
Contract Monitoring and Call-by-name
Evaluation

— Extended Abstract —

Markus Degen, Peter Thiemann, and Stefan Wehr

Institut für Informatik, Universität Freiburg, Georges-Köhler-Allee 079,
79110 Freiburg, Germany

{degen,thiemann,wehr}@informatik.uni-freiburg.de

Abstract. Contracts are a proven tool in software development. They
provide specifications for operations that may be statically verified or
dynamically validated by contract monitoring.
Contract monitoring for strict languages has an established theoretical
basis. For languages with call-by-name evaluation, several styles of con-
tract monitoring are possible. In this article, we study two such styles:
eager monitoring enforces a contract when it is demanded, possibly eval-
uating expressions not touched by the user code, whereas delayed moni-
toring only proceeds as far as the user code itself can observe.
In each case, an effect system ensures that contract monitoring does not
change the meaning of a program and guarantees that contract moni-
toring is idempotent. Our formalization brings forward semantic reasons
that favor delayed monitoring for a call-by-name language and comes
with a Haskell implementation.

1 Introduction

Design by contract [8] is a methodology for constructing correct software. Each
operation is associated with a contract that defines two assertions, a precondi-
tion and a postcondition, for the operation. The contract is fulfilled if the usual
partial correctness condition is true: If the input meets the precondition and the
operation produces output, then the output is obliged to meet the postcondition.
A program run violates a contract if any of the pre- and postconditions of the
operations involved is false. Thus, a contract provides a (partial) specification of
an operation that every implementation of the operation must fulfill.

While contracts can be verified statically, in practice they are often enforced
dynamically using contract monitoring (cf. Eiffel [7, 6], Java [1, 5], Scheme [10],
or Haskell [4]): The implementation of an operation with monitoring checks the
precondition before performing its computation and checks the postcondition
before returning to its caller. If the precondition of the operation is false, then it
raises an exception blaming its caller. Conversely, if the postcondition does not
hold, then the operation blames itself.

The semantics of contract monitoring is intricate, and its correct and com-
plete implementation is non-trivial [3]. From a practical point of view, contract



monitoring should guarantee at least meaning preservation (MP) and behave
idempotently (IP):

MP: If a program run with contract monitoring enabled has no contract viola-
tions, then disabling contract monitoring should not change its meaning.

IP: Applying a contract multiple times is equivalent to applying it once.

The MP property ensures that developers may enable contract monitoring
for a test version of their software and safely disable contract monitoring for
the release version, without running the risk that the test and the release ver-
sion behave differently. The IP property ensures a meaningful notion of contract
composition.

In the context of call-by-value evaluation, there is only one useful and sensible
mode of contract monitoring. This mode corresponds to its implementation in
Eiffel, Java, and Scheme and is the one we just described.

In the context of call-by-name evaluation, there are at least two options, ea-
ger monitoring and delayed monitoring. Eager monitoring enforces an assertion
when it is demanded. That is, it checks the precondition when the function de-
mands its argument and it checks the postcondition when the caller demands the
function’s result. This eager strategy sometimes leads to undesirable behavior
which violates the IP property as pointed out by Hinze et al. [4].

We have developed a formalization which precisely pinpoints where eager
monitoring imposes too many restrictions on expressions subject to a contract.
Hence, we propose delayed monitoring as an alternative form of contract mon-
itoring for languages with call-by-name evaluation. Delayed monitoring places
no restrictions on expressions subject to a contract and enjoys the MP and IP
properties. It defers enforcement of an assertion until all values that it depends
on are evaluated by user code. Thus, monitoring only proceeds as far as the user
code itself can observe. Violations that the user code cannot observe, yet, are
considered to be invisible. Perhaps surprisingly, this delayed interpretation has
a logical foundation: While call-by-value monitoring checks properties according
to classical logic, lazy monitoring relies on a three-valued logic.

Contributions

We have developed a semantic framework for specifying and comparing contract
monitoring in functional languages [2]. The basis of the framework is an extended
version of Moggi’s monadic metalanguage [9] with a fixed monad providing for
nontermination, mutable state, and exceptions1 and an effect system for keeping
track of the effects.

We have developed the semantics of two styles of contract monitoring for
impure functional languages with call-by-name evaluation, eager and delayed
monitoring. Both are defined by translation into the metalanguage.
1 Usually, call-by-name languages provide non-termination as the only effect. However,

there is often a back door that allows other effects to creep in. In Haskell, this back
door is called unsafePerformIO.

2



The semantics enables us to formally prove (or disprove) the MP and IP
properties. The semantics also explains and helps fixing a problem with eager
monitoring observed by Hinze et al. [4]. We define and prove correct a criterion
that fixes the problem by imposing a suitable typing discipline.

We also provide a prototype implementation of delayed monitoring in Haskell [2].

References

1. P. Abercrombie and M. Karaorman. jContractor: Design by contract for Java.
http://jcontractor.sourceforge.net/, 2003.

2. M. Degen, P. Thiemann, and S. Wehr. Contract monitoring and call-by-name
evaluation. Technical Report 243, Institut für Informatik, Universität Freiburg,
http://proglang.informatik.uni-freiburg.de/projects/contracts/, Oct 2008. Full pa-
per and implementation.

3. R. B. Findler and M. Felleisen. Contract soundness for object-oriented languages.
In Proc. 16th ACM Conf. OOPSLA, pages 1–15, Tampa Bay, FL, USA, 2001. ACM
Press, New York.

4. R. Hinze, J. Jeuring, and A. Löh. Typed contracts for functional programming.
In Proc. Eighth International Symposium on Functional and Logic Programming
FLOPS 2006, Fuji Susono, Japan, Apr. 2006. Springer.

5. R. Kramer. iContract — the Java design by contract tool. In TOOLS 26: Tech-
nology of Object-Oriented Languages and Systems, pages 295– 307, Los Alamitos,
CA, USA, 1998.

6. B. Meyer. Applying “design by contract”. Computer, 25(10):40–51, Oct. 1992.
7. B. Meyer. Eiffel: The Language. Prentice-Hall, 1992.
8. B. Meyer. Object-Oriented Software Construction. Prentice-Hall, second edition,

1997.
9. E. Moggi. Notions of computations and monads. Information and Computation,

93:55–92, 1991.
10. The PLT Group. PLT MzLib: Libraries Manual. Rice University, University of

Utah, Dec. 2005. Version 300.

3


