for the .NET
common language runtime. In ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL), pages 39–51, Venice, Italy, 2004. ACM Press.

[246] Matthias Zenger. Keris: Evolving software with extensible modules. Journal of Software
Maintenance and Evolution: Research and Practice, 17(5):333–362, 2005.

394



Index

Symbols and Notations
7−→, 41
−→, 41
−→∗, 61
7−→[, 81
−→[, 81
−→[+, 82
−→[∗, 82
7−→iFJ, 86
−→iFJ, 86
−→+

iFJ, 87
−→∗iFJ, 87
=⇒, 65
| |, 249, 291
J K, 113, 121
[ ], 10, 32, 37, 40, 186
==, 147, 157
≡, 101–104
=ctx, 104
#, 113
�, 41
−1, 108
<#, 162
¬ , 121
∼, 68
<:, 25
∪̇, 65
u?, 73
≤?, 65
t, 38⊔

, 38
::, 184, 237
◦, 291
•, 32
∈+, 184
∈∗, 184
Ec, 52, 53
E[c, 79
Eci, 185

Ei, 52
E[i, 79
∃J, 166
α, 120
β, 63
γ, 120
Γ, 43
Γ, x : T , 43
Γ(x), 43
Γ ⊆ Γ′, 311
∆, 35
∆, P , 35
∆, X, 35
ε, 291
ε, 113
ζ, 113
η, 113
ηJ, 361
ι, 291
µ, 249, 374, 375
ξ, 31
ξ?, 32
ξ, 32
π, 34
σ, 120
Σ, 113
Σ∗, 113
τ , 120
ϕ, 37
ϕϕ′, 220
φ, 291
χ, 104
ψ, 37
Ω, 120

A
a-mtype, 70
a-mtypec, 70
a-smtype, 70
abstract

395



Index

implementations, 16, 151, 164
interfaces, 162
type members, 154

Adapter pattern, 2, 4, 10, 19, 142, 160
adapter problem, 154
algorithm

for constraint entailment, 242
for subtyping, 243
for unification modulo greatest lower bounds,

74
for unification modulo kernel subtyping,

65
algorithmic

constraint entailment, 63–64
expression typing, 72–73
method typing, 67–72
subtyping, 63–64, 115

ambiguity, 26–28, 161, 162
antlr (workload), 146, 148
as, 17, 177
aspect-oriented programming, 158
AspectJ, 158
associated types, 151, 173
asymmetric multiple dispatch, 161
at-top, 47
avoidance problem, 166

B
B, 185
Bd, 108
Be, 108
Bmd, 108
Bms, 108
Bp, 108
Bt, 108
benchmarks, 6, 145–148
Beta, 152
binary component adaptation, 159
binary method, 12, 20, 21, 160, 162–163
body

of a class, 33, 78
of a method, 33, 79
of an existential type, 118
of an implementation, 33, 79
of an interface, 33

boolean flag, 64
bound, 69
bound-variable condition, 54
bounded existential types, 116–118, 165, 166

C
C, 32, 78, 82
C, 121
C#, 2, 3, 11, 152, 160, 163, 164, 174
cache, 245
cand, 243, 246
case studies, 6, 133–145
cast-free, 61
cast1 (workload), 146, 147
cast2 (workload), 146, 147
cast3 (workload), 146, 147
casts, 34, 44, 79, 80, 82, 83, 86, 88, 147, 148,

157
downcasts, 44, 88
stupid casts, 44, 88
upcasts, 44, 88

cdef , 32, 78, 82
Cecil, 160, 161, 163
cJ, 142–145, 163
class

definitions, 33, 78, 83
inheritance, 52, 53, 79
methods, 33, 79
names, 32, 78, 83
sharing, 156–157
types, 33, 34, 78, 79, 83, 118

classboxes, 158–159
ClassName, 32, 78
ClassNameEXuplo, 118
ClassNameiFJ, 82
CLI, see Common Language Infrastructure
closed, 121
closure

of a set of types, 57
reflexive, transitive, 61, 87
transitive, 87

closure, 57
CLU, 164
collaboration interfaces, 157
COM, see Component Object Model
Common Language Infrastructure, 58
Common Lisp, 160
Common Object Request Broker Architec-

ture, 2
commutativity, 99, 104, 105
commuting diagram, 99, 103–106
compiler, 5, 6
completeness

check for abstract methods, 11, 17, see
well-formedness criteria � complete-

396



Index

ness
of algorithmic constraint entailment, 66
of algorithmic expression typing, 73
of algorithmic method typing, 72
of algorithmic subtyping, 66
of entailment for constraints with optional

types, 67
of quasi-algorithmic constraint entailment,

60
of quasi-algorithmic subtyping, 60
of unifyu, 74
of unify≤, 65

Component NextGen, 158
Component Object Model, 2
components, see software components
composition, 65
compound types, 165
concept maps, 151, 152
ConceptGCC, 153
concepts, 151–153
conservativeness (design principle), 23, 30
constrained types, 164
constraint

clauses, 33
entailment, 24–26, 34–37, 118, 119

algorithm, 242
checker, 64
for constraints with optional types, 67–

68
with optional types, 67

constraint-based polymorphism, 163
constructor classes, 151
content assist, 132
contextual equivalence, 99, 103, 104
contractive, 57, 122
contracts, 154
conventions

3.4, 33
3.5, 33
3.6, 34
4.1, 79
4.2, 79
4.4, 83
B.1.9, 185
B.1.15, 186

CORBA, see Common Object Request Bro-
ker Architecture

CoreGI, 6, 32–60, 106–110
CoreGI[, 6, 78–82, 91–98, 106–110
corollaries

B.1.28, 198
B.5.2, 253
B.5.15, 261

coverage condition, 54
cyclic interface subtyping, 114

D
D, 32, 78, 82
D, 182
D, 121
D , 291
d, 32, 78, 82
DaCapo benchmark suite, 148
data dimension, 12, 154
decidability

of constraint entailment, 27, 29, 58, 62
of expression typing, 66
of program typing, 73
of subtyping, 5, 27, 29, 58, 62, 111, 127,

165–166
of typechecking, 5, 66, 73

decidable fragments, 114–116, 122–123
declaration-site variance, 165
declarative specification, 34, 42

of constraint entailment, 36
of expression typing, 44
of method typing, 43
of subtyping, 36

declare parents, 158
def , 32, 78, 82
default implementations, 16, 164
DefaultNavigator, 134, 135
defines-field, 101
definitions

3.1, 32
3.2, 32
3.3, 32
3.7, 35
3.8, 43
3.9, 47
3.10, 57
3.13, 61
3.18, 61
3.21, 65
3.22, 65
3.30, 71
3.33, 73
3.34, 73
3.38, 73
4.3, 82
4.5, 87

397



Index

4.7, 91
4.8, 91
4.13, 103
4.17, 104
4.21, 106
4.23, 107
4.28, 109
5.1, 113
5.4, 114
5.18, 122
5.20, 123
B.2.6, 203
B.4.1, 234
B.4.4, 237
B.4.7, 238
B.4.12, 244
B.4.18, 245
B.4.20, 248
B.6.1, 288
B.7.1, 291
B.7.2, 291
B.7.3, 291
B.7.4, 291
B.7.5, 291
C.3.27, 331
D.2.2, 366

dependent classes, 157
depth, 203
design patterns

Adapter, 2, 4, 10, 19, 142, 160
Factory, 4, 15, 22, 142
Observer, 18
Visitor, 4, 12, 160

design principles, 23–24
conservativeness, 23, 30
dynamicity, 23
extensibility, 23
modularity, 23
transparency, 24
type safety, 23

determinacy of evaluation, 5, 62, 110
dict-methods, 96
DictI , 83
DictI,N , 83
dictionary

class, 83, 130
interface, 83, 129
lookup, 88

disjoint union, 65
disp, 54

dispatch
positions, 54
types, 27, 53, 54
vector, 129

dispatcher method, 129
Document Type Definition, 140
dom, 35, 121, 366
dom4j, 134, 136–138, 148
dom4j-perf (workload), 146, 148
dom4j-tests (workload), 146, 148
Dom4jNavigator, 135
domain, 35, 121
double dispatch, 160
downcasts, 44, 88
downward closed, 55
DTD, see Document Type Definition
Dubious, 160
Dylan, 160, 161
dynamic

crosscutting, 158
dispatch, 11, 12, 19, 30, 151, 156, 159
loading, 17, 23, 166
method lookup, 26–30, 37–40, 48, 79, 80
semantics, 37–41, 79–82, 84–87

dynamicity (design principle), 23

E
E , 41, 81, 86
E, 113
e, 32, 78, 82
EΓ,T , 103
E [e], 41
Eclipse, 132

plugin, 132
Eiffel, 163
EJB, see Enterprise Java Beans
empty word, 113
entailment, see constraint entailment
entails, 242
entailsAux, 242
Enterprise Java Beans, 2
EQ, 12, 21, 128, 131
equivalence

modulo wrappers, 99, 101–104
of declarative and quasi-algorithmic con-

straint entailment, 60
of declarative and quasi-algorithmic sub-

typing, 60
of dynamic semantics, 109
of expression typing, 109
of program typing, 109

398



Index

of quasi-algorithmic and algorithmic con-
straint entailment, 66

of quasi-algorithmic and algorithmic sub-
typing, 66

of subtyping, 108
of wf-prog-2′ and wf-prog-2, 75
of wf-prog-3′ and wf-prog-3, 75
of wf-tenv-6′ and wf-tenv-6, 75
relation, 103

eval, 10
evaluation, 40, 81, 82

contexts, 40, 41, 80, 81, 86
exact types, 163
existentials, see bounded existential types
expanders, 159
Expr, 10, 131
expression

hierarchy, 9, 10
problem, 12, 154
translation, 92, 93
typing, 43–44, 88, 92, 93
variables, 33

expressions, 34, 79, 83
ExprPool, 18
extensibility (design principle), 23
extension methods, 160
external methods, 160–163
EXuplo, 117–119, 121, 165, 166

F
f , 32, 78, 82
F≤, 120, 165
FD≤ , 117, 119–121, 165
F-bounded polymorphism, 12, 20
F-bounds, 22
Factory pattern, 4, 15, 22, 142
facts

5.2, 113
5.16, 121

family polymorphism, 23, 152–156
Featherweight Generic Java, 5, 6, 31, 44, 53,

61
Featherweight Java, 5, 6, 82–84, 88
FGJ, see Featherweight Generic Java
field

definitions, 78
names, 33, 78, 83
shadowing, 47

FieldName, 32, 78
FieldNameiFJ, 82
fields, 41

fields[, 81
fieldsiFJ, 85
find, 12–14, 21
FJ, see Featherweight Java
FJ<:, 165
Fortress, 162, 164
framework integration problem, 154
ftv, 34, 64
fully modular compilation, 23
functional dependencies, 150–151
furtherbinding, 156

G
G, 32
G, 113
G , 63
g, 32, 78, 82
G-types, 34
gbeta, 152
generalized interfaces, 4, 6, 9, 31, 50, 127,

133, 149–152, 157, 164, 174
generic programming, 151–152
getmdefc, 39
getmdef[, 80
getmdef i, 39
getmdef iFJ, 85
getsmdef, 39
goal cache, 64
goals, 238
graph example, 153, 155, 156
greatest lower bound, 55

H
H, 32
Half & Half, 161
hash types, 162
Haskell, 3, 4, 50, 54, 140, 149–152, 154–157
height, 237, 291
higher-order hierarchies, 156
HTML, 140
Hyper/J, 157
hyperslices, 157, 158

I
I, 32, 78, 82
I, 361
II′, 361
IDE, see integrated development environment
idef , 32, 78, 82
identity1 (workload), 146, 147
identity2 (workload), 146, 147

399



Index

IfaceName, 32, 78
IfaceNameiFJ, 82
IfaceName IIT, 112
iFJ, 6, 82–91
IIT, 112–113, 165
imperative features, 126
impl , 32, 78
implementation

constraints, 4, 12, 24–26, 33, 34, 162
families, 173
inheritance, 15–17, 151, 164

implementation, 10, 177
implementing types, 4, 10, 12–13, 15, 20–23,

33, 79, 150, 160, 163
inference of type arguments, 26, 34, 127
inner classes, 152
instance definitions, 150, 151
instanceof, 147, 157, 160
instanceof1 (workload), 146, 147
instanceof2 (workload), 146, 147
instanceof3 (workload), 146, 147
integrated development environment, 125, 132
inter-type member declarations, 158
interface

definitions, 33, 78, 79, 83, 112
inheritance, 52, 53, 79
methods, 33, 79
names, 32, 78, 83
types, 34, 42, 79, 83, 112

interface (workload), 146
interfaces, 2, 33, 128–129

as implementing types, 111, 127, 173
interpreter (workload), 146, 147
Intersect, 160, 161
intersection, 160, 161

types, 165
IntLit, 10, 131
invariant return types, 107
inverse, 108
invokeinterface, 147
invokevirtual, 147
isa-constraints, 163

J
J , 32, 78, 82
J , 184
J, 361
JAM, 158
Java, 2–5, 10, 12, 15–17, 19–27, 111, 117,

119, 126–128, 132, 142, 145–147, 152,
164

Beans, 2
call-site, 26, 30
Collection Framework, 133, 142–145
Development Toolkit, 132
Language Specification, 26, 177
Virtual Machine, 77, 125, 145, 173

JavaGI
call-site, 26, 30
Eclipse Plugin, 132

JavaMod, 158
Jaxen, 134–135, 148
JDOM, 134, 139–140, 148
jdom-perf (workload), 146, 148
jdom-tests (workload), 146, 148
JDomNode, 139
JDT, see Java Development Toolkit
JEP, see JavaGI Eclipse Plugin
Jiazzi, 158
JLS, see Java Language Specification
judgments
` ∆ ok, 71
` cdef ok, 46
` idef ok, 46
` impl ok, 46
` prog ok, 46
`[ T ok, 91
`[ T ≤ U , 80
`[ T ≤ U  I?, 81
`[ cdef ok cdef′, 97
`[ idef ok def, 97
`[ impl ok cdef, 97
`[ m : mdef ok inC  mdef′, 96
`[ msig ok, 96
`[ prog ok prog′, 97
`[′ T ≤ U , 81
`i T ≤ U , 112
`i
′ T ≤ U , 364

ìa T ≤ U , 115
`iFJ C implements I, 89
`iFJ cdef ok, 89
`iFJ idef ok, 89
`iFJ m : mdef implements I, 308
`iFJ m : mdef ok inC, 89
`iFJ prog ok, 89
`iFJ-a T ≤ U , 296
`iFJ T ≤ U , 84
∆ ` G1 uG2, 55
∆ ` G uG′, 55
∆ ` Γ ok, 73
∆ ` mdef implements msig , 45

400



Index

∆ ` m : mdef ok inN , 45
∆ ` msig ok, 45
∆ ` msig ≤ msig ′, 45
∆ ` P ok, 42
∆ ` P ok, 42
∆ ` rcdef implements rcsig , 45
∆ ` rcsig ok, 45
∆ ` T ok, 42
∆ ` T ok, 42
∆ ` T ≤ U , 36
∆ ` T ≤ U , 35
∆ à P ok, 73
∆ à T ok, 73
∆ à T ≤ U , 63
∆ `ex P - Q, 372
∆ `ex P - Q, 372
∆ `ex T ≤ U , 118
∆ `ex

′ T ≤ U , 122
∆ q̀ T ≤ U , 52
∆ q̀

′ T ≤ U , 52
∆  ∆′, 186
∆  P, 36
∆  P, 35
∆ a P, 63
∆ ?

a T
? implements I <U?> _ R, 68

∆ ex T extendsU , 118
∆ ex T superU , 118
∆ ex

′ T extendsU , 122
∆ ex

′ T superU , 122
∆ q ∆′, 186
∆ q P, 51
∆ q

′ R, 51
∆;β; I à T ↑ U , 63
∆;β; I `?

a T
? ↑ U _ V , 68

∆; G à T ≤ U , 63
∆; G ;β a P, 63
∆; G ;β ?

a T ? implements I <U?> _ R,
68

∆; Γ ` e : T , 44
∆; Γ ` mdef ok, 45
∆; Γ à e : T , 72
G ìa T ≤ U , 115
Γ `[ e : T , 92
Γ `[ e : T  e′, 93
Γ `[ mdef implements msig  mdef′, 96
Γ `[ mdef ok e, 96
Γ `iFJ e ≡ e′ : T , 102
Γ `iFJ e1 =ctx e2 : T , 104
Γ `iFJ e : T , 88
Ω− D̀ σ− ≤ τ+, 120

JVM, see Java Virtual Machine
jython (workload), 146, 148

K
K, 32
Keris, 158
kernel

of CoreGI[ subtyping, 80
of quasi-algorithmic entailment, 50
of quasi-algorithmic subtyping, 53

L
L, 32
L, 73
least element, 38
least upper bound, 37
least-impl, 38
least-impl[, 80
left, 244
lemmas

B.1.1, 181
B.1.2, 181
B.1.3, 182
B.1.4, 183
B.1.5, 183
B.1.6, 184
B.1.7, 184
B.1.8, 184
B.1.10, 185
B.1.11, 185
B.1.12, 185
B.1.13, 186
B.1.14, 186
B.1.16, 186
B.1.17, 189
B.1.18, 189
B.1.19, 189
B.1.20, 189
B.1.21, 189
B.1.22, 193
B.1.23, 194
B.1.24, 194
B.1.25, 195
B.1.26, 195
B.1.27, 196
B.1.29, 198
B.1.30, 198
B.1.31, 199
B.1.32, 199
B.2.1, 202
B.2.2, 202

401



Index

B.2.3, 202
B.2.4, 203
B.2.5, 203
B.2.7, 204
B.2.8, 204
B.2.9, 204
B.2.10, 205
B.2.11, 206
B.2.12, 206
B.2.13, 206
B.2.14, 208
B.2.15, 209
B.2.16, 209
B.2.17, 209
B.2.18, 209
B.2.19, 214
B.2.20, 214
B.2.21, 214
B.2.22, 214
B.2.23, 214
B.2.24, 215
B.2.25, 216
B.2.26, 216
B.2.27, 216
B.2.28, 216
B.2.29, 216
B.2.30, 216
B.2.31, 216
B.2.32, 216
B.2.33, 218
B.2.34, 218
B.2.35, 219
B.2.36, 219
B.2.37, 221
B.2.38, 222
B.3.1, 233
B.3.2, 233
B.3.3, 234
B.3.4, 234
B.4.2, 235
B.4.3, 235
B.4.5, 237
B.4.6, 238
B.4.8, 238
B.4.9, 238
B.4.10, 238
B.4.11, 241
B.4.13, 244
B.4.14, 244
B.4.15, 244

B.4.16, 245
B.4.17, 245
B.4.19, 246
B.4.21, 248
B.5.1, 252
B.5.3, 253
B.5.4, 253
B.5.5, 255
B.5.6, 255
B.5.7, 255
B.5.8, 256
B.5.9, 257
B.5.10, 257
B.5.11, 258
B.5.12, 259
B.5.13, 259
B.5.14, 260
B.5.16, 261
B.5.17, 261
B.5.18, 261
B.5.19, 261
B.5.20, 261
B.5.21, 262
B.5.22, 263
B.5.23, 263
B.5.24, 263
B.5.25, 263
B.5.26, 275
B.5.27, 275
B.5.28, 276
B.5.29, 277
B.5.30, 278
B.5.31, 279
B.5.32, 280
B.5.33, 282
B.5.34, 282
B.5.35, 283
B.5.36, 285
B.5.37, 287
B.5.38, 288
B.6.2, 288
B.6.3, 290
B.7.6, 292
B.7.7, 292
B.7.8, 292
B.7.9, 292
B.7.10, 293
B.7.11, 293
B.7.12, 293
C.1.1, 295

402



Index

C.1.2, 295
C.1.3, 296
C.1.4, 296
C.1.5, 296
C.1.6, 296
C.1.7, 297
C.1.8, 297
C.1.9, 297
C.1.10, 299
C.1.11, 299
C.1.12, 299
C.2.1, 304
C.2.2, 304
C.2.3, 304
C.2.4, 304
C.2.5, 304
C.2.6, 304
C.2.7, 305
C.2.8, 305
C.2.9, 307
C.2.10, 307
C.2.11, 307
C.2.12, 307
C.2.13, 308
C.2.14, 308
C.2.15, 308
C.2.16, 308
C.2.17, 308
C.2.18, 309
C.2.19, 310
C.2.20, 310
C.2.21, 311
C.2.22, 311
C.2.23, 312
C.2.24, 312
C.3.1, 313
C.3.2, 313
C.3.3, 313
C.3.4, 315
C.3.5, 315
C.3.6, 315
C.3.7, 315
C.3.8, 315
C.3.9, 316
C.3.10, 317
C.3.11, 317
C.3.12, 319
C.3.13, 319
C.3.14, 320
C.3.15, 320

C.3.16, 320
C.3.17, 321
C.3.18, 321
C.3.19, 321
C.3.20, 321
C.3.21, 322
C.3.22, 328
C.3.23, 330
C.3.24, 330
C.3.25, 330
C.3.26, 331
C.3.28, 331
C.3.29, 332
C.3.30, 333
C.3.31, 333
C.3.32, 334
C.3.33, 334
C.3.34, 335
C.3.35, 340
C.3.36, 340
C.3.37, 341
C.3.38, 341
C.3.39, 341
C.3.40, 341
C.3.41, 342
C.3.42, 342
C.3.43, 342
C.3.44, 342
C.3.45, 342
C.3.46, 348
C.3.47, 348
C.3.48, 348
C.4.1, 357
C.4.2, 357
C.4.3, 357
C.4.4, 357
C.4.5, 357
C.4.6, 357
C.4.7, 358
C.4.8, 358
C.4.9, 358
C.4.10, 358
C.4.11, 359
C.4.12, 359
D.1.1, 361
D.1.2, 361
D.1.3, 364
D.1.4, 364
D.1.5, 364
D.1.6, 364

403



Index

D.1.7, 364
D.2.1, 366
D.2.3, 366
D.2.4, 369
D.2.5, 369
D.2.6, 369
D.2.7, 370
D.2.8, 370
D.2.9, 372
D.2.10, 372
D.2.11, 372

level, 255
level′, 259
lift, 242
lifting, 64
lightweight

dependent classes, 154
family polymorphism, 154

like Current, 163
line processor, 14
LineProcessor, 15
List, 131, 145
Lists, 12, 128
LOOJ, 162
LOOM, 162
lower bounds, 28, 116, 118

M
M , 32, 78, 82
m, 32, 78, 82
mc, 33, 79
mi, 33, 79
matching, 67, 162

modulo kernel subtyping, 64
maximal element, 27
mdef , 32, 78, 82
method

definitions, 79, 83
lookup, 27
names, 33, 78, 83
overloading, 47
signatures, 33, 79, 83
typing, 26, 42–43, 87, 92

method-constraints, 163
MethodName, 32, 78
MethodNameiFJ, 82
mindictiFJ, 85
minimal types, 48, 56, 58, 59
ML, 162
ML≤, 162
Modifiable, 144, 145

modular mixin composition, 164
modularity (design principle), 23
modulo wrappers, 99, 101–105
most-general solution, 65, 74
mostly modular typechecking, 23
msig , 32, 78, 82
mtype, 43
mtype[, 92
mtypeiFJ, 87
mub, 69
multi-dimensional separation of concerns, 157
multi-headed interfaces, 4, 18–19, 23, 25, 153,

157, 160
multi-parameter type classes, 150
MultiJava, 160, 161
multimethod, 160
multiple

dispatch, 4, 156, 160–163
instantiation

inheritance, 165
subtyping, 114

MyType, 154, 162

N
N , 32, 78, 82
N , 37
n, 245
n-ary subtyping judgment, 120
n-headed interface, 18
n-negative type, 120

environment, 120
n-positive type, 120
namespaces, 33, 79, 83
Navigator, 134, 135
nested

classes, 156–157
inheritance, 156–157
interfaces, 157
intersection, 156–157

Nice, 162
nil, 32
nominal subtyping, 164, 165
non-dispatch type, 27
non-static, 35

O
Object , 32, 78, 82, 118
Object, 144
object schizophrenia, 20, 157, 160
object-oriented programming, 1
Objective-C, 160

404



Index

Observer pattern, 18
ObserverPattern, 18
OOHaskell, 151
open-world assumption, 24
operation dimension, 12, 154
optional construct, 32
overbar notation, 32
overlapping implementations, 27
override check, 44, 45, 88, 89, 95, 96
override-ok, 45
override-ok[, 96
override-okiFJ, 89

P
P , 32, 118
P, 32
P, 113
Parseable, 15, 141
partial classes, 160
PCP, see Post’s Correspondence Problem
performance, 145–148
pick-constr, 69
PlusExpr, 10, 131
pol, 35
polarity, 34, 35, 120
polymorphic catcalls, 163
PolyTOIL, 162
Post’s Correspondence Problem, 113
predicate dispatch, 162
preservation

of ≡, 103
of dynamic semantics, 5, 99–106
of expression types, 99
of program well-formedness, 99
of static semantics, 5, 99
theorem, 61, 90

PrettyPrintable, 10
prog , 32, 78, 82
program, 33, 78, 83

typing, 44–46, 88, 89, 95–97
progress theorem, 60, 61, 91
proper evaluation, 40, 41, 81, 82, 86
provided services, 3

Q
Q, 32, 118
Q, 32
quasi algorithmic, 48
quasi-algorithmic

constraint entailment, 50–53
subtyping, 50–53

R
R, 32
R, 32
R, 71
r, 62, 238
R-constraints, 34
rcdef , 32
rcsig , 32
receiver

definitions, 33
signatures, 33

receiver, 18, 177
reduction, 113, 121
reflection, 173
reflection (workload), 146
reflexive, transitive closure, 61, see closure
reflexivity of subtyping, 37, 84, 113, 119, 184,

295, 366
Relaxed MultiJava, 160, 161
required services, 2, 3, 157
Resizable, 144, 145
resolve, 38
restricted syntax, 107
restrictions

5.5, 114
5.7, 115
5.9, 115
5.11, 116
5.13, 119
5.14, 119
5.15, 119

ResultDisplay, 18
retroactive

interface implementations, 4, 9–12, 16, 17,
19–20, 23, 24, 33, 78, 79, 112, 130–
131, 151, 156–159, 162, 164, 173–
174

retroactive (workload), 146
retroactively implemented methods, 12, 25,

129, 147
rng, 366
rules

alg-mtype-class, 70
alg-mtype-class-base, 70
alg-mtype-class-super, 70
alg-mtype-iface, 70
alg-mtype-static, 70
bound, 69
cand-closure, 243
cand-extends, 243

405



Index

cand-impl1, 243
cand-impl2, 243
closure-decomp-class, 57
closure-decomp-iface, 57
closure-elem, 57
closure-up, 57
con-spec-lower, 372
con-spec-multi, 372
con-spec-upper, 372
d-all-neg, 120
d-top, 120
d-var, 120
defines-field, 101
dict-methods[, 96
disp-constr, 54
disp-iface, 54
disp-msig, 54
disp-rcsig, 54
dyn-cast, 41
dyn-cast-ifj, 86
dyn-cast-wrap-ifj, 86
dyn-cast[, 81
dyn-context, 41
dyn-context-ifj, 86
dyn-context[, 81
dyn-field, 41
dyn-field-ifj, 86
dyn-field[, 81
dyn-getdict-ifj, 86
dyn-invoke-class, 41
dyn-invoke-iface, 41
dyn-invoke-ifj, 86
dyn-invoke-static, 41
dyn-invoke[, 81
dyn-let-ifj, 86
dyn-mdef-class-base, 39
dyn-mdef-class-base-ifj, 85
dyn-mdef-class-base[, 80
dyn-mdef-class-super, 39
dyn-mdef-class-super-ifj, 85
dyn-mdef-class-super[, 80
dyn-mdef-iface, 39
dyn-mdef-iface[, 80
dyn-mdef-static, 39
ent-alg-env, 63
ent-alg-extends, 63
ent-alg-iface1, 63
ent-alg-iface2, 63
ent-alg-impl, 63
ent-alg-lift, 63

ent-alg-main, 63
ent-env, 36
ent-extends, 36
ent-iface, 36
ent-impl, 36
ent-nil-alg-env, 68
ent-nil-alg-iface1, 68
ent-nil-alg-iface2, 68
ent-nil-alg-impl, 68
ent-nil-alg-lift, 68
ent-nil-alg-main, 68
ent-q-alg-env, 51
ent-q-alg-extends, 51
ent-q-alg-iface, 51
ent-q-alg-impl, 51
ent-q-alg-up, 51
ent-super, 36
ent-up, 36
equiv-cast, 102
equiv-field, 102
equiv-field-wrapped, 102
equiv-getdict, 102
equiv-invoke, 102
equiv-let, 102
equiv-new-class, 102
equiv-new-object-left, 102
equiv-new-object-right, 102
equiv-new-wrap, 102
equiv-var, 102
exp-alg-cast, 72
exp-alg-field, 72
exp-alg-invoke, 72
exp-alg-invoke-static, 72
exp-alg-new, 72
exp-alg-var, 72
exp-cast, 44
exp-cast-ifj, 88
exp-cast[, 93
exp-field, 44
exp-field-ifj, 88
exp-field[, 93
exp-getdict-ifj, 88
exp-invoke, 44
exp-invoke-ifj, 88
exp-invoke-static, 44
exp-invoke[, 93
exp-let-ifj, 88
exp-new, 44
exp-new-ifj, 88
exp-new[, 93

406



Index

exp-subsume, 44
exp-var, 44
exp-var-ifj, 88
exp-var[, 93
exuplo-abstract, 118
exuplo-abstract’, 122
exuplo-extends, 118
exuplo-extends’, 122
exuplo-object, 118
exuplo-object’, 122
exuplo-open, 118
exuplo-open’, 122
exuplo-refl, 118
exuplo-refl’, 122
exuplo-super, 118
exuplo-super’, 122
exuplo-trans, 118
fields-class, 41
fields-class-ifj, 85
fields-class[, 81
fields-object, 41
fields-object-ifj, 85
fields-object[, 81
glb-left, 55
glb-right, 55
iit-alg-impl, 115
iit-alg-refl, 115
iit-alg-sub, 115
iit-impl, 112
iit-impl’, 364
iit-refl, 112
iit-refl’, 364
iit-trans, 112
impl-iface-ifj, 89
impl-iface-methods-ifj, 308
impl-meth, 45
impl-meth[, 96
impl-recv, 45
in-refl-trans-refl, 184
in-refl-trans-trans, 184
in-trans-base, 184
in-trans-step, 184
inh-class-refl, 52
inh-class-refl[, 79
inh-class-super, 52
inh-class-super[, 79
inh-iface-refl, 52
inh-iface-refl[, 79
inh-iface-super, 52
inh-iface-super[, 79

least-impl, 38
least-impl[, 80
lub-left, 38
lub-right, 38
lub-set-multi, 38
lub-set-single, 38
lub-super, 38
matches-equal, 68
matches-nil, 68
mindict-ifj, 85
mtype-class, 43
mtype-class-base-ifj, 87
mtype-class-base[, 92
mtype-class-super-ifj, 87
mtype-class-super[, 92
mtype-iface, 43
mtype-iface-base-ifj, 87
mtype-iface-super-ifj, 87
mtype-iface[, 92
mtype-static, 43
mub, 69
non-static-iface, 35
ok-cdef, 46
ok-cdef-ifj, 89
ok-cdef[, 97
ok-class, 42
ok-class[, 91
ok-ext-constr, 42
ok-idef, 46
ok-idef-ifj, 89
ok-idef[, 97
ok-iface, 42
ok-iface[, 91
ok-impl, 46
ok-impl-constr, 42
ok-impl[, 97
ok-mdef, 45
ok-mdef-in-class, 45
ok-mdef-in-class-ifj, 89
ok-mdef-in-class[, 96
ok-mdef[, 96
ok-msig, 45
ok-msig[, 96
ok-object, 42
ok-object[, 91
ok-override, 45
ok-override-ifj, 89
ok-override[, 96
ok-prog, 46
ok-prog-ifj, 89

407



Index

ok-prog[, 97
ok-rcsig, 45
ok-tvar, 42
pick-constr-nil, 69
pick-constr-non-nil, 69
pol-constr, 35
pol-iface, 35
pol-msig-minus, 35
pol-msig-plus, 35
pol-recv, 35
resolve-empty, 38
resolve-non-empty, 38
sresolve-empty, 69
sresolve-non-empty, 69
sub-alg-class-iface-ifj, 296
sub-alg-class-ifj, 296
sub-alg-iface-ifj, 296
sub-alg-impl, 63
sub-alg-kernel, 63
sub-alg-main, 63
sub-alg-object-ifj, 296
sub-alg-refl-ifj, 296
sub-class, 36
sub-class-iface-ifj, 84
sub-class-ifj, 84
sub-class[, 81
sub-iface, 36
sub-iface-ifj, 84
sub-iface[, 81
sub-impl, 36
sub-impl[, 81
sub-kernel[, 81
sub-msig, 45
sub-object, 36
sub-object-ifj, 84
sub-object[, 81
sub-q-alg-class, 52
sub-q-alg-iface, 52
sub-q-alg-impl, 52
sub-q-alg-kernel, 52
sub-q-alg-obj, 52
sub-q-alg-var, 52
sub-q-alg-var-refl, 52
sub-refl, 36
sub-refl-ifj, 84
sub-trans, 36
sub-trans-ifj, 84
sub-var, 36
sup-ext-inh, 186
sup-ext-refl, 186

sup-refl, 51
sup-step, 51
topmost-class, 101
topmost-iface, 101
unify-class, 65
unify-iface-object, 65
unify-iface-up, 65
unify-var-env, 65
unify-var-object, 65
unwrap-base-ifj, 85
unwrap-step-ifj, 85
wrapper-methods[, 96

run-time
system, 5, 6, 130–132

S
S, 32
S, 32
S, 113
S , 65
ST , 114
Sather, 165
Scala, 5, 58, 117, 154, 159, 163, 164, 166
self-type

annotations, 154, 163
constructors, 163

sequence notation, 32
servlet, 140
Shape, 161
Shrinkable, 144, 145
Simula 67, 2
single-headed interfaces, 18
size, 248, 366
Smalltalk, 160
smtype, 43
software components, 1–3
sol, 288
solution, 65, 73
soundness

of algorithmic constraint entailment, 66
of algorithmic expression typing, 73
of algorithmic method typing, 72
of algorithmic subtyping, 66
of entailment for constraints with optional

types, 67
of quasi-algorithmic constraint entailment,

60
of quasi-algorithmic subtyping, 60
of unifyu, 74
of unify≤, 65
of wf-prog-4′ w.r.t wf-prog-4, 75

408



Index

sresolve, 69
stateful traits, 164
static

crosscutting, 158
interface methods, 4, 14–15, 22, 25, 150
semantics, 42–60, 87–90
type systems, 1

structural
conformance, 165
subtyping, 164–165

stuck
on a bad cast, 61, 91, 109
on a bad dictionary lookup, 91

stupid casts, 44, 88
sub, 243
sub’, 243
subAux, 243
subinterface, 80
subject-oriented programming, 157
substitution, 37, 40, 82, 86

application to type environments, 186
composition, 65, 220

subtype
checker, 64
compatible, 27
constraints, 24, 25, 34

subtyping, 25–26, 34–37, 80, 81, 84, 112, 113,
118–120, 151

algorithm, 243
without transitivity rule, 122

sup, 51, 186
super constraint, 53
superclass, 33, 78
superinterface constraints, 33
superinterfaces, 79, 83
symmetric multiple dispatch, 4, 13, 19, 22,

23, 159, 161
syntactic approach, 60
syntax

of CoreGI, 32
of CoreGI[, 78
of EXuplo, 118
of FD≤ , 120
of iFJ, 82
of IIT, 112
of JavaGI, 177

syntax-directed, 53
System

E, 161
F, 152

M, 160, 161
ME, 161

system validity check, 163

T
T , 32, 78, 82
T , 57
TameFJ, 166
termination

of algorithmic entailment, 66
of algorithmic expression typing, 73
of algorithmic subtyping, 66
of unifyu, 74
of unify≤, 66

theorems
3.11, 60
3.12, 60
3.14, 61
3.15, 61
3.16, 61
3.17, 61
3.19, 61
3.20, 62
3.23, 65
3.24, 66
3.25, 66
3.26, 66
3.27, 66
3.28, 67
3.29, 67
3.31, 72
3.32, 72
3.35, 73
3.36, 73
3.37, 73
3.39, 74
3.40, 75
4.6, 90
4.9, 91
4.10, 91
4.11, 99
4.12, 99
4.14, 103
4.15, 103
4.16, 103
4.18, 104
4.19, 104
4.20, 105
4.22, 106
4.24, 108
4.25, 109

409



Index

4.26, 109
4.27, 109
4.29, 109
4.30, 110
5.3, 113
5.6, 114
5.8, 115
5.10, 116
5.12, 116
5.17, 121
5.19, 122
5.21, 123
B.1, 294

Theta, 164
This, 12, 15
this, 162, 163
this.type, 163
ThisClass, 162
ThisType, 162
Top, 120
top-level evaluation, 40, 41, 81, 82, 86
topmost, 101
traits, 164
trans, 331
transformation of unification modulo kernel

subtyping problems, 65
transitive closure, see closure
transitivity of subtyping, 37, 84, 113, 119,

184, 185, 198, 295, 331, 366
translation, 5, 91–98, 127–130

of expressions, 92, 93
of identifiers, 92
of interfaces, 128–129
of invocations of retroactively implemented

methods, 129
of programs, 95–97
of retroactive interface implementations,

130–131
preserves types of expressions, 99
preserves well-formedness of programs, 99

transparency (design principle), 24
Tuple, 160
TvarName, 32
TvarNameD, 120
TvarNameEXuplo, 118
TvarName IIT, 112
two-way adapters, 20
type

arguments, 118
classes, 3, 4, 50, 54, 140, 149–152, 154–157

multi-parameter, 150
conditionals, 4, 13–14, 22, 144, 145, 150,

163–164
environment, 35, 118, 120
erasure, 26, 48, 126, 148, 174
parameter members, 154
parameters, 33
safety (design principle), 23
soundness, 5, 60–61, 90–91, 109, 166, 167
systems, see static type systems
variables, 32, 112, 118

type-conditional
interface implementation, 13
method, 14

type-directed equivalence modulo wrappers,
see equivalence modulo wrappers

type-equation constraints, 163
typechecking algorithm, 62–75
types, 34, 79, 83, 112, 118, 120
tyranny of the dominant decomposition, 154,

157

U
U , 32, 78, 82
U , 57
U, 65
undecidability, 111, 113–114, 119–122, 165–

166
unification

modulo greatest lower bounds, 73–74
modulo kernel subtyping, 64–66

unifyu, 74
unify≤, 65
Unity, 165
unrestricted

implementation constraints, 34
P -constraints, 34

unwrap, 85
upcasts, 44, 88
upper bounds, 116, 118

V
V , 32, 78, 82
V , 57
v, 41, 81, 86
values, 40, 41, 80, 81, 84, 86
variable

environment, 43, 87
names, 78, 83

variable-bounded, 123
variant path types, 154

410



Index

VarName, 32, 78
VarNameiFJ, 82
views, 159, 164
virtual

classes, 152–153, 156–157
interfaces, 157
patterns, 152
superclasses, 156

virtual (workload), 146
visibility modifiers, 126
Visitor pattern, 4, 12, 160
vlevel, 291

W
W , 32, 78, 82
w, 41, 81, 86
WASH, 140–142
weight, 234
weight′, 259
weight′′, 374
weight′′′, 375
well-formedness, 42, 44–46, 71, 73, 88–91,

95–98
criteria, 26–30, 47–60, 90, 98

completeness, 29–30
consistent type conditions, 29
downward closed, 27–28
for CoreGI classes, 47
for CoreGI implementations, 48–54
for CoreGI interfaces, 47–48
for CoreGI programs, 55–57
for CoreGI type environments, 57–60
no implementation chains, 29
no overlap, 27
wf-class-1, 47
wf-class-2, 47
wf[-class-1, 98
wf[-class-2, 98
wf-ifj-1, 90
wf-ifj-2, 90
wf-ifj-3, 90
wf-ifj-4, 90
wf-ifj-5, 90
wf-ifj-6, 90
wf-impl-1, 54
wf-impl-2, 54
wf-impl-3, 54
wf[-impl-1, 98
wf-iface-1, 47
wf-iface-2, 47
wf-iface-3, 47

wf-prog-1, 55
wf-prog-2, 55
wf-prog-3, 55
wf-prog-4, 56
wf-prog-5, 56
wf-prog-6, 56
wf-prog-7, 56
wf[-prog-1, 98
wf[-prog-2, 98
wf-tenv-1, 57
wf-tenv-2, 57
wf-tenv-3, 57
wf-tenv-4, 57
wf-tenv-5, 57
wf-tenv-1, 58
wf-tenv-2, 58
unique interface instantiation and non-

dispatch types, 27
where, 13, 14, 163, 164, 177
Whiteoak, 165
wildcards, 5, 12, 20–22, 117–119, 126–127,

166
WildFJ, 166
workloads

antlr, 146, 148
cast1, 146, 147
cast2, 146, 147
cast3, 146, 147
dom4j-perf, 146, 148
dom4j-tests, 146, 148
identity1, 146, 147
identity2, 146, 147
instanceof1, 146, 147
instanceof2, 146, 147
instanceof3, 146, 147
interface, 146
interpreter, 146, 147
jdom-perf, 146, 148
jdom-tests, 146, 148
jython, 146, 148
reflection, 146
retroactive, 146
virtual, 146

wrap, 93
WrapI , 83
wrapped, 83
wrapper

class, 83, 129
recycling, 157

wrapper-methods, 96

411



Index

wrappers, 84, 86, 92, 99, 101–105, 129, 157,
174

X
x, 32, 78, 82
X10, 164
XAttribute, 136
XDocument, 136
XElement, 136
XML, 133
XNode, 134, 136–139
XPath, 133, 134, 137–139
xpath node hierarchy, 136

Y
Y , 32
y, 32, 78, 82

Z
Z, 32
z, 32, 78, 82

412


