
Technical Report No. 242

The Relation of Version Control to Concurrent Programming
(Extended Version)

Annette Bieniusa Peter Thiemann Stefan Wehr
Universität Freiburg, Germany

{bieniusa,thiemann,wehr}@informatik.uni-freiburg.de

Abstract
Version control helps coordinating a group of people work-
ing concurrently to achieve a shared objective.
Concurrency control helps coordinating a group of threads
working concurrently to achieve a shared objective.
The seemingly superficial analogy between version control
and concurrency control is deeper than expected. A com-
parison of three major flavors of version control systems
(exemplified by RCS, Subversion, and Darcs) with three in-
fluential and representative approaches to concurrency con-
trol (monitors, STM, and message passing) exhibits a sur-
prisingly close correspondences in terms of mechanism and
workflow. The correspondence yields new perspectives on
both, version control and concurrency control.

Keywords version control, monitors, message passing,
software transactional memory

1. Introduction
Version control is a mature field of software engineering
that traces its origins back to the legendary 1968 NATO
conference [27]. It is one of the few fields that have at-
tracted academic and industrial research alike and which has
a multi-million dollar market [10]. Besides commercial sys-
tems, there are numerous open source systems that imple-
ment new approaches as well as new combinations of exist-
ing concepts.

Concurrent programming has an even longer and fickle
history. There are numerous approaches some of which date
back to the 1960s. Each of these approaches has advantages
and drawbacks. Much recent work in this area concentrates
on software transactional memory [12, 19, 21, 35, 42]. This
approach to concurrency transfers ideas from database trans-
actions [4] to the problem of synchronizing concurrent mod-
ification of shared datastructures. It is seen by some as an
alternative API to concurrent datastructures that is particu-
larly easy to master from a programmer perspective.

Grossman [17] suggests an inspiring analogy between
transactional memory and garbage collection. His essay ex-
amines several key problems and their solutions in either

area and puts them in a common perspective by presenting
them with textual templates using different keyword substi-
tutions. It then goes on to elaborate further points and de-
velop some projections.

The present work suggests another analogy of transac-
tional memory with a certain flavor of version control.1 It
further extends this analogy to the other main flavors of ver-
sion control and compares them with monitors and message
passing. As with Grossman’s analogy there is some poten-
tial of transferring ideas from version control to concurrency
paradigms and back. Analogies like these are valuable be-
cause they enable alternative views on old and new ideas.
They clarify the design space, facilitate the classification of
different approaches, and enable the anticipation of new ap-
proaches.

This paper is structured as follows. Section 2 presents
a first cut at the correspondence by comparing the work-
flow of Subversion (a popular version control system) with
the workflow of an implementation of software transactional
memory. This section works entirely on an informal level
and appeals to the reader’s intuitive understanding of ver-
sion control terms and software transactional terms. Subse-
quently, Section 3 gives an overview of basic terms and def-
initions on version control as used in this paper. Section 4
does the same for concurrent programming paradigms. Thus
equipped, Section 5 extends the analogy to two other ver-
sion control approaches and compares them with monitors
and message passing. Section 6 collects further observations
about the relationship between version control and concur-
rent programming in general. Section 7 concludes.

2. The Relation of Subversion to Software
Transactional Memory

Toru Inemuri and Miki Kuruma work in the Tokyo office of
MetaHacks, a software company that operates on a global
scale. Toru is a project manager and Miki is a developer in
Toru’s project. Sometimes, Toru and Miki go out together to
have dinner and to enjoy some Karaoke. Because they work

1 We do not consider the exact relationship between database transactions
and version control or software transactional memory in this paper.

1 2008/8/29



Toru: Developing a Project

Toru is responsible for a project, which involves multiple de-
velopers. The main resource he is worried about is a reposi-
tory of artifacts (source code, configuration files, documen-
tation, reports, . . . ) created by the developers. This reposi-
tory is shared among the developers that contribute to the
project. Each of the developers needs to be able to manip-
ulate artifacts. A developer may access or modify an arti-
fact, he may create a new artifact, or delete an existing one.
Clearly, this is a job for a version control system.
Toru considers using Subversion for the new project. He con-
templates the workflow of a developer that wants to achieve
a certain objective (implement a feature X, document feature
Y, file a report).

1. No developer is allowed to operate directly on artifacts in
the shared repository.

2. The developer performs a check-out operation to make
the head revision of the shared artifacts available for
reading and writing. Thereby, the check-out operation
copies the artifacts into the developer’s workspace.

3. The developer creates, reads, updates, and deletes arti-
facts as required to achieve the objective.

4. The developer might find out that his chosen approach
does not work with the current repository. In this case, he
performs a revert operation and restarts from the previous
check out.

5. The developer might come to the conclusion that the
objective cannot be achieved, in which case he abandons
his modifications and proceeds with another task.

6. Once the developer has achieved his objective, he at-
tempts to integrate his modifications into the shared
repository by performing a commit operation.

7. On receiving the commit command, Subversion attempts
to merge the modifications with the head revision of the
artifacts. The merge operation is successful if no other
developer has changed an artifact in a way that overlaps
with changes made by the developer. In this case, the
head revision of the artifacts is atomically updated to
reflect the changes made by the developer and he can
proceed to the next task.
Otherwise Subversion signals a conflict. In this case, the
developer reiterates all steps starting from the check-out
operation.

Miki: Developing a Component

Miki is responsible for a component, which involves multiple
threads. The main resource she is worried about is the state
of the variables created by the threads. This state is shared
among the threads that run inside the component. Each of the
threads needs to be able to manipulate variables. A thread
may access or modify a variable, it may create a new vari-
able, or delete an existing one. Clearly, this is a job for a
concurrency control system.

Miki considers using STM for the new component. She con-
templates the workflow of a thread that wants to achieve a
certain objective (fill a buffer with data, update a graph struc-
ture, write to a log file).

1. No thread is allowed to operate directly on variables in
the shared program state.

2. The thread performs an enter atomic block operation to
make the current values of the shared variables avail-
able for reading and writing. Intuitively, the enter atomic
block operation creates a local copy of the variables.

3. The thread creates, reads, updates, and deletes variables
as required to achieve the objective.

4. The thread might find out that its chosen approach does
not work with the current program state. In this case, it
performs a retry operation and restarts from the previous
enter atomic block.

5. The thread might come to the conclusion that the objec-
tive cannot be achieved, in which case it aborts its modi-
fications and proceeds with another task.

6. Once the thread has achieved its objective, it attempts to
integrate its modifications into the shared program state
by performing a commit operation.

7. On receiving the commit command, the STM implemen-
tation attempts to merge the modifications with the cur-
rent values of the variables. The merge operation is suc-
cessful if no other thread has changed a variable in a way
that overlaps with changes made by the thread. In this
case, the current values of the variables are atomically
updated to reflect the changes made by the thread and it
can proceed to the next task.
Otherwise the STM implementation signals a conflict. In
this case, the thread reiterates all steps starting from the
enter atomic block operation.

Figure 1. Toru and Miki’s views on program development.

2 2008/8/29



Toru Miki
project component
developer thread
version control concurrency control
repository program state
artifact variable
head revision current value
Subversion STM implementation
workspace local copy
check out enter atomic block
commit commit
abandon abort
revert retry
conflict conflict

Figure 2. Corresponding terms in Toru’s and Miki’s tales.

on the same project, part of the dinner conversation revolves
around work.

On one such occasion Toru has to select a version control
(VC) system for a new project, whereas Miki tries to come
to grips with software transactional memory (STM), a new
paradigm for concurrent programming that she recently read
about and wants to use in her next project. Toru is most
familiar with the open-source VC systems CVS [7, 41] and
Subversion [29, 38] and hence heavily influenced by their
approach. Miki has read a number of papers on STM and is
currently excited about a lightweight approach for Java [18].
Figure 1 contains condensed renditions of Toru’s and Miki’s
contributions to that conversation and Figure 2 contains a
table that lists the corresponding terms in their tales.

The conversation demonstrates that a concurrent thread
using STM has a workflow which is very similar to the
workflow of a developer who manages a project using a VC
system similar to Subversion. There are a few dissimilarities,
though.

• A developer working with a VC system has a private
workspace with local copies of the artifacts created by a
check-out operation. The private workspace enables the
developer to perform experiments as well as to build and
test the system without affecting anyone else.
Some implementations of STM follow a similar strategy
of keeping local copies of the variables changed in an
atomic block. However, these copies do not outlive the
atomic block in which they were created. Furthermore,
there is no wholesale creation of local copies of all shared
variables. Rather, these copies are created as needed.
In a corresponding VC usage pattern, a developer would
check out artifacts lazily on demand. However, this pat-
tern does not appear to be useful to a developer because
building and testing involves more artifacts than just the
modified ones. Still, often the developer need not check
out the entire repository.

• A developer populates the workspace with one initial
check-out operation and then keeps the workspace up-
to-date by performing update operations. Modulo local
changes that the developer might want to preserve, the
effect of an update operation is equivalent to clearing the
workspace and then performing a fresh check out.

• If the VC system detects a conflict on an attempt to
commit, then the developer has to take action to get an
up-to-date view of the artifacts and to adapt its changes
to the new situation. If STM fails to commit, then the
STM implementation automatically makes the changes
of other threads visible and reruns the body of the atomic
block.

• A VC system records the history of each artifact in the
repository, whereas STM keeps only the most current
value of a shared variable.

3. Version Control
Version control (VC) systems manage multiple versions of
the same artifact.2 Software projects typically use a VC sys-
tem to manage source code, configuration files, documenta-
tion, and so on. VC is not limited to software projects, but it
is also used in such diverse areas as word processors, wiki
applications, or content management systems.

Two features are the cornerstones of a VC system:

Accessibility The system allows access to all versions of an
artifact at any time.

Accountability The system automatically logs who made a
change to an artifact, when it was made, and what it was.

These features can be traced back already to one of the
first VC systems, SCCS [32]. They are standard in all mod-
ern systems. VC systems can be further classified according
to the following dimensions [10]:

Repository model How does the VC system store artifacts?
The system may store all artifacts in a central repository.
The system may rely on several distributed repositories.
With this approach, each user owns one or more local
repositories.

Concurrency model How does the VC system prevent con-
flicting changes to the same artifact?
The system may pessimistically use locking to prevent
concurrent edit operations.
The system may optimistically allow concurrent edit op-
erations and attempt to merge the resulting changes. If
merging is not possible, the system signals a conflict that
the user must resolve manually.

2 Some people use the term “revision control” instead of “version control”.
We prefer the latter because an “revision” is a special kind of “version”, as
explained in the following.

3 2008/8/29



change−setsnapshot
history model

Perforce

central

distributed

model

repository

merge
concurrency

model

PerforceRCS (CVS, SVN)

CVS, SVN

Bazaar

lock

Darcs, Git

Figure 3. The VC cube.

History model How does the VC system record changes
between different versions of an artifact?
The system may record different versions as a snapshot
and use a version graph to represent several relations be-
tween them: the revision-of relation records sequential
evolution of an artifact, the variant-of relation records
parallel evolution of an artifact, and the merge relation
records the combination of changes made in several vari-
ants of an artifact.
The system may record the differences between two ver-
sions of the same artifact as a change set. Users may then
combine change sets in ways that go beyond the relations
captured in a version graph.3

Figure 3 positions some existing VC systems with respect
to these three dimensions. The list of VC systems is by
no means exhaustive. The figure merely serves to indicate
which combinations are implemented and used in practice.
Apparently, there is no VC system supporting “distributed
repositories” with “locking”. In fact, it seems rather strange
to insist on acquiring a global lock for editing artifacts in a
local repository.

Unfortunately, there is no established common terminol-
ogy in VC research and practice. Thus, the rest of this section
introduces the terminology used in this paper for concepts
common to many VC systems.

Repository A repository contains all information necessary
to ensure accessibility and accountability for all artifacts
stored in the system.

Workspace To modify artifacts stored in a repository, users
copy specific versions of the artifacts into a local workspace.
(This step is often implicit with distributed repositories.)

3 VC systems with a snapshot-based history model often use delta mech-
anisms [24] to record only the differences between consecutive snapshots.
Despite some similarities with change sets, the key difference is that change
sets are accessible by the users of the VC system, whereas delta mechanisms
are an implementation detail.

The workspace serves as a sandbox where artifacts can be
created, modified, and deleted without changing the con-
tent of the repository. It is up to the user to synchronize
between workspace and repository.

History The history is part of a repository. It records the
meta information associated with changes to artifacts
(who made the change, when it was, what it was, etc).

Branch A branch is a designated group of versions of some
artifacts that evolve in parallel to some other group of
versions based on the same artifacts.

Baseline A baseline is a designated group of versions from
which new branches may be started.

Head revision The head revision denotes the most recent
version of an artifact.

Conflict In most cases, a VC system uses a merge algo-
rithm [5,13,23,31,43] to combine two different versions
of an artifact. If the algorithm fails, the system signals a
conflict and prompts the user for intervention.

Commit The commit operation propagates changes from
the workspace to the repository. The changes may be
specified with different granularity: per line, per group
of lines, per file, per group of files. A commit is atomic
if either all or none of the changes in the workspace are
transferred to the repository.

Update The update operation propagates changes from the
central repository to the workspace. For VC systems with
distributed repositories, the notion of update is inapplica-
ble, although the pull operation (explained next) is simi-
lar to an update.

Pull and push The pull operation propagates changes from
a remote repository to the local one. The push operation
propagates changes from the local repository to a remote
one. The notion of pull and push is applicable only to VC
systems with distributed repositories.

Add The add operation adds a file to the workspace.

Delete The delete operation removes a file from the workspace.

Revert The revert operation undoes all changes made inside
the workspace, so that the workspace is up-to-date with
a specific group of versions of the corresponding reposi-
tory.

Pre/post event hooks VC systems often provide hooks that
are invoked before or after a specific event. For example,
after completion of a commit operation, a post-commit
hook may be used to notify all users via email.

4. Concurrent Programming
Concurrent programming [3, 11] is the art of controlling
(pseudo-) simultaneous execution of multiple interacting
computations. The primary objective for using this program-
ming technique is to increase the application throughput and

4 2008/8/29



to use available hardware resources efficiently. Furthermore,
there are problem instances for which concurrent program-
ming is a natural paradigm (e.g., client-server architectures
and event-based architectures).

Programming in a concurrent style is difficult:

• The partitioning of a program into several threads,4 each
executing a part of the whole program’s task, is in general
challenging because of data and control flow dependen-
cies between the threads.

• The coordination of multiple threads is a complicated
task which requires communication among the threads.
This communication overhead can impede the scalability
of the system.

Synchronization [39] refers to the coordination of simul-
taneously running threads and the maintenance of a coher-
ent view of data shared between threads. Synchronization
requires communication. Communication between threads
comes in two major flavors, via shared memory or via mes-
sage passing. Access to shared memory can be coordinated
in many different ways, among them locking and transac-
tional memory. The following subsections examine the re-
sulting three paradigms in more detail. Most modern pro-
gramming languages support these paradigms, either by lin-
guistic means or through libraries.5

4.1 Lock-Based Synchronization
Shared memory imposes only little overhead on data syn-
chronization. The classical approach to synchronization in
this setting grants code fragments (critical sections) only
mutually exclusive access to the shared memory. This lock-
ing of resources guarantees that a thread obtains exclusive
access for some time to complete its memory operations
undisturbed. Unfortunately, excessive locking can reduce
parallelism. Even worse, deadlocks can arise when threads
that have already obtained some locks are blocked, mutually
waiting for further locks to be released. Similarly, threads
can end up in a livelock where their state constantly changes
but no progress is made. Explicit synchronization via lock-
ing is commonly thought to be error-prone due to its delicate
semantics.

A monitor [22] mediates all accesses to and modifications
of some portion of shared memory. It guarantees that the
procedures associated with the monitor obtain mutually ex-
clusive access to the resources guarded by it. The standard
implementation is via locks (generated by the compiler).

4 This paper considers “thread” and “process” as synonyms and uses the
word “thread” throughout. The usual reading is that threads run in a shared
address space whereas processes may run in separate address spaces.
5 There are also pure hardware and hybrid platforms that implement thread
communication. The paper nevertheless concentrates on the software im-
plementations.

4.2 Transaction-Based Synchronization
Software Transactional Memory (STM) [35] is seen by some
as a more user-friendly approach to synchronization in a
shared memory setting. It offers a high-level mechanism and
shifts the implementation of mutual exclusion as well as
some data management tasks to the runtime environment.

Central to STM is the notion of an atomic block which
is used to encapsulate the accesses to the shared memory
in a safe manner. A transaction6 starts when entering an
atomic block and ends when leaving it. The STM system
guarantees that the computations inside a transaction either
execute as a whole or not at all. Moreover, other concurrently
running threads cannot observe intermediate states of the
computation inside an atomic block. These intrinsic features
are referred to as atomicity and isolation.

The implementation of STM has to cope with concur-
rently running transactions accessing and modifying the
same memory locations. To ensure the absence of conflicts,
a conflict detection mechanism checks the system’s con-
sistency and eventually arbitrates between the conflicting
parties. In general, this arbitration may lead to the abortion
of a transaction and a retry later in time. A transaction that
finishes its computation without conflict commits when leav-
ing the atomic block. Otherwise the transaction performs a
rollback.

Several design choices configure the exact behavior of an
STM implementation:

Atomicity Strong atomicity ensures that an atomic block ex-
ecutes in isolation with respect to all other computations.
Weak atomicity guarantees isolation only with respect to
other atomic blocks.

Conflict detection Pessimistic conflict detection checks the
validity of read and written data progressively, so con-
flicts are detected early and transactions which are bound
to fail are aborted quickly. Optimistic conflict detection
postpones data validation until the end of an atomic
block.

Granularity of conflicts Conflicts may occur at the object
level, the cache-line level, or the word level. Whereas
object conflict detection is a sensible choice in object-
oriented programming languages, the other options are
useful in less structured settings.

Data versioning Eager versioning performs in-place mem-
ory update during a transaction. It saves overwritten val-
ues in an undo-log structure for reconstruction on a po-
tential rollback. With lazy versioning each atomic block
maintains its own local write buffer whose values are
later on committed to the shared memory.

Nesting A nested transaction [26] arises when an atomic
block is enclosed in another atomic block. One approach

6 Transactional memory evolved from ideas of transaction processing in
database systems and borrows much of its terminology.

5 2008/8/29



flattens this nesting into a single transaction. Closed nest-
ing supports rollback of a nested transaction such that a
successful commit of an outer transaction requires the
successful completion of all nested transactions. To in-
crease parallelism open nesting allows nested transac-
tions to commit their result globally and irreversibly.

If the execution of an atomic block fails, all its effects
must be undone and the former state restored. The runtime
has to provide the means to perform this rollback, for exam-
ple by logging of values. To sustain the isolation property,
many implementations forbid irreversible operations, such
as I/O, inside of atomic blocks. Often a type system restricts
the mutation of shared data to atomic blocks.

4.3 Message-Based Synchronization
In a parallel architecture with distributed memory, threads
do not share a common address space. Thus, it is more ap-
propriate to manage data sharing via message passing (MP)
than to grant remote memory access. In this setting pairs
of corresponding send and receive operations transport data
between threads. The message passing interface (MPI [36])
and its successor MPI2 [16] define standard APIs that many
programming languages implement. Message passing is also
the basis of the Erlang programming language [1, 2]. Com-
munication operations can be classified with respect to the
following categories:

Point-to-point vs. global A thread can send a message ei-
ther to one other thread or to all other threads (broad-
cast). It is also possible to group threads for communica-
tion purposes.

Synchronous vs. asynchronous In synchronous mode, the
sender blocks until the receiving thread has started its re-
ceive operation. In asynchronous mode, the send opera-
tion does not block. Instead, the run-time system buffers
the message until the receiver requests it.

Accumulation vs. non-accumulation A special receive op-
eration can accumulate messages from multiple threads
with a specified reduction operation. The receiver sees
only the final result. Alternatively, all messages are sent
directly to the receiver.

The description of lock-, transaction-, and message-based
synchronization suggests that these concepts are fundamen-
tally distinct. Nevertheless, there are many hybrid forms. For
example, STM systems can be implemented using some kind
of locking when checking and writing data at the end of a
transaction [9].

5. Playing the Analogy
The thorough description of concepts in version control and
in concurrent programming in Section 3 and 4 suggest fur-
ther analogies than just the correspondence between Subver-
sion and software transactional memory considered in Sec-
tion 2.

5.1 Prologue
Section 3 distinguishes three dimensions in VC systems,
namely the repository model (central vs. distributed), the
concurrency model (lock-based vs. merge-based), and the
history model (snapshot vs. change set). The history dimen-
sion concerns the navigation in the space of accessible ver-
sions. In a concurrent system, the aim is to have one coherent
view of the program state, so that only one version is inter-
esting and worth preserving. Thus, it does not appear reason-
able to consider the analogy along the history dimension.

A similar comment applies to accountability. In a VC
system, accountability is of utmost importance because it
enables tracking down the person responsible for a cer-
tain change. In concurrent programming, accountability is
mostly not cared for, but it may have unexpected uses (see
Section 6.1.2).

After squashing the history axis, it remains to consider all
combinations of repository models and concurrency models.
All combinations but one are worth exploring.

• Section 2 deals with Subversion, which is an instance of
a merge-based VC system with a central repository, and
compares it to software transactional memory.

• Section 5.2 relates lock-based VC with a central reposi-
tory to concurrent programming with monitors.

• Section 5.3 explores the combination of merge-based VC
with distributed repositories and relates it to message
passing approaches in concurrency.

• The combination of lock-based VC with distributed
repositories does not make sense (see Section 3).

5.2 The Relation of Lock-Based VC to Concurrent
Programming with Monitors

There is a close correspondence between lock-based VC
with a central repository and the monitor approach to syn-
chronizing concurrent access to shared variables. Although
the change to a lock-based VC affects only few parts of the
workflow, it is clearer to restate both stories rather than just
report the changes. Figure 4 contains the revised version of
the stories in Figure 1 and Figure 5 contains the adapted ver-
sion of the correspondence in Figure 2. Significant differ-
ences are highlighted in bold face. The following subsec-
tions contain further discussion.

5.2.1 Lock-Based VC
In a VC system with locking, no developer can change an
artifact without previously acquiring its lock. Thus, the com-
mit operation never fails. It just copies artifacts from the
workspace to the repository.

Lock-based VC is considered too limiting because its
granularity is too coarse. Typically, one artifact (e.g., source
file) contains many independently editable and clearly sepa-
rated entities (e.g., declarations) and only few of them are af-

6 2008/8/29



Lock-based VC

Item 2 of Toru’s story in Figure 1 gets extended by the
addition of locking, item 5 gets extended by unlocking, and
items 6 and 7 get replaced by item 6.

1. No developer is allowed to operate directly on artifacts
in the shared repository.

2. The developer checks out to make the head revision of
the shared artifacts available for reading and writing.
The check-out operation copies the artifacts into the de-
veloper’s workspace. The developer locks all artifacts
that he wants to modify.

3. The developer creates, reads, updates, and deletes arti-
facts as required to achieve the objective.

4. The developer might find out that his chosen approach
does not work with the current repository. In this case, he
reverts and restarts from the previous check out.

5. The developer might come to the conclusion that the
objective cannot be achieved, in which case he abandons
his modifications, unlocks all artifacts, and proceeds with
another task.

6. Once the developer has achieved his objective, he publi-
cizes his modifications by performing a commit opera-
tion and unlocking the artifacts.

Concurrent Programming with Monitors

Items 4 and 5 of Miki’s story need minor adjustment. Items 6
and 7 get replaced by item 6.

1. Outside a monitor procedure, no thread is allowed to
operate directly on variables in the shared program state.

2. The thread enters a monitor to make the current values
of the shared variables available for reading and writing.

3. The thread creates, reads, updates, and deletes variables
as required to achieve the objective.

4. The thread might find out that its chosen approach does
not work with the current program state. In this case, it
cleans up, and restarts with item 3.

5. The thread might come to the conclusion that the objec-
tive cannot be achieved, in which case it cleans up its
modifications, exits the monitor, and proceeds with an-
other task.

6. Once the thread has achieved its objective, it publicizes
its modifications by exiting the monitor.

Figure 4. Two tales of lock-based VC and concurrent programming with monitors

Toru Miki
project component
developer thread
version control concurrency control
repository program state
artifact variable
head revision current value
RCS monitor implementation
workspace —
check out and lock enter monitor
commit and unlock exit monitor
revert cleanup
abandon cleanup
unlock exit monitor

Figure 5. Adapted correspondence for lock-based VC and
concurrent programming with monitors.

fected by a change. This separation makes it easy for merge-
based approaches to do the right thing in many cases.

In lock-based VC, most developers do not obtain their
locks all at once but gradually over time. This practice is
prone to deadlock so that all lock-based VC systems support

an operation to deliberately break a lock. Breaking a lock is
not considered good style but it is sometimes unavoidable
because the lock holder may be on a business trip, on vaca-
tion, or otherwise unavailable.

In VC, it is easy to back out of a failed objective because
the developer works on local copies of the artifacts in his
workspace. The repository still retains a previous version of
the artifacts and simply falls back to that version.

The VC lock effectively serves as a read/write lock. The
VC system imposes a write lock because it stops anyone but
the lock holder from modifying an artifact. It imposes a (kind
of) read lock because changes to the artifact only become
visible after the lock holder has committed and released
the lock. In the terminology of database transactions, this
strategy avoids dirty reads [4].

5.2.2 Concurrent Programming with Monitors
In concurrent programming with monitors, the commit oper-
ation is implicit in exiting the monitor as the monitor guar-
antees that no other thread can change the variables that it
guards while the thread is active in the monitor. However,
the developer of the monitor has to anticipate that an ob-
jective may be abandoned and save data manually if that is

7 2008/8/29



required. Furthermore, the relationship between the monitor
and the objects which the monitor is deemed to protect is of-
ten only informally specified. A concept like Java’s synchro-
nized methods [15] alleviates this problem but programmers
can still inadvertently violate the locking protocal, for exam-
ple, by using Java’s synchronized blocks inappropriately.

The developer of the monitor must choose the granularity
of the monitor procedures so that soundness is guaranteed
and the program is reasonably efficient.

In item 4 in the right column of Figure 4, it is more fair
to leave the monitor temporarily before trying another ap-
proach. This way, other threads waiting to enter the monitor
get a chance to proceed. In contrast to a VC system, it is
not possible to break a lock and enter a monitor occupied by
another thread.

Contrary to the VC situation, there is no easy way to back
out of a failed objective. The developer has to implement
his own error detection and cleanup strategy. At least, the
monitor ensures that there is no execution path leaving the
critical section of the program without releasing the locks.
With “bare-bones locking” the developer would have to take
care of that matter, too.

Unlike the VC situation, the scope of the monitor is up
to the programmer. In particular, if an isolation property that
avoids dirty reads is desired, it has to be implemented by the
programmer, for example, by also annotating a method that
reads a shared variable as synchronized in Java.

5.3 The Relation of VC with Distributed Repositories
to Concurrent Programming with Message Passing

While distributed repositories are popular in state-of-the-
art VC systems, there is no directly matching concurrency
paradigm. However, it is straightforward to synthesize a
sensible distributed programming pattern based on message
passing from the VC workflow. Figure 6 presents the syn-
opsis of the two workflows and Figure 7 adapts the corre-
spondences from Figures 2 and 5 to the new situation. The
subsections contain further explanation and discussion, first
on the VC side and then on the message passing side.

For concreteness, the VC part of this section borrows
the terminology from Darcs [33], a merge-based VC with
distributed repositories.

5.3.1 VC with Distributed Repositories
In a VC with a distributed repository, all developers have
their own local repository and all commits are performed
on the local repository. A developer may synchronize the
local repository with a remote repository, either by pulling
changes from the remote repository or by pushing local
changes to it. Locally, the push operation has no effect.

The left column of Figure 6 contains the VC story. The
choice of remote changes to integrate locally in step 3 is
sometimes called cherry picking.

The Darcs documentation [34] does not always distin-
guish between the local repository and the workspace, al-

Toru Miki
project component
developer thread
version control concurrency control
repository program state
artifact variable
head revision current value
Darcs MP implementation
workspace —
pull custom pull
push custom push
local check out —
local commit continue
revert cleanup
abandon cleanup

Figure 7. Adapted correspondence for VC with distributed
repositories and concurrent programming with message
passing.

though both exist and the workspace may contain changes
not committed to the repository.7 In particular, it is not clear
from the description which of them is affected by the pull
command (presumably both). Thus, the local check-out op-
eration is implicit in the preceding pull operation.

The discussion on message passing in Section 4.3 lists a
classification of communication operations that need to be
discussed in the context of VC.

Point-to-point vs. global Distributed VC systems employ
point-to-point connections, only. No system employs
broadcast communication to push changes, although it
might make sense to define groups of remote repositories
that should be updated at the same time.

Synchronous vs. asynchronous Both variants exist for VC
systems, at least when embedded in an SCM system. For
example, the standard API of Subversion is synchronous
but its Eclipse embedding Subclipse [37] can update and
check out asynchronously in the background.

Accumulation vs. non-accumulation There is no corre-
sponding, useful concept in VC.

5.3.2 Concurrent Programming with Message Passing
The right column of Figure 6 synthesizes a suitable concur-
rency model from the VC workflow in the left column. The
result concurrent programming paradigm employs message
passing, but it is not straightforward to construct a good cor-
respondence.

Both the pull and push operations are implemented by
sending a message to the remote program state. Pull asks
for changes in the remote program state. Push sends a set of

7 Darcs calls the local commit operation record.

8 2008/8/29



VC with Distributed Repositories

1. Each developer is allowed to operate on artifacts in his
local repository. He cannot directly operate on any re-
mote repository.

2. The developer may choose to perform a pull operation to
bring his repository up-to-date with the head revision of
a remote repository.

3. As long as there is a conflict caused by the pull opera-
tion, the developer should address it by reconciling the
changes of the local repository with those of the remote
repository and committing locally.

4. The developer (implicitly) performs a local check-out op-
eration to make the head revision of the artifacts available
for reading and writing.

5. The developer creates, reads, updates, and deletes arti-
facts as required to achieve the objective.

6. If he finds out that the chosen approach does not work
with the current repository, then he reverts the local mod-
ifications and restarts from the last check-out operation.

7. He might come to the conclusion that the objective can-
not be achieved, in which case he proceeds with another
task.

8. Once he has achieved his objective, he commits locally.

9. He may attempt to integrate the current local repository
into a remote one by performing a push operation.

10. The developer proceeds with another task.

Concurrent Programming with Message Passing

1. Each thread is allowed to operate on variables in its local
program state. It cannot directly operate on any remote
program state.

2. The thread may choose to perform a custom pull
operation* to bring its program state up-to-date with the
current values in a remote program state.

3. As long as there is a conflict caused by the pull operation,
the thread should address it by reconciling the changes of
the local program state with those of the remote program
state and continuing.

4. The thread locally has the values of the variables avail-
able for reading and writing.

5. The thread creates, reads, updates, and deletes variables
as required to achieve the objective.

6. If it finds out that the chosen approach does not work
with the current program state, then it reverts the local
modifications and restarts from the last pull operation.

7. It might come to the conclusion that the objective cannot
be achieved, in which case it proceeds with another task.

8. Once it has achieved its objective, it continues.

9. It may attempt to integrate the current local program
state into a remote one by performing a custom push
operation.*

10. The thread proceeds with another task.

* Custom pull and push operations are implemented using send and receive
operations of the underlying MP implementation.

Figure 6. Two tales of VC with distributed repositories and concurrent programming with message passing.

changes to be integrated in the remote program state. Both
operations require suitable permissions.

There is no analogon to a workspace in message-passing
concurrency, hence there is neither a notion of a local check
out nor of a local commit.

The reconciliation of changes in step 2 requires some re-
flection facilities. In the VC world, the developer obtains
both versions and can apply tools like diff to them. Analo-
gous tools would be needed as an API at the thread level.

6. Corollaries
This section collects observations and differences that came
up while building the correspondences in the previous sec-
tions. The observations are not sufficiently specific to a par-
ticular correspondence to merit inclusion in the section ded-

icated to it. However, they contain a sufficient element of
surprise to deserve mention.

6.1 More on the Relation of VC to STM
The description of STM implementations in Section 4.2
mentions some design choices that still need to be put in
relation to the VC context.

Atomicity A VC system always provides strong atomicity
because all changes happen locally in the developer’s
workspace. Thus, they remain invisible to everyone un-
less the developer commits them.

Conflict detection All non–lock-based VC systems per-
form optimistic conflict detection. Strictly lock-based
systems need no conflict detection at all.

9 2008/8/29



Granularity of conflicts VC systems also check for con-
flicts on different levels. The standard level is one line
for a textual artifact and the whole object for a binary ar-
tifact. The sophistication of the underlying diff and merge
algoritm determines the level. Depending on them, other
choices are possible, for example, syntactic merging [43]
or semantic merging [23, 31].

Data versioning The workspace of a VC system dictates
that all versioning happens lazily.

Nesting VC systems do not have a notion of nested trans-
action. However, a developer can easily emulate nesting
by creating a branch and merging that back into the head
revision once the branch development was successful.

6.1.1 Revisiting Consistency
Most VC systems support the notion of a commit hook, that
is, a command that the VC system runs to perform some
action before finalizing a commit. If this action signals an
error, then the system aborts the commit. A popular use for
commit hooks is to perform some consistency check on the
artifacts. This check might evaluate some static property of
a program, for example, whether the program is syntacti-
cally correct. Such a check guarantees that all artifacts later
checked out of the repository fulfill the consistency check.

A similar notion exists for one STM implementation [20].
It supplies a facility for specifying constraints on variables
which are checked at commit time. A failed check results in
a failed commit.

6.1.2 Revisiting Accessibility and Accountability
The prologue of Section 5 makes the observation that ac-
cessibility and accountability, which are key features of VC,
have no counterpart in concurrent programming. While this
observation is true in the standard mode of operation of a de-
ployed program, it may by worth to reconsider it in the light
of debugging.

Concurrent programs are known for exhibiting intermit-
tent problems (such as race conditions) that are very hard
to reproduce and fix. While searching for such problems, it
would be desirable to find out which thread is responsible
for setting some variable to the wrong value. It would also
be advantageous to be able to access all possible execution
histories and test them against some consistency criterion.
Indeed, it works so well that people are doing it all the time
using model checking [6].

6.2 From STM to VC
One of the underlying ideas of this essay is that insights from
work on VC may yield insights and inspiration for further
work on concurrency abstractions. Interestingly, there is at
least one instance where this transfer may work the other
way round, in this case from STM implementation to VC.

In an STM implementation with lazy versioning and op-
timistic conflict detection, each thread builds a log structure

consisting of all read and write accesses to shared memory
during the execution of an atomic block. Conflict detection
scans the read log and checks that the variables read still
have the same values as before. STM signals a conflict if the
logged value of a variable differs from the current value.

In contrast, a VC system usually detects a conflict by
comparing the head revision with the version in the user’s
workspace. It signals a conflict if some other user has mod-
ified the head revision in a way that is incompatible with
the changes in the workspace. That is, only a modification
counts as a conflict, but a dependency caused by the user
reading other artifacts does not.

Here is an example, where this strategy leads to a prob-
lem. Consider two software developers A and B who work
concurrently.

• A reads the declaration of x in module M and writes a
hunk of code in module N that uses M.x.

• B renames x to y consistently in module M.

Both developers can commit in arbitrary order (potentially
with an intervening update) without the VC system sig-
nalling a conflict. However, the resulting program certainly
does not compile.8

The problem here is that the VC is not aware of the
dependency between M.x and N. A more advanced VC might
be able to avoid the problem by registering developer A’s
“read accesses” to M.x (or better the dependency of the new
code on M.x) in analogy to the log structure in the STM
implementation.

7. Conclusion
What have we learned?

The blurry observation that started the investigation un-
derlying this paper was that software transactional mem-
ory behaves similarly to a merge-based version control sys-
tem with central repository. Close inspection of concepts,
workflows, and systems in version control and concurrent
programming lead us to collect many coincidences that
helped pinpoint the correspondence exactly. It also lead us
to broaden the correspondence to include monitors and mes-
sage passing on the concurrent programming side, as well as
lock-based approaches and multiple distributed repositories
on the version control side.

It might be said that both version control and concur-
rent programming are tackling the same problem under-
neath. However, version control has facets without parallel
on the concurrent programming side (e.g., accessibility and
accountability) and, vice versa, concurrent programming has
facets not found in version control systems. For example,
fully automatic conflict resolution is a conditio sine qua non,
whereas human intervention is both acceptable and desired
in version control. Thus, while the underlying problem of

8 VC etiquette requires that the head revision of a program should compile,
but this is rarely enforced.

10 2008/8/29



managing concurrent work on shared resources is similar,
there are many differences in terms of specific characteris-
tics.

There is another indication that version control and con-
current programming are perceived very differently by the
community. This indication is progress over time in the
adoption of different methodologies.

• Early version control systems are lock-based with cen-
tral repository (SCCS, RCS). The next stage of progress
is merge-based systems with central repository (CVS,
Subversion, etc). The most recent stage is merge-based
systems with distributed repositories (Darcs, Bazaar, Git,
etc).

• Early concurrent programming techniques are lock-based
(mutexes, semaphores, monitors, etc). Next, there are
message passing systems (MPI, Erlang, etc). The most
recent stage is software transactional memory.

The surprising observation is that while both, version con-
trol and concurrent programming, start with lock-based ap-
proaches, they progress differently through the stages of the
correspondence outlined in this essay. While message pass-
ing is a technique long established in concurrent program-
ming, version control systems with distributed repositories
are a comparably recent development. Vice versa, while
merge-based version control systems with a central repos-
itory are used pervasively in software development (as ex-
emplified by CVS and Subversion), software transactional
memory, the corresponding concurrent programming tech-
nology, is still in a research stage.

Lock-based techniques for concurrent programming are
error-prone and difficult to master. Of the two alternative ap-
proaches, message passing and software transactional mem-
ory, both are likely to stay because they yield a definite added
value with respect to lock-based systems and they have dif-
ferent merits and application areas (distributed vs. concur-
rent programming).

A similar situation holds for version control systems.
Clearly, the lock-based approach is obsolete, but there is no
clear case for central vs. distributed repositories. In fact, this
choice depends on the organizational structure of software
development. Distributed repositories fit with bazaar-style
open-source software development where developers are in-
dependent and may have private variants of a system [30].
Centralized repositories fit better with industrial (cathedral-
style) software development where some authority bears re-
sponsibility for the resulting system.

Thus, there is some potential for cross-fertilization in the
sense that high-level ideas and concepts as well as automatic
techniques may be transferred between version control and
concurrent programming. Full convergence seems impossi-
ble because of the fundamental differences between the ar-
eas.

References
[1] Joe Armstrong. Programming Erlang: Software for a

Concurrent World. The Pragmatic Programmers, LLC, 2007.

[2] Joe Armstrong, Robert Virding, and Mike Williams. Concur-
rent Programming in Erlang. Prentice Hall, NY, 1993.

[3] M. Ben-Ari. Principles of concurrent and distributed
programming. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1990.

[4] Philip A. Bernstein and Eric Newcomer. Principles of
Transaction Processing. Morgan Kaufmann Publishers, Inc,
1997.

[5] Jim Buffenbarger. Syntactic software merging. In Software
Configuration Management, volume 1005 of Lecture Notes
in Computer Science, pages 153–172, 1995.

[6] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic
verification of finite-state concurrent systems using temporal
logic specifications. ACM Transactions on Programming
Languages and Systems, 8(2):244–263, 1986.

[7] CVS. Homepage. http://www.nongnu.org/cvs/, 2006.

[8] Darcs. Homepage. http://darcs.net/, 2008.

[9] David Dice, Ori Shalev, and Nir Shavit. Transactional locking
II. In Shlomi Dolev, editor, DISC, volume 4167 of Lecture
Notes in Computer Science, pages 194–208. Springer, 2006.

[10] Jacky Estublier, David Leblang, André van der Hoek, Reidar
Conradi, Geoffrey Clemm, Walter Tichy, and Darcy Wiborg-
Weber. Impact of software engineering research on the
practice of software configuration management. ACM
Transactions on Software Engineering and Methodology,
14(4):383–430, 2005.

[11] Ian Foster. Designing and Building Parallel Programs:
Concepts and Tools for Parallel Software Engineering.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1995.

[12] Keir Fraser and Tim Harris. Concurrent programming
without locks. ACM Transactions on Computer Systems,
25(2):5, 2007.

[13] W. M. Gentleman, A. MacKay, and D. A. Stewart. Commer-
cial realtime software needs different configuation manage-
ment. In Proceedings of the 2nd International Workshop on
Software configuration management, pages 152–161, New
York, NY, USA, 1989. ACM.

[14] Git. Homepage. http://git.or.cz/, 2008.

[15] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The
Java Language Specification. Addison-Wesley, third edition,
June 2005.

[16] William Gropp, Steven Huss-Lederman, Andrew Lumsdaine,
Ewing Lusk, Bill Nitzberg, William Saphir, and Marc Snir.
MPI - The Complete Reference: Volume 2, The MPI-2
Extensions. Scientific and engineering computation. MIT
Press, Cambridge, MA, USA, 1998.

[17] Dan Grossman. The transactional memory / garbage
collection analogy. In Proceedings of the 22nd ACM
SIGPLAN Conference on Object Oriented Programming,

11 2008/8/29



Systems, Languages, and Applications, pages 695–706,
Montreal, QC, CA, 2007. ACM Press, New York.

[18] Tim Harris and Keir Fraser. Language support for lightweight
transactions. In Proceedings of the 18th ACM SIGPLAN
Conference on Object Oriented Programming, Systems,
Languages, and Applications, pages 388–402, Anaheim, CA,
USA, 2003. ACM Press, New York.

[19] Tim Harris, Simon Marlow, Simon Peyton Jones, and
Maurice Herlihy. Composable memory transactions. In
Sixteenth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, Chicago, IL, USA, June
2005. ACM Press.

[20] Tim Harris and Simon Peyton Jones. Transactional memory
with data invariants. In TRANSACT ’06, June 2006.

[21] Maurice Herlihy, Victor Luchangco, Mark Moir, and III
William N. Scherer. Software transactional memory for
dynamic-sized data structures. In PODC ’03: Proceedings of
the Twentysecond Annual Symposium on Principles of Dis-
tributed Computing, pages 92–101, Boston, Massachusetts,
2003. ACM Press, New York, NY, USA.

[22] C. A. R. Hoare. Monitors: An operating system structuring
concept. Communications of the ACM, 17(10):549–557,
October 1974.

[23] Susan Horwitz, Jan Prins, and Thomas Reps. Integrating
noninterfering versions of programs. ACM Transactions on
Programming Languages and Systems, 11(3):345–387, 1989.

[24] James J. Hunt, Kiem-Phong Vo, and Walter F. Tichy.
An empirical study of delta algorithms. In Software
Configuration Management, volume 1167 of Lecture Notes
in Computer Science. Springer, 1996.

[25] Mercurial. Homepage. http://www.selenic.com/

mercurial/wiki/, 2008.

[26] J. Eliot B. Moss. Nested Transactions: An Approach to
Reliable Distributed Computing. PhD thesis, Massachusetts
Institute of Technology, 1981.

[27] Peter Naur and Brian Randell. Software engineering: Report
of a conference sponsored by the nato science committee.
http://homepages.cs.ncl.ac.uk/brian.randell/

NATO/nato1968.PDF, January 1969.

[28] Perforce. Homepage. http://www.perforce.com/, 2008.

[29] C. Michael Pilato, Ben Collins-Sussman, and Brian W.
Fitzpatrick. Version Control with Subversion. O’Reilly
Media, Inc., 2008.

[30] Eric S. Raymond. The Cathedral and the Bazaar: Musings
on Linux and Open Source by an Accidental Revolutionary.
O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2001.

[31] Thomas W. Reps, Susan Horwitz, and Jan Prins. Support
for integrating program variants in an environment for
programming in the large. In Proceedings of the International
Workshop on Software Version and Configuration Control,
volume 30 of Berichte des German Chapter of the ACM,
pages 197–216. Teubner, 1988.

[32] Marc J. Rochkind. The source code control system. IEEE
Transactions on Software Engineering, SE-1(4):364–370,

December 1975.

[33] David Roundy. Darcs: Distributed version management in
Haskell. In Daan Leijen, editor, Proceedings of the 2005 ACM
SIGPLAN Haskell Workshop, pages 1–4, Tallinn, Estland,
September 2005.

[34] David Roundy. Darcs 1.1.0pre1 (unknown). http:

//darcs.net/manual/, 2007.

[35] Nir Shavit and Dan Touitou. Software transactional memory.
In Proceedings of the 14th ACM SIGPLAN Symposium
on Principles of Distributed Computing, pages 204–213,
Ottowa, Ontario, Canada, 1995. ACM Press, New York, NY,
USA.

[36] Marc Snir and Steve Otto. MPI-The Complete Reference:
The MPI Core. MIT Press, Cambridge, MA, USA, 1998.

[37] Subclipse. Homepage. http://subclipse.tigris.org/,
2006.

[38] SVN. Homepage. http://subversion.tigris.org/,
2006.

[39] Gadi Taubenfeld. Synchronization Algorithms and Concur-
rent Programming. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 2006.

[40] Walter F. Tichy. RCS – a system for version control.
Software—Practice & Experience, 15(7):637–654, 1985.

[41] Jennifer Vesperman. Essential CVS. O’Reilly Media, Inc.,
2003.

[42] Adam Welc, Suresh Jagannathan, and Anthony Hosking.
Transactional monitors for concurrent objects. In Martin
Odersky, editor, 18th European Conference on Object-
Oriented Programming, number 3086 in Lecture Notes in
Computer Science, pages 519–542, Oslo, Norway, June 2004.
Springer-Verlag.

[43] Bernhard Westfechtel. Structure-oriented merging of
revisions of software documents. In Proceedings of the
3rd International Workshop on Software Configuration
Management, pages 68–79, New York, NY, USA, 1991.
ACM.

12 2008/8/29


