Interface Types for Haskell

Peter Thiemann and Stefan Wehr

Institut fiir Informatik, Universitat Freiburg, Germany
{thiemann,wehr}@informatik.uni-freiburg.de

Abstract. Interface types are a useful concept in object-oriented pro-
gramming languages like Java or C#. A clean programming style advo-
cates relying on interfaces without revealing their implementation.
Haskell’s type classes provide a closely related facility for stating an in-
terface separately from its implementation. However, there are situations
in which no simple mechanism exists to hide the identity of the imple-
mentation type of a type class. This work provides such a mechanism
through the integration of lightweight interface types into Haskell.

The extension is non-intrusive as no additional syntax is needed and no
existing programs are affected. The implementation extends the treat-
ment of higher-rank polymorphism in production Haskell compilers.

1 Introduction

Interfaces in object-oriented programming languages and type classes in Haskell
are closely related: both define the types of certain operations without revealing
their implementations. In Java, the name of an interface also acts as an interface
type, whereas the name of a type class can only be used to constrain types.
Interface types are a proven tool for ensuring data abstraction and information
hiding. In many cases, Haskell type classes can serve the same purpose, but there
are situations for which the solutions available in Haskell have severe drawbacks.

Interface types provide a simple and elegant solution in these situations. A
modest extension to Haskell provides the simplicity and elegance of interface
types: simply allow programmers to use the name of a type class as a first-
class type. The compiler then translates such interface types into existentially
quantified data types [11] (available in several Haskell compilers such as GHC [3]
or Hugs [5]) and generates all the boilerplate code necessary for dealing with
these existential types. To keep type inference manageable, we follow the same
strategy as type inference algorithms for rank-n types [14] and require type
annotations if interface types should be introduced.

Contributions and Outline. A case study (Section 2.1) compares several ap-
proaches to information hiding in Haskell. It demonstrates that interface types
provide the simplest solution. Two further example applications (Section 2.2 and
Section 2.3) underline the advantages of interface types.

In Section 3, we formalize interface types as an extension of a type system
and inference algorithm for rank-n types introduced by Peyton Jones and oth-
ers [14]. The resulting inference algorithm (explained in Section 4 in terms of a
bidirectional type system) is close to the one used in GHC.

A prototype implementation of the type inference algorithm is available.! We
have developed it as an extension of Peyton Jones’s implementation of rank-n
type inference [14].

Section 5 sketches the translation to System F, the second component needed
for implementing interface types in a compiler. Sections 6 and 7 discuss related
work and conclude.

2 Motivation

To motivate the need for interface types, we present the results of a case study
that compares different approaches to information hiding in the design of a li-
brary for database access (Section 2.1). In two additional examples, we show how
interface types help in designing a library for sets and graphical user interfaces
(Section 2.2 and Section 2.3, respectively).

2.1 Interface Types for Database Access

Consider a programmer designing a Haskell library for accessing databases. Ide-
ally, the public interface of the library makes no commitment to a particular
database system and users of the library should not be able to create depen-
dencies on a particular database system (exception to both: opening new con-
nections). Thus, all datatypes describing connections to the database, query
results, cursors, and so on should be abstract, and the only way to manipulate
them should be through operations provided in the library.

Record Types as Interface Types. As a concrete example, consider the HDBC
package [4]. Up to version 1.0.1.2, HDBC provided database operations through
a record type similar to the following:?

module Database.HDBC (Connection(..)) where
data Connection = Connection { dbQuery :: String -> IO [[Stringll]l }

HDBC comes with a number of drivers that provide support for a specific
database system through an operation to create a connection:

module Database.HDBC.PostgreSQL (connectPSQL) where
connectPSQL :: String -> I0 Connection

module Database.HDBC.Sqlite3 (connectSqlite3) where
connectSqlite3d :: FilePath -> I0 Connection

! http://www.informatik.uni-freiburg.de/~thiemann/haskell/IFACE/impl.tgz

2 We only show those parts of the code relevant to our problem. Modules whose names start
with MyHDBC are not part of HDBC.

Once a connection is established, the Connection datatype ensures that ap-
plication code works independently of the specific database system. Thus, the
design just outlined fulfills the requirements at the beginning of this paragraph.

There is, however, one major disadvantage: the set of database operations
is fixed and cannot be extended easily. Suppose that we want to add sup-
port for PostgreSQL’s [16] asynchronous events.> We cannot extend the exist-
ing Connection datatype because not all database systems support asynchronous
events. Thus, we need to create a new datatype:

module MyHDBC (ConnectionAE(..)) where

data ConnectionAE = ConnectionAE { dbQuery’ :: String -> I0 [[Stringl],
listen :: String -> I0 O,
notify :: String -> I0 () }

But now functions operating on Connection do not work with ConnectionAE, al-
though the latter type supports, in principle, all operations of the former.

Type Classes as Interface Predicates. For this reason, HDBC version 1.1.0.0
replaces the datatype Connection with a type class IConnection:
module Database.HDBC (IConnection(..)) where

class IConnection c where
dbQuery :: ¢ -> String -> I0 [[String]]

Support for asynchronous events is now modeled through a subclass of IConnection:

module MyHDBC (IConnectionAE(..)) where
class IConnection c => IConnectionAE c where
listen :: ¢ -> String -> I0 ()
notify :: ¢ -> String -> I0 O
This way, functions with signatures of the form IConnection ¢ => .. -> ¢ -> ..
also work when passing an instance of IConnectionAE as the ¢ argument.

The classes Connection and IConnectionAE are not types, but serve as predicates
on type variables. Thus, the connect function provided by a database driver has
to return the concrete connection type. For example:
module Database.HDBC.Sqlite3 (ConnectionSqlite3(), connectSqlite3) where
data ConnectionSqlite3 = ConnectionSqlite3 {

sqlite3Query :: String -> I0 [[Stringl] }
instance IConnection ConnectionSqlite3 where
dbQuery = sqlite3Query
connectSqlite3 :: FilePath -> IO ConnectionSqlite3

A concrete return type violates our requirement that application code should
not be able to create a dependency on a particular database system: The driver
module Database.HDBC.Sqlite3 exports the datatype ConnectionSqlite3. Application
code may use this type in function signatures, data type declarations etc.

Is there a Haskell solution to this problem? Simply hiding the ConnectionSqlite3
type inside the Database.HDBC.Sqlite3 module is not enough, because a type name
is useful for type specifications. There are at least two solutions to this problem,
both of which involve advanced typing constructs.

3 PostgreSQL provides a listen and a notify operation: listen allows processes to register
for some event identified by a string, notify signals the occurrence of an event.

Ezistential Types as Interface Types. The first solution uses algebraic datatypes
with existential types [11].4

module Database.HDBC (IConnection(..), ExIConnection(..)) where
-- class IConnection as before
data ExIConnection =
forall ¢ . IConnection c => ExIConnection c
instance IConnection ExIConnection where
dbQuery (ExIConnection c) = dbQuery c

module MyHDBC (IConnectionAE(..), ExIConnectionAE(..)) where
-- class IConnectiondE as before
data ExIConnectionAE = forall c . IConnectionAE c => ExIConnectionAE c
instance IConnection ExIConnectionAE where
dbQuery (ExIConnectionAE c¢) = dbQuery c
instance IConnectionAE ExIConnectionAE where
listen (ExIConnectionAE c) = listen c
notify (ExIConnectionAE c) = notify c

With this solution, the module Database.HDBC.Sqlite3 no longer exports the type
ConnectionSqlite3 and the return type of connectSqlite3 becomes ExIConnection.
However, this solution has some drawbacks:

— A value of type ExIConnectionAE cannot be used where a value of type ExIConnection
is expected. Instead, we have to unpack and re-pack the existential type.

— Writing and maintaining the boilerplate for the datatype declarations ExIConnection
and ExIConnectionAE, as well as the corresponding instance declarations is te-
dious, especially when the class hierarchy becomes larger.

Rank-2 Types as Interface Types. The second solution is to provide a function
that passes the newly created connection to a continuation. Thanks to higher-
rank polymorphism [14], the continuation can be given a sensible type. With
this approach, the driver for PostgreSQL would look like this:

module MyHDBC.PostgreSQL (runWithPSQL) where
data ConnectionPSQL = ConnectionPSQL { psqlQuery :: String -> I0 [[Stringl],
psqllisten :: String -> I0 O,
psqlNotify :: String -> I0 () }
instance IConnection ConnectionPSQL where
dbQuery = psqlQuery
instance IConnectionAE ConnectionPSQL where
listen = psqllListen
notify = psqlNotify
connectPSQL :: String -> I0 ConnectionPSQL
runWithPSQL :: String -> (forall c. IConnectionAE c => ¢ -> I0 t) -> I0 t
runWithPSQL s f = do ¢ <- connectPSQL s
fc

Thanks to the generic instantiation relation for types, this function allows for
some unexpected flexibility. Clearly, a function of type

psqlWorker :: IConnectionAE c => c -> IO Result
can serve as a (second) parameter to runWithPSQL. But also

4 GHC uses the keyword forall for existential quantifiers.

dbWorker :: IConnection ¢ => c -> I0 Result

is a type correct second argument to runWithPSQL. The flexibility of this ap-
proach is appealing, but writing the user code using continuations can be de-
manding and may obfuscate the code.

Which of the two solutions does HDBC choose? The answer is: none. It seems
that the benefit of hiding the concrete connection type does not outweigh the
complexity of the two solutions.

Type Classes as Interface Types. We propose an alternative solution that is
lightweight and easy to use. We consider the name C of a type class as an inter-
face type that denotes some unknown instance of the class. Thus, the interface
type C' stands for the bounded existential type Jc.C' ¢ = c.

For example, the interface type IConnection represents some unknown instance
of the type class IConnection. Here is some code for an Sqlite3 driver module
following this approach:
module Database.HDBC.Sqlite3 (connectSqlite3) where
data ConnectionSqlite3 = ConnectionSqlite3 {

sqlite3Query :: String -> I0 [[String]] }
instance IConnection ConnectionSqlite3 where
dbQuery = sqlite3Query
connectSqlited :: FilePath -> IO IConnection

connectSqlite3 = internConnectSqlite3
internConnectSqlite3 :: FilePath -> IO ConnectionSqlite3

Transferring the subclass hierarchy on type classes to a “more polymorphic
than” relation on interface types allows values of type IConnectionAE to be passed
to functions accepting a parameter of type IConnection without any explicit con-
versions. This approach yields the same flexibility with respect to parameter
passing as with type classes and continuations using rank-2 types (but without
requiring the use of continuations).

Thus, the solution combines the advantages of type classes approach (ex-
tensibility, flexibility with respect to parameter passing, ease to use) with the
additional benefit that application code cannot directly refer to the implemen-
tation type of a connection. Moreover, there is no need to write boilerplate code
as with existential types wrapped in data types and there is no need to use
continuations as with the rank-2 types approach.

2.2 Interface Types for Sets

Consider a programmer designing a Haskell library for manipulating sets. The
library should consist of a public interface for common set operations and various
implementations of this interface. For simplicity, we consider only sets of integers
with the operations empty, insert, contains, and union. We can easily encode the
first three operations as methods of a type class Intset:

class IntSet s where

empty HE
insert :: s => Int -> s
contains :: s -> Int -> Bool

The signature of the union operation is not straightforward, because it should
be possible to union two sets of different implementations. Thus, the second
parameter of union should be an arbitrary Intset instance, leading to the signature
union :: IntSet s’ => s -> s’ -> 7. But what should the result type be?

When implementing sets using lists, we would like it to be s’:

instance IntSet [Int] where
empty]
insert 1 i i:1
contains 1 i i ‘elem‘ 1
union 1 s’ foldl insert s’ 1

When implementing sets using characteristic functions, we would like it to be s:

instance IntSet (Int -> Bool) where
empty \i -> False
insert f i \j >i==31|l1f]
contains f i f i
union f s’ \i -> contains f i || contains s’ i

In general, the result type of union is some unknown instance of Intset, which
is exactly the kind of interface type introduced in Section 2.1. This choice avoids
the declaration of an extra algebraic data type with existential quantification,
writing boilerplate instance definitions, and packing and unpacking the existen-
tial type. Instead, we simply define the signature of union as

-- instide type class IntSet
union :: s -> IntSet -> IntSet

and get the rest for free. Especially, the two instance declarations for [Int] and
Int -> Bool now become valid.

2.3 Interface Types for Graphical User Interfaces

Consider a programmer designing a Haskell library for writing graphical user
interfaces. The library should provide several different kinds of widgets: a text
input widget, a button widget, a table widget, and so on. It is reasonable to
abstract over the common operations of widgets with a type class:

class Widget w where

draw row -> 10 O
minSize :: w -> (Int,Int)
name 1w -> String

Some widgets provide additional features. A typical example is focus handling:

class Widget w => FocusWidget w where
setFocus rw > 10 O
unsetFocus :: w -> I0 ()

As an example, let us write the representation of a table widget. A table
widget is essentially a list of rows, where each row consists of a list of widgets.
Additionally, a table stores a second list of all focusable widgets. Clearly, the
list of widgets in a row and the list of focusable widgets are heterogeneous. The

element types just happen to be instances of Widget or FocusWidget. Hence, we
need some kind of existential type, again.

As in Section 2.1 and Section 2.2, algebraic datatypes with existential quan-
tifiers are an option. Here is the code with a function that extracts all rows from
a table containing at least one focusable widget.

data ExWidget = forall w . Widget w => ExWidget w
data ExFocusWidget = forall w . FocusWidget w => ExFocusWidget w
instance Widget ExWidget where

draw (ExWidget w) = draw w

minSize (ExWidget w) = minSize w

name (ExWidget w) = name w
instance Widget ExFocusWidget where

draw (ExFocusWidget w) = draw w

minSize (ExFocusWidget w) = minSize w

name (ExFocusWidget w) = name w
instance FocusWidget ExFocusWidget where

setFocus (ExFocusWidget w) = setFocus w

unsetFocus (ExFocusWidget w) = unsetFocus w

instance Eq ExWidget where

wl == w2 = name wl == name w2
instance Eq ExFocusWidget where
wl == w2 = name wl == name w2

data Table = Table { rows :: [[ExWidget]], focusable :: [ExFocusWidget] }

focusableRows :: Table -> [[ExWidget]]

focusableRows tab =
filter (\row -> any (\w -> w ‘elem‘ map asWidget (focusable tab)) row) (rows tab)
where asWidget (ExFocusWidget w) = ExWidget w

With interface types all the boilerplate code vanishes:

instance Eq Widget where

wl == w2 = name wl == name w2
instance Eq FocusWidget where
wl == w2 = name wl == name w2
data Table = Table { rows i [[Widgetl],

focusable :: [FocusWidget] }

focusableRows :: Table -> [[Widget]]
focusableRows tab =
filter (\row -> any (\w -> w ‘elem‘ (focusable tab)) row) (rows tab)

In the subexpression w ‘elem‘ (focusable tab), the compiler has to insert a co-
ercion from [FocusWidget] to [Widget]. In general, such coercions are generated

automatically if the corresponding datatype is an instance of Functor. In our
concrete example, the datatype is List, which is already an instance of Functor.

2.4 Restrictions on Interface Types

Interface types are not a panacea. In the preceding section, we have seen that
compound datatypes have to be instances of Functor if coercions should be gen-
erated automatically.

Syntax

expressions e, f =z | Az.e | ANz ::s).e| fe|letz=einf | (e::s)
types s,t n=a|Tt|s—t|VaP=>t
monotypes m u=a|Tm|m—m

predicates P,Q:=true | P, A
Typing rules

P|x:m)ke:t

(E-var) P|I'(x:s)Fx:s (E-lam)P\Fl—)\x.e:m_nf
(B-alam) P | IPiLI;((mx:::Sl)'Tee: :st—> t (E-app) PIrE fP f;ktfepz LF Feis
(E-ann) IPF| FF(: 6 S)S s (E-let) = I;Tli:kslefg! i(:i:ns} :th -
(B-gen) PQ|I'te:s PE‘ r}ﬁfee(:lgafg)éfgee(P) C free(I)

P|IkFe:s PF®s=<t
PlI'te:t

(E-spec)

Fig. 1: Syntax and static semantics of <.

Moreover, not every type class makes for a sensible interface type. In partic-
ular, the “dispatch type” of the class must appear exactly once negatively in the
signatures of the member functions. Without this restriction, it is not possible
to derive the instance definition on the interface type automatically. The exam-
ples in this section all obey this restriction, but any type class with a “binary
method” such as (==) :: Eq a => a -> a -> Bool does not.

3 A Language with Interface Types

This section defines a calculus with interface types in two steps. The first step
recalls qualified types [6] and extends it with higher-rank polymorphism along
the lines of Peyton Jones et al [14]. The second step adds interface types to that
calculus and defines and investigates their induced subtyping relation.

The presentation relies on standard notions of free and bound variables,
substitution for type variables in a syntactic object s[a — m], as well as the
notation @ as a shorthand for the sequence a4, ..., a,, for some unspecified n > 0.

3.1 Qualified Types with Higher-Rank Polymorphism

Fig. 1 contains the syntax and the static semantics of \?, the language of quali-
fied types as considered by Jones [6]. There are expressions e, types ¢, monotypes
m (types that only contain type variables and type constructors), and predicates

Rho-typesr :i=m | s — s

Weak prenex conversion pr(s) = s’

pr(ri) = VEQ =7y, anNb=10
pr(Va.P = r1) = Vab.P,Q = r2

(N-poly)

(s2) =Va.P =1y aNfree(si) =0
pr(si — s2) =Va.P = s1 — 2

(N-fun) Pt (N-mono) pr(m) =m

Deep skolemization P % s < r

pr(s2) =Va.Q = ro aNfree(s)) =0 P,QF™" s <1y

I-dsk *
(I-dsk) PFFF g < 59

PHQa—m] PF® ria—m] <r
PRk Va.QQ = r1 212

(I-spec)

P |—d5k < P Fdsk* < P |—d5k’*
55 = 51 52274 (I-tycon)

(I-fun)

T F
PEBF g 50 <83 >4

(I-mono) P +*"m <m

Fig. 2: Instantiation rules for types.

P. Predicates are conjunctions of (at this point) unspecified atomic predicates A.
The comma operator “,” on predicates stands for conjunction and is assumed to
be associative, commutative, and idempotent. Besides function types, the type
language includes arbitrary covariant data type constructors 7', which are intro-
duced and eliminated with appropriate functions provided in the environment.?

The typing judgment and the rules defining its derivability are standard for a
language with qualified types. The presentation extends Jones’s by allowing ar-
bitrary rank universally quantified types including type qualifications (cf. [10]).
These higher-rank types are introduced through explicit type annotations fol-
lowing the initial lead of Odersky and Léaufer [12]. Type inference for a language
with these features is tricky and incomplete, but manageable [10,14,20]. In par-
ticular, this language is a core subset of the language implemented in bleeding
edge Haskell compilers like GHC.

The rule (E-spec) relies on the generic instantiation relation < for types spec-
ified in Fig. 2. It generalizes the respective definition of Odersky and Léufer [12]
(to qualified types) as well as Jones’s ordering relation on constrained type
schemes [6] (to higher-ranked types). Its particular formulation of < using deep
skolemization is taken from Peyton Jones et al [14], extended with rule (I-tycon)
that exploits the assumption that type constructors are covariant. A yet more
general definition albeit without deep skolemization underlies the system of qual-
ified types for MLF [10].

5 In Haskell, the covariance requirement boils down to require T to be an instance Functor.

atomic predicates A, B ::=Im

PHQ PHA

(P-assume) P, AH- A (P-collect) P O.A
PHIm I=¢cJ . meéerl
(P—subcl) PHEJdm (P—ZTZSt) m

Fig. 3: Entailment for predicates.

So far, the definition is independent of any particular choice of predicates.
Thus, it remains to choose a language of atomic predicates and define the en-
tailment relation P H- (). In our case, the atomic predicates are type class con-
straints. Their entailment relation H- relies on specifications of type classes I and
of type class instances, i.e., the subclass relation between two classes I =¢ J
(read: I is a subclass of J) and the instance relation m € I between a monotype
m and a class I. Their syntactic details are of no concern for this work and
we consider the relations as built into the entailment relation H- on predicates
which obeys the rules in Fig. 3. To avoid clutter, Haskell’s facility of recursively
defining €; from single instance definitions for type constructors is omitted.

3.2 Interface Types

The language \? serves as a base language for the language A\!, which augments
A¥ with the definitions in Fig. 4. The only extension of A\ over A? is the notion
of an interface type 1 and a slightly extended type instantiation relation. Each
(single-parameter) type class I gives rise to an interface type of the same name.
This interface type can be interpreted as the existential type Ja.Ia = a in that
it stands for one particular element of the set of instances of I. Furthermore, the
interface type I is regarded an instance of J whenever I =¢ J. This assumption
is consistent with the observation that all instances of I are also instances of J,
hence the set of instances of J includes the instances of I.

There is no explicit constructor for an element of interface type, but any
suitable value can be coerced into one through a type annotation by way of the
instantiation relation <. This practice is analogous to the practice of casting to
the interface type, which is the standard way of constructing values of interface
type in, say, Java.® There is no explicit elimination form for a interface type I,
either. Rather, member functions of each class J where I = J are directly ap-
plicable to a value of interface type I without explicitly unpacking the existential
type.

Section 2 demonstrates that interface types are most useful if they enjoy a
subtyping relation as they do in Java. Fig. 5 defines this subtyping relation in
the obvious way. Each instance type of J is a subtype of J and the subclass

6 An implementation can easily provide a cast-like operation to introduce interface types.
However, type annotations are more flexible because they simplify the conversion of func-
tions that involve interface types.

10

Extended syntax of types
mii=--- | I

Additional type instantiation rules

PH1Im

(I-iface) P sk m=<1

Additional entailment rules

. I=¢cJ
(P-Sublnt) m

Fig. 4: Extensions for A’ with respect to Figures 1 and 2.

< <
(S-refl) t < t (S-trans) % (S-subclass) %
' me;d 5<17 t1 <s1 s2<t2
(S-instance) =5 (S-tyeon) =75y (St = T — 12
s<t

(s-

Wl e S < va 0 S ¢

Fig. 5: Subtyping.

relation induces subtyping among the interface types. The remaining structural
rules are standard.

Interestingly, the instantiation relation < already includes the desired sub-
typing relation <.

Lemma 1. The instance relation P %% s <t 4s reflexive and transitive.

Lemma 2. 1. If I=¢c J, then PH IT=<J.
2. Ifmep J, then PHm < J.

Lemma 3. s <t implies PH s < t.

4 Inference

The type system presented in Section 2 is in logical form. It is a declarative spec-
ification for the acceptable type derivations, but gives no clue how to compute
such a derivation, in particular because rules (E-gen) and (E-spec) allow us to
generalize and specialize, respectively, everywhere. Thus, the logical system is
suitable for investigating meta-theoretical properties of the system, such as type
soundness, but unsuitable for inferring types.

This section introduces a bidirectional version of the system geared at type
inference. As the development in this paper parallels the one in the “Practical
Type Inference” paper [14, Fig. 8], we omit the intermediate step of forming a
syntax-directed system, which would not yield further insight.

11

Direction § == 1t | |
Judgment P | I'kse:r

Pl_gnStSjr P\F(x:m)hretr
(BE-var) P|(z:s)Fsx:r (BE-lam1) PlIT'by Aze:m —r
P|F(m:s)l—ﬁ(’lye:s' Pll(z:s)tqe:r
(BE-lam?2) P Tr, hae s=5 (BE-alam1) Py Az s)e:s—r
P|T(z:s)H"e:s" PH" s <s
BE-lam2 L =
(BE-lam?2) P|Tky Mz :s)e:s — s
(BE-app) £ [Lo f:8' =" PITH™e:s’ PH™s"<r

P|I'ks fe:r

P|TH™e:s PHy s=<r
P|Tks(ezs):r

(BE-ann)

P|T+¥"e:s P|l(x:s)ksf:r

BE-let
(BE-let) P|TF;letz=einf r

Ceneralization judgment P | I' F2*% ¢ : s

PQ|I'kype:r
(BE-gen1) @ = free(r) \ free(I") free(P) C free(I)
P|F}—%"lye:Vd.Q:>T

PQ|I'Fye:r pr(s)=Va.Q=r
(BE-gen2) aNfree(I') =0 free(P) C free(I")
PITHe:s

PHIm P|I'kye:m

(BE-gens) = p | Frmve . 1

Instantiation judgment P | I'Fi*te: s <

P i Qla —)] Prtts <
PHVa.Q = r <r[a— mj PR s=r

(BE-inst1) (BE-inst2)

Fig. 6: Bidirectional version of Odersky and Laufer, extended with qualified types and
subtyping of interface types.

Fig. 6 displays the rules of the directional system. It relies on the same entail-
ment relation as the logical system as well as on the weak prenex transformation
and (extended) deep skolemization judgments from Figures 2 and 4. It extends
the system of Peyton Jones et al [14] with the handling of predicates in general,
one extra instantiation rule (I-iface), and one extra generalization rule (BE-

12

Type translation
la] = a [s — t] = |s| — |t| |I| = W |Va.P = t| = Va.|P| — [t|
[true| = * 1P, Q| = [P| x Q| [Tm| = Ex{|m|[}
Term translation (excerpt)

Pr® .57
FEE mapp h: Ts < TT

TS-t
(TS-tycon) 5

PHy:Im
FEET N (z m|). K yz :m <1

(TS-iface) 2

viAHy:Ir v:A|TFype~eé :r
U:A|F}—ﬁUlye'\»K1ye':I

(TE-gen3)

Fig. 7: Translation from A’ to System F. Er{t} is the type of evidence values for class
I at instance t. The type of a wrapper constructor is Kt : Va.Er{a} — a — Wr.

gend). This rule mimics (I-iface), but it can only occur in a derivation in a place
where full instantiation is not desired so that (I-iface) is not applicable.

It is straightforward to check that the directional system is sound with respect
to the logical system. However, doing so requires extra type annotations because
the directional system accepts more programs than the logical one.

Lemma 4. Suppose that P | I’ Fgozy e : s. Then there erxists some €' such that
P | Tk e :s where e differs from e only in additional type annotations on the
bound variables of lambda abstractions.

Here is an example for a term that type checks in the directional system (ex-
tended with integers and booleans), but not in the logical system:

A(f = ((Va.a — a) — int X bool) — (Va.a — a) — int X bool).
f(N\id.(id 5,4d false)) (A\z.x)

It works in the directional system because the rule (BE-app) infers a polymorphic
type for f, checks its argument against the resulting polymorphic type, and
then does the same for the second argument. However, in the logical system, the
argument of the function Aid.(id 5, id false) cannot receive a polymorphic type.
The directional system extends the logical one (viz. [14, Theorem 4.8]).

Lemma 5. Suppose that P | I'te:s. Then P | T'F°% ¢: ' and P F%* s < 5.

It is not clear whether the directional system retains the principal types
property (viz. [14, Theorem 4.13]).

5 Translation to System F

The last step towards an implementation of interface types in a Haskell compiler
is the translation to its internal language, System F, in Fig. 7. Peyton Jones

13

et al [14] define most parts of this translation by extending their bidirectional
system (without predicate handling), so the figure concentrates on the rules and
types not present in that work.

This translation maps an atomic predicate I'm into evidence, which is a
variable binding v : [Im|. The value of v is a suitable dictionary Di{|m/|} :
Ei{|m|} for the type class I. A value with interface type I is represented as a
System F term of type Wi . This term wraps a dictionary of type Ex{|m|} and a
witness of type |m| using an automatically generated datatype constructor Ki.

The translation rules for instantiation have the form P+ h : s < s’ and yield
a System F term h of type |s| — |s’|. The rule (TS-tycon) demonstrates why
the type constructors 7" have to be covariant: the translation of the instantiation
judgment requires a map operation map for each such 7.7 The rule (TS-iface)
shows the conversion of an instance type m of class I to its interface type I by
applying the wrapper constructor Ky to the dictionary y yielded by the extended
entailment judgment and the value z of type |m|.

The translation rules for expressions have the form P | I' e ~» €’ : r where
e is the source expression and €’ its translation. The rule (TE-gen3) performs
essentially the same task as (T'S-iface), but in a term context.

The translation to System F preserves types:

Lemma 6. Let F' denote the System F typing judgment.

— Suppose that (v:: A) | T'Fe~s e 7. Then (v |A]), [T FF € :|r].

— Suppose that (v A) | T'FP°W e ~s €' 1 s. Then (v = |A|), || FE € 1 s].

6 Related Work

There is a lot of work on type inference for first-class polymorphism [7-10,12,14,
18,20,21]. Our inference algorithm directly extends the algorithm for predicative
higher-rank types of Peyton Jones and others [14] with support for interface
types. The interface type system is also predicative.

Léufer [11] extends algebraic data types with existential quantification con-
strained over type classes. In Laufer’s system, programmers have to explicitly
pack and unpack existential types through the standard introduction and elim-
ination constructs of algebraic data types. Our approach translates interface
types into algebraic data types with existential quantification. Type annotations
serve as the pack operation for interface types. An explicit unpack operation for
interface types is not required.

Diatchki and Jones [2] use type class names to provide a functional notation
for functional dependencies. The name of a type class C' with n + 1 parameters
serves as a type operator that, when applied to n type arguments, represent
the (n + 1)th class parameter, which must be uniquely determined by the other
class parameters. Hence, the type C't; ...t, translates to a fresh type variable a
subject to the constraint C't; .. .t, a. With interface types, the name of a single-
parameter type class represents some unknown type that implements the type

7 In Haskell, T has to be an instance of Functor, so mapy becomes fmap.

14

class. An interface type in argument position of some type signature could be
handled by a local translation similar to the one used by Diatchki and Jones.
An interface type in result position, however, requires a different treatment to
cater for the existential nature of interface types.

Oliveira and Sulzmann [13] present a Haskell extension that unifies type
classes and GADTSs. Their extension also includes a feature that allows class
names being used as types. Similar to our work, these types represent some
unknown instance of the class. Different from our work, Oliveira and Sulzmann
provide neither a type inference algorithm and nor an implementation.

The present authors [22] investigate a language design that extends Java’s
interface mechanism with the key features of Haskell’s type class system. The
resulting language generalizes interface types to bounded existential types, fol-
lowing an idea already present with LOOM’s hash types [1].

Standard ML’s module system [19] allows programmers to hide the imple-
mentation of a module behind an interface (i.e., signature). For example, an ML
implementation of the database library from Section 2.1 might provide several
database-specific modules such that all implementation details are hidden be-
hind a common signature. A programmer then chooses at compile-time which
database should be used. In contrast, interface types allows this choice to be
deferred until runtime. Providing this kind of flexibility to users of Standard
ML’s module system would require first-class structures [17].

7 Conclusion and Future Work

An interface type can be understood as an existential type representing an un-
known instance of some type class. We demonstrated the usefulness of interface
types through a case study from the real world and formalized a type system
with support for interface types. Based on this type system, we implemented a
prototype of a type inference algorithm that can be included easily in a produc-
tion Haskell compiler.

Here are some items for future work:

— How about higher-order polymorphism? For higher-order classes such as
Monad, the interface type would be parameterized and encapsulate a par-
ticular implementation of Monad.

— How about multi-parameter type classes? To support interface types for
multi-parameter type classes, we would need explicit pack and unpack oper-
ations that coerce multiple values to/from an interface type.

— What if a type is coerced multiple times to an interface type? Each coercion
results in the application of a wrapper, so that there might be a stack of
wrappers. There is not much that can be done about it at the source level
and it is not clear if it would have a significant performance impact on a
realistic program. However, the implementation could be instrumented to
have the application of a wrapper constructor check dynamically if it is
applied to another wrapper and thus avoid the piling up of wrappers.

15

References

1.

10.
11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

K. B. Bruce, L. Petersen, and A. Fiech. Subtyping is not a good ”match” for
object-oriented languages. In M. Aksit and S. Matsuoka, editors, 11th ECOOP,
number 1241 in LNCS, pages 104-127, Jyvaskyla, Finland, June 1997. Springer.
I. S. Diatchki and M. P. Jones. Strongly typed memory areas programming
systems-level data structures in a functional language. In A. Loh, editor, Pro-
ceedings of the 2006 ACM SIGPLAN Haskell Workshop, pages 72-83, Portland,
Oregon, USA, Sept. 2006.

GHC. The Glasgow Haskell compiler. http://www.haskell.org/ghc/, 2008.

J. Goerzen. Haskell database connectivity. http://software.complete.org/
software/projects/show/hdbc, 2008.

Hugs 98. http://www.haskell.org/hugs/, 2003.

M. P. Jones. Qualified Types: Theory and Practice. Cambridge University Press,
Cambridge, UK, 1994.

M. P. Jones. First-class polymorphism with type inference. In N. Jones, editor,
Proc. 1997 ACM Symp. POPL, pages 483-496, Paris, France, Jan. 1997. ACM
Press.

D. Le Botlan and D. Rémy. MLF: raising ML to the power of System F. In
O. Shivers, editor, Proc. ICFP 2003, pages 27-38, Uppsala, Sweden, Aug. 2003.
ACM Press, New York.

D. Leijen. HMF: Simple type inference for first-class polymorphism. In ICFP,
pages 283-293. ACM Press, 2008.

D. Leijen and A. Loh. Qualified types for MLF. In Pierce [15], pages 144-155.

K. Laufer. Type classes with existential types. J. Funct. Program., 6(3):485-517,
May 1996.

M. Odersky and K. Laufer. Putting type annotations to work. In Proc. 1996 ACM
Symp. POPL, pages 54—67, St. Petersburg, FL, USA, Jan. 1996. ACM Press.

B. Oliveira and M. Sulzmann. Objects to unify type classes
and GADTs. http://www.cs.mu.oz.au/~sulzmann/manuscript/
objects-unify-type-classes-gadts.ps, Apr. 2008.

S. Peyton Jones, D. Vytiniotis, S. Weirich, and M. Shields. Practical type inference
for arbitrary-rank types. J. Funct. Program., 17(1):1-82, 2007.

B. C. Pierce, editor. ICFP, Tallinn, Estonia, Sept. 2005. ACM Press, New York.
PostgreSQL, the most advanced Open Source database system in the world. http:
//wwu.postgresql.org, 2008.

C. V. Russo. First-class structures for Standard ML. In G. Smolka, editor,
Proc. 9th ESOP, number 1782 in LNCS, pages 336-350, Berlin, Germany, Mar.
2000. Springer.

D. Rémy. Simple, partial type-inference for System F based on type-containment.
In Pierce [15], pages 130-143.

M. Tofte. Essentials of Standard ML Modules. In Advanced Functional Program-
ming, pages 208—238. Springer-Verlag, 1996.

D. Vytiniotis, S. Weirich, and S. Peyton Jones. Boxy types: Inference for higher-
rank types and impredicativity. In J. Lawall, editor, Proc. ICFP 2006, pages
251-262, Portland, Oregon, USA, Sept. 2006. ACM Press, New York.

D. Vytiniotis, S. Weirich, and S. Peyton Jones. FPH: First-class polymorphism for
Haskell. In ICFP, 2008. To appear, http://www.cis.upenn.edu/~dimitriv/fph/.
S. Wehr, R. Lammel, and P. Thiemann. JavaGI: Generalized interfaces for Java.
In E. Ernst, editor, 21st ECOOP, volume 4609 of LNCS, pages 347-372, Berlin,
Germany, July 2007. Springer.

16

