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Preface

This document contains the full formalization of CoreGl, a subset of JavaGIEl All typing rules
are fully worked out and all proofs are complete. However, there is no explaining text yet. For
questions, please contact the author.
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prog ::= def e
def ::= cdef | idef | impl
cdef = class C(X) extends N where P
{T fm:mdef}
idef ::= interface I(X)[Y where R] where P
{m : static msig rcsig }
impl ::= implementation(X) K [N | where P
{static mdef redef }
resig = receiver {m : msig}
redef i = receiver {mdef}
msig := (X)T x — T where P
mdef ::= msig {e}
M,N = C(T) | Object
G,H:=X|N
K,L == I(T)

T.UV,W:=G|K
R,S ::= G implements K
R,8 ::= T implements K
P,Q = R| XextendsT
P,Q =R | TextendsT

ex=ux|ef|em(T)(e) | K[T].m(T)(e)

| new N(e) | (N)e

X,Y,Z € TvarName C,D € ClsName 1I,J € IfaceName
m € MethodName  f,g € FieldName x,y € VarName

Figure 1: Syntax of CoreGl.

1 Definition of CoreGl



EXT-C-SUPER
EXT-C-REFL class C(X) extends M ... [T/X]M 4, N
N <N °
C(T)<4. N

EXT-I-SUPER

?T;]H;?FL interface I(X)[Y whereR] ... R; =Y implements K [T/X|K <, L
- I(T) <, L

Figure 2: Class and interface inheritance.



getmdef®(m, N) = (X)T x — T where P {e}
DYN-MDEF-C-BASE o
class C(X) extends N where P{T f m: mdef }

getmdef®(m;, C(U)) = [U/X|mdef
DYN-MDEF-C-SUPER o
class C(X) extends N where P{T f m: mdef }
m¢m  getmdef®(m, [U/X]|N) = (X)Vx — V where P {e}
getmdef®(m, C(U)) = (X)Vx — V where P {e}

getmdef'(m, N,N) = (X) Tz — T where P {e}

DYN-MDEF-I

interface I({Z') [7l where R] where P{... rcsig}

resig; = receiver {m : msig} msig, = (Y)Tx — T where Q
(Vi € [I],i # j) contribz, (T, N) = M} contribz, (Z,T,NN) = M;
minimpl{([V/X], implementation(X) I{U) [M’] ...)| (Vi € [I]) M; = nil or M < [V/X|M]}
= (0, implementation(X) I(U) [M’] where P’ { ... rcdef })
redef ; = receiver {mdef}
getmdef’ (my, N, Nn) = omdef,

getsmdef(m, K,U) = (X) T2 — T where P {e}

DYN-MDEF-S

interface I(Z') [Z where R] where Q {m : static msig ...}

(0, implementation(X) I{U) [Nl] where P {staticmdef...})

minimpl{([V/X], implementation(X) I(U) [Nl} ...) | (Vi € [I]) N; = Object or W; <, [V/X]|N;}
getsmdef (my, I(T), Wl) = omdef,,

minimpl{ (o, impl)} = (o, impl)
MIN-MDEF

impl; = implementation(X;) I(V;) [ﬁll] e

contribx(T,N)=N° NUN=N ||A# =N

n>1 (Vi € [n]) ok Ng <. oy N;
minimpl{ (o1, imply), ..., (on, impl,,)} = (o, impl},)

CONTRIB-NON-EMPTY

. CONTRIB-EMPTY
C={NilienT,=X} C#0 ||¢=M  ¢={(N|ieh =X} ¢

contribx (T, N") = nil

0

contribx (T",N") = M

LUB-SUPER - .
LUB-RIGHT LUB-LEFT not C(T) <. N not N <. C(T)
Na. M M <, N class C(X) extends N’ ... [T/XIN'UN =M
NUM=M NUM=N CTYUN=M
LUB-SET-MULTI
LUB-SET-SINGLE N £ UJV — M M UN =M
L[tV =n ;
| o ofnNy) =M

Figure 3: Dynamic selection of method definitions.



Values and evaluation contexts‘

v, w ::= new N (7)
Ex=0|&f |§.m<T)(E) | v.m(T) (v, E,€)
| K[T].m(T)(v,E,€) | new N(v,&,€) | (N)E

’ Top-level reduction: e — 6‘

DYN-FIELD DYN-INVOKE-C o -
fields(N) =U f v = new N (W) getmdef®(m®, N) = (X) Tx — T where P {e}
new N (v).f; — v; v.m®(U)(T) — [v/this,v/z][U/X]e

DYN-INVOKE-T o - B
(Vi €{0,...,n}) v; = new N;(w;) getmdef'(m', Ng, N) = (X) T @ — T where P {e}

vo.m (U)(T") — [vg/this,v/x|[U/X]e
DYN-INVOKE-S DYN-CAST

getsmdef(m, K,U) = (X) Tz — T where P {e} v = new M (W) M N

K[U].m(V)(@) — [v/z][V/X]e (N)vr—w

’ Context reduction: e — e ‘

DYN-CONTEXT
er— e

Ele] — &E[¢']

fields(N) =T f

FIELDS-CLASS - L L

FIELDS-OBJECT class C(X) extends N where P{T f...} fields([U/X|N) =T" f'
fields(Object) = o - — —
fields(C(U)) =T f',[U/X]|T f

Figure 4: Dynamic semantics of CoreGl.

non-static(/)
NON-STATIC-IFACE o o .
interface I(X)[Y where R] where P {m : static msig ...}
n=0 (Vi) if R; = Z implements J(T') then non-static(J)
non-static([)

’j € pos™(I) X € pos™(msig) X € pos™(resig) X € pos”(Q)‘
POS-IFACE

interface I(X)[Y where R]| where P {m : static msig rcsig }
(Vi) Y; € pos™(msig;) (Vi) Y; € pos™(resig,) (Vi) Y; € pos™(R;) Y; ¢ ftv(P)

j € pos™(I)
POS-MSIG-PLUS - POS-MSIG-MINUS
Y & ftv(T) Y ¢ ftv(U)
Y € post ((X)T x — U where P) Y € pos” ((X)T x — U where P)
POS-RECV POS-CONSTR
(Vi) X € pos™ (msig;) (Vi) if X = G; then i € pos™(I)
X € pos™(receiver {m : msig}) X € pos™ (G implements I(U))

Figure 5: Restrictions on interfaces and implementing types.



ENT-EXTENDS ENT-ENV ENT-SUPER - - -
AFT<U PeA interface I(X)[Y whereR] ... AU implements I(T)
A lF T extends U AlFP AlF[T/X,U/Y]R;
ENT-TMPL - - B
implementation(X) I(T) [ N] where P ... AlF[U/X]|P
AlF [U/X](N implements I(T))
ENT-UP o o ENT-TFACE
AFU<U" AITU'V implements I(W) n € pos™ (1) 1 € pos™ (1) non-static(I)
AIFT" ' UV implements (W) AlF I(T) implements I(T)
AFTLT
SUB-TRANS SUB-VAR
SUB-REFL SUB-OBJECT AFS<T AFT<U X extendsT € A
AFTLT A+ T < 0Object
AFS<U AFX LT
SUB-CLASS SUB-IFACE -
class C(X) extends N ... interface I(X)[Y whereR)] ... R; =Y implements K
A+ O(T) < [T/X|N AF I(T) < [T/X|K
SUB-IMPL
A I+ T implements K
AFT<K

Figure 6: Entailment and subtyping.

mtypes (m,T) = (X)U x — U where P smtypen (m, K[T]) = (X) Uz — U where P

MTYPE-CLASS B
class C(X) extends N where P{... m: msig{e}}

mtypen (m§, C(T)) = [T/ X]msig;
MTYPE-IFACE o B B
interface I{X)[Y where R] where P{... rcsig}

resig; = receiver {m : msig} A+ T implements I (V)
mtypen (my,, Tj) = [V/X, T/Y |msig,,

MTYPE-STATIC - o . .
interface I(X) [Y where R| where P{m : staticmsig ...} A |+ T implements [ (U)

smtype (my,, [{U)[T)) = [U/X, T/Y|msig),

Figure 7: Method types.



OK-TVAR

X e dom(A) OK-OBJECT

AL X ok A+ Object ok

o
OK-CLASS B - o
class C(X) extends N where P ... AFT ok AlF[T/X]P
A+ C(T) ok

OK-IFACE

interface I(X)[Y where R] where P ...
AT ok Y ¢ ftv(T, A) A,Y implements I(T) I+ [T/X|R, P

A+ I(T) ok

OK-IMPL-CONSTR

interface I(X)[Y where R] where P ... AFT,U ok Al [U/X,T/Y|R, P
A+ T implements I {U) ok
OK-EXT-CONSTR

AFT, U ok
A F T extends U ok

Figure 8: Well-formedness of types and constraints.

A;Tke:T
EXP-FIELD
EXP-VAR

AT Ez:T(x) A;TRe: C(T) class C(X) extends N where P{U f...}

AT Fef: [T/X]U;

EXP-INVOKE o B
A;Tke: T X)U x — U where P
(Vi) A;T Fe; : [V/X|U; AlF[V/X]|P AV ok

AT Fem(V)(e): [V/X

mtypex (m, T) =

—~

U

EXP-INVOKE-S o o -
smtypes (m, I{(W)[T]) = (X) Uz — U where P
(Vi) A;T Fe; : [V/XU; AR [V/X]P AFT,V ok
AT = IW)[T).m(V)(e) : [V/X|U
EXP-NEW L EXP-CAST
AF N ok fields(N) =T f (Vi) AT ke : T AF N ok
A;TFnewN(e): N
EXP-SUBSUME
ATke:U AFULT
A;Tke: T

A;Tke:T
A;TH(N)e: N

Figure 9: Expression typing.



A F msig < msig override-oka (m : msig, N) ‘

SUB-MSIG o
APFT LT

AF(X)Tz — T where P < (X)Tx — T' where P
OK-OVERRIDE

(VN') if AF N < N and mtypen (m, N') = (X) T — T where P

then A F msig < (X)Tx — T where P
override-oka (m : msig, N)
’AFmsigok A;T'F mdef ok At m: mdef okin N AFTcsigok‘
OK-MSIG_ OK-MDEF B o
AP, XFT,U, P ok AF (X)Tx — U where P ok AP X;Tx:Tke:U
AF (X)Tz — U where P ok A;TH(X)Tx — U where P {e} ok
OK-MDEF-IN-CLASS OK-RCSIG
A;this : N F msig {e} ok (Vi) A+ msig; ok

A F receiver {m : msig} ok

override-oka (m : msig, N)
A Fm : msig {e} okin N

’A F mdef implements msig A F redef implements rcsz'g‘

IMPL-METH
A; T+ msig {e} ok A F msig < msig’
A; T+ msig {e} implements msig’

IMPL-RECV
(Vi) A;T - mdef; implements msig,

A;T F receiver {mdef} implements receiver {m : msig}
| cdef ok I idef ok - impl ok|

OK-CDEF o o
P, XFN,P,T ok (Vi) P, X Fm; : mdef, okin C{X)

F class C(X) extends N where P{T f m : mdef } ok
OK-IDEF

R,P,X,Y F R, P, msig, rcsig ok
I interface I(X) [Y where R| where P {m : static msig rcsig } ok

OK-IMPL

P,X F N implements I(T), P ok
interface I(Y)[Z where R] where Q {m : static msig rcsig }
(Vi) P, X; 0 - mdef, implements [T/Y, N/Z|msig;
(Vi) P, X;this : N; I redef; implements [T/Y, N/Z]rcsig,

I implementation(X) I(T) [N ] where P {static mdef rcdef } ok

OK-PROG
F def ok P:0Fe:T
F def e ok

Figure 10: Program typing.



2  Quasi-algorithmic Subtyping and Entailment

ENT-Q-ALG-EXTENDS
A, T<U

A Ik, T extends U

ENT-Q-ALG-UP B B
(Vi) AR T; < U; (Vi) if T; # U; then ¢ € pos™ (1) Ak U implements I (V)

Al T implements I(V)
Al R

ENT-Q-ALG-ENV ENT-Q-ALG-IMPL L o . o
SeA R € sup(95) implementation(X) I(T) [N ] where P ... Al [U/X]|P
Ak R Al [U/X](N implements I(T)))

ENT-Q-ALG-IFACE
lepost(I) I{V)<, K  non-static(I)
Ak I{V) implements K

R € sup(R)
SUP-STEP o B - -
SUP-ID interface I(X)[Y whereS] ... U implementsI(V) € sup(R)
R € sup(R) —

[V/X,U/Y]S; € sup(R)

Figure 11: Quasi-algorithmic entailment.



AR/T<T
SUB-Q-ALG-OBJ SUB-Q-ALG-VAR-REFL
AR,/ T < 0Object AR'X<X
SUB-Q-ALG-VAR SUB-Q-ALG-CLASS
X extendsT € A U # X,U # Object AR'T<U N4, N N’ # Object

AR/ X <U AR/ N<N
SUB-Q-ALG-IFACE
K< K
AR/ K <K'
A/ T<T

SUB-Q-ALG-KERNEL SUB-Q-ALG-IMPL

A I—q/ T<U A I—q/ T<U A Il—q' U implements K

A, T<U ArT<K

Figure 12: Quasi-algorithmic subtyping.

3 Entailment and Subtyping Algorithms
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ENT-ALG-MAIN
A;(); false Ik, P

Al P
NGB P
ENT-ALG-EXTENDS ENT-ALG-ENV_ o o
NG T<U ReA G implements I{V) € sup(R) N BT TTGE
A9 31k, T extends U A;9; 31, T implements I(V)

ENT-ALG-IFACE1
A B TR T 1 I(V) 1 €pos™(I)  non-static(I)
A;9; 3k, T implements I(V)
ENT-ALG-IFACEz
lepost(I) I(V)<, K  non-static(])

A9 Bk, (V) implements K

ENT-ALG-IMPL - B - L o
implementation(X) I(V’) [N ] where P ... A;B; IR T 1 [U/XIN V =[U/X]V'

[U/X]N implements I(V) ¢ ¢ A;9 U{[U/X]N implements I(V)};false Ik, [U/X]P
A;9; 31, T implements I (V)

’A;ﬁ;IFaTTU‘
ENT-ALG-LIFT
(Vi) AR T; <U; Bor ((Vi)if T; # U; then i € pos™ (1))

AB I T 1T

AR'T<U ART<U|

SUB-ALG-KERNEL-QUASI SUB-ALG-MAIN
AR'T<U AP T<U
AR'T<U AR TLSU
AGHT<U
SUB-ALG-KERNEL SUB-ALG-TMPL
AR'T<U A;¥9;true |k, T implements K
AYGHT<U AGHT<K

Figure 13: Algorithmic entailment and subtyping.
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(T <70 S (T <0
U-CLASS -
C#D class C(Y) extends M ...

{C(T) <* DOy U7 =5 {[T/YIM <* DU} U

U-IFACE-UP o o
I1#J interface I(X)[Y whereR] ... R; =Y implements K
(IT) <" JON U7 =2 ([T/X)K <" JO) U
U-IFACE-OBJECT U_VAR_EN}/( extends T € A
(K <" G}U.7 =2 {Object <" G}U.¥ (X<'UMU.y 2 (T<TGluY

U-VAR-OBJECT
XextendsT ¢ A for all T

(X <TUIU.Z =25 {Object <" UYU.¥

Figure 14: Transformation rules for unification modulo subtyping

unify (A, X {T; <" Uip) {

for (each normal form {V; <? W;} of {T; <? U;} according to =N {
if (unify_({V; =" W;}, X) == 0K(0))
return 0K(o);

}

return FAIL;
}
wmity_(T, =70}, %) {
if (there exists an idempotent mgu o of {T; =’ U;} with dom(o) C X)
return 0K(o);

else
return FAIL;

Figure 15: Algorithm for unification modulo subtyping
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entails(A,P) { return entailsAux(A, (), false,P); }
entailsAux(A,94,5,P) {
switch (P) {
case T extendsU:
return subAux(A, ¥4, T.U);
case Xmono: return Xmono € A;
case Nmono: return true;
case T implements [(V):
// rule ENT-ALG-ENV
for (R€ A, GimplementsI(V) € sup(R)) { if (Lift(A,B,I,T,G)) return true; }
switch (T) {
// rule ENT-ALG-IFACE;
case T: if (Lift(A,B,1,T,I1(V)) && 1€ post(I) && non-static(I)) return true;
// rule ENT-ALG-IFACEp
case J(W): if (1 € post(J) && J(W) <, I{V) && non-static(.J)) return true;
¥
// rule ENT-ALG-IMPL
for implementation(X) I(W) [N] where P ... {
if (unify. (A, X, {T; <" N;}) == 0K(0) && 1ift(A,3,1,T,0N)
&& V==0cW && oN implements (V) ¢ ¥4) {
4 = 9U{oN implements [(V)};
if (Vi € [n],entailsAux(A, %, false,0P;)) return true;
}
}

return false; // no rule applicable

}
}

sub(A,T,U) { return subAux(A,(0,T,U); }

subAux (A, 9, T,U) {
if (sub’(A,T,U)) return true;
switch (U) { case K: return entailsAux(A,¥, true,T implements K); }
return false;

}

sub’ (A, T,U) {
switch (T,U) {

case (_,0Object): return true;

case (X,X): return true;

case (X, ):
for X extendsV € A { if (sub’(A,V,U)) return true; }
return false;

case (Ni,N3): return N; <, Ny;

case (Ki,Ks3): return K; 4, K>;

}

return false;

}

Lift (A B, I,TT™ {
return (n==m && Vi € [n], (sub’ (A, T;,U;) & (B || T;==U; |l i € pos  (I))));
}

Figure 16: Entailment and subtyping algorithms.
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4 Expression Typing Algorithm

A IF T? implements I(T?) — R

ENT-NIL-ALG-MAIN_
A;; false IF’ T7 implements [(U7) — R

A IR T? implements [ (U7?) — R

A9 B I T7 implements I<F> —- R
ENT-NIL-ALG-ENV B L
ReA  Gimplements (V) €sup(R) A;BIF T 1G—-T (Vi) VitV

A GBI, T7 implements I(W) — T implements I(V)
ENT-NIL-ALG-IFACE]
NG IR TTIV)  1€post(I)  nonstatic(I) (Vi) ViV,
A;9; 31K T implements I(V?) — T implements I (V)
ENT-NIL-ALG-IFACE
1 € pos™(I) non-static([) V) <, J(U) (Vi) U ¢ U;

A;4; B I(V) implements J(U?) — I(V) implements J(U)
ENT-NIL-ALG-IMPL

implementation(X) I(V) [N ] where P ...
A B IH TP [U/XIN - T Vi) VP 4 [U/ XV, [U/X]N implements I{[U/X|V) ¢ ¢
A;9 U{[U/X]N implements I{[U/X]|V)}; false I, [U/X|P

A9 B |FgL T7 implements I(V-) — T implements [{[U/X]|V)

NBIHT'1T—-T

ENT-NIL-ALG-LIFT
(Vi) T) = nilor AW T! <U;  Bor (Vi) if T} # U; and Tfjé nil then i € pos™(I))
(Vi) if T; = nil then V; = U, else V; = T;

A; BT l—g " TU"—»V"

T 4T
MATCHES-NIL MATCHES-EQUAL
nilg T TgT

Figure 17: Algorithmic entailment for nillable constraints.
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a-mtypen (m, T,T) = (X)U x — U where P

ALG-MTYPE-CLASS o _
bounda(T) =N  a-mtype‘(m®,N) = (X)U x — U where P

; (
a-mtypep (mS, T, T) = (X)Ux — U where P

ALG-MTYPE-IFACE

interface I(Z’) [71 where R] where P{... rcsig}

resig; = receiver {m : msig} mt = my msig;,, = (Y)Uz — U where Q

(Vi € [l],i # j) contribiy., (U, T) = v contrib/A;Zj(Zj UTT) = ”//j?
p’ = (if U = Z; for some i € [I] then i else nil)
) W implements I(W') =

pick-constr} {V implements I(V") | (Vi € [1]) if %' = nil then V" = nil
else define V;’ such that

AR V! <V for some V/ € ¥,

A IF V7 implements I (nil) — V implements I (V7)}
a-mtypep (m', T,T) = [W/Z, W'/ Z'|msig,,

a-mtype®(m, N) = (X) U x — U where P

ALG-MTYPE-DIRECT o
class C(X) extends N where P{T f m: mdef } mdef; = msig {e}

a-mtype(m;, C(T)) = [T/ X|msig
ALG-MTYPE-SUPER
class C(X) extends N where P{T f m : mdef }
mgm  amtype(m, [[JXIN) = (X) Uz

Uz — U where P
a-mtype‘(m, C(T)) = (X)Ux - U

where P

bounda(T) = N pick—constrkA?.%’ =R contriby, (T, T) = T? MUBA(T) =T

BOUND-VAR

AR’ X <N if At/ X < N’ then N <, N/ BOUND-CLASS BOUND-IFACE
bounda (X) = N bounda(N) =N bounda (K) = Object
ounda =

PICK-CONSTR-NIL
n>1 i€ n]

pick-constri{R"} = R,

PICK-CONSTR-NON-NIL
n>1 (VZ € [n]) A l_a/ Tjk < T

pick—constrkA {T implements K1, ..., T;, implements K,,} = T] implements K

CONTRIB-NON-EMPTY’ CONTRIB-EMPTY’
T ={T;|ien,Ui=X} T #0 ¥ =MUBA(T) (Ti]ien),Ui=X}=0

contrib/A;X(Un,Tn) =Y contrib’A;X(Un,Tn) — nil
MUB
Y ={V|NVTeZ),AR'T<V}Y %={VeyV|W eV \{V})not Ar'V' <V}
MUBA(Z) = %

Figure 18: Algorithmic method types.
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ATk e: T

EXP-ALG-FIELD PR
EXP-ALG-VAR AT e: T bounda(T)=N  fields(N) =U f
AT 2z T(x) AThef U

) a =g
EXP-ALG-INVOKE-D

ATk e: T (Vi) AT e 0 T a-mtypen (m, T, T) =

(X)Uz — U where P
(i) A+, T, < [V/X]U,

Al [V/X]P ARV ok
A;T H eem(V)(e) : [V/X]
EXP-ALG-INVOKE-S

a-smtypey (1, 1(‘3[]
(Vi) A;T by e Ul (Vi) AR U < |

2

)= (X)Uzx — U where P

1% ]U Al [V/X]
Afm(jmm<ﬂ)mﬁU

EXP-ALG-NEW

(Vi) AT ke 0 T

AR T,V ok

Ak, N ok fields(N) =U f
A;T ko newN(e): N

EXP-ALG-CAST

Ak, N ok AT hHe:T

A;TH (N)e: N

(Vi) A T, < U;

Figure 19: Algorithmic expression typing. The relations A bk, T ok, A kK, P ok, and
a-smtypen (m, K[T]) = (X) Uz — U where P are defined as the relations A = T' ok, A = P ok,
and smtypen (m, K[T]) = (X) U x — U where P, respectively, replacing b with b, and I+ with Ik,
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5 Well-formedness Criteria

5.1 Well-formedness Criteria for Type Soundness
5.1.1 Class Definitions

For each class o o .
class C(X) extends N where P{T f m : mdef }

the following well-formedness criteria must hold:

Wr-Crass-1 The field names, including names of inherited fields, are unique. That is, i # j € [n]
iInplieS f’L # fj and fleldS(N) = Ug anhes f mg — @

WF-CLASS-2 The method names 7 are unique. That is, i # j € [I] implies m; # m;.

5.1.2 Interface Definitions
Definition 5.1 (at-top). We define at-top(X,T) as X Nftv(T) =0 or T € X.

For each interface

interface I(X)[Y where R] where P {m : static msig rcsig }
the following well-formedness criteria must hold:
WPF-IFACE-1 The method names m are pairwise disjoint.

WF-TFACE-2 In all constraints G implements K € R, the implementing types Y do not occur in
K; that is, Y N ftv(K) = 0.

WPF-IFACE-3 In all @nstraints? implements K € R, the types G are pairwise distinct type
variables from Y'; that is, G C Y and G; # G for i # j.

WF-IFACE-4 In all method signaturesiZ) Tz — U where Q € rcsig, the implementing types Y
may occur only at the top level of 7" and U, and they do not appear in @); that is, at-top(Y, T;)
for all 4, at-top(Y,U), and ftv(Q) NY = 0.

5.1.3 Implementation Definitions

Definition 5.2 (Dispatch types and positions). A dispatch type of interface I is an implementing
type that appears in every non-static method signature of I and all its superinterfaces at the top
level of some argument type. The set of dispatch positions of I, written disp(I), contains the
indices of those implementing types that are dispatch types. See Fig.[20 for a definition of disp.

For each implementation
implementation(X) I(V)[N] where P ...

the following well-formedness criteria must hold:

DISP-IFACE o . B
interface I(X)[Y " where R"'] where P {... rcsig’ } DISP-RCSIG
(Vi € [n],i # j) Y; € disp(resig;) (Vi € [m]) Y; € disp(R;) (Vi) Y e disp(msig;)
J €disp(I) Y € disp(receiver {msig})
DISP-MSIG B DISP-CONSTR
V¢X YeT (Vi) if G; = Y then i € disp()
Y € disp((X) Tz — T where P) Y € disp(G implements I (V)

Figure 20: Dispatch types and positions.
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Wr-IMPL-1 The dispatch types among N fully determine the type variables X; that is X C
fev({N; | ¢ e disp(1)}).

Wr-IMPL-2 There exist suitable implementations for all superinterfaces of /. Squosej implements i(ﬁ) €
sup(N implements I(V')). Then there exists a definition implementation(Y) J(U’) [ M | where @) ...
and a substitution o = [IW/Y] such that

5.1.4 Programs

Definition 5.3 (Greatest lower bound). The greatest lower bound of G1 and Go with respect to
A, written A+ G1 M Ga, is defined as follows:

GLB-LEFT GLB-RIGHT
A"G1§G2 AFGQSGl
AFG NGy =Gy AFGI MGy =Gy

The notation A+ GMNG = H abbreviates (Vi) A+ G; NG, = H;.
The CoreGI program under consideration must fulfill the following well-formedness criteria:
WF-PROG-1 Names of non-static interface methods are globally unique.

WF-PROG-2 A program does not contain two implementations for different instantiations of the
same interface or for different non-dispatch types. That is, for each pair of implementation
definitions

implementation(X) I(T) [ M ] where P ... implementation(Y) I{U) [N ] where Q ...

and for all substitutions [V/X] and [W/Y] such that § F [V/X]M,; N [W/Y]N; exists for

all i € disp(I), it holds that [V/X|T = [W/Y]|U and that [V/X|M; = [W/Y]N; for all
j ¢ disp(I)

WF-PROG-3 Implementation definitions are downward closed. That is, for each pair of imple-
mentation definitions

implementation(X) I(T) [N ] where P ...

implementation(X’) I{T’) [N’] where P’ ...

and for all substitutions [V/X] and [V//X’] with ( - [V/X|NM[V'/X']N’ = M there exists
an implementation definition

implementation(Y) I(U) [ M’] where Q ...
and a substitution [W/Y] such that M = [W/Y]M’.

WPF-PROG-4 Constraints on implementation definitions are consistent with constraints on imple-
mentation definitions for subclasses. That is, for each pair of implementation definitions

implementation(X) I(T) [ M ] where P ... implementation(Y) I{U) [N ] where Q ...

and for all substitutions [V/X] and [W/Y] with [V/X]M <, [W/Y]N and 0 I+ [W/Y]Q, it
holds that 0 IF [V/X]P.
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5.2 Well-formedness Criteria for Determinacy of Evaluation
5.2.1 Programs

The CoreGl program under consideration must fulfill the following well-formedness criteria:

WFr-PrOG-5 The class and interface graphs of the program are acyclic. (Each class definition
class C(X) extends D(T') ... contributes an edge C' — D to the class graph, and each in-

terface definition interface I(X) [Y where P] ... and each constraint G implements J(V) €
P contributes an edge I — J to the interface graph.)

WF-PROG-6 A program does not contain two different implementations for the same interface
with unifiable implementation types. That is, for each pair of disjoint implementation defi-
nitions

implementation(X T)[M] where P ... implementation(Y N where Q ...
p (X) I{T) [ M] p P (Y) I{U) [N] Q

it holds that, for all substitutions [V/X] and [W/Y], [V/X|M # [W/Y|N.

5.3 Well-formedness Criteria for Termination of Entailment and Sub-
typing Algorithms

5.3.1 Implementation Definitions

For each implementation
implementation(X) I(V)[N] where P ...
the following well-formedness criteria must hold:

WEF-IMPL-3 In all constraints G implements K € P, the types G are type variables from X; that
is, G C X.

5.3.2 Type Environments

Definition 5.4 (Contractive type environments). A type environment A is contractive if there
exist no type variables X1,..., X, such that X1 = X,, and X; extends X;11 € A for each i €

{1,...,n—1}.

Definition 5.5 (Closure of types). The closure of a set of types T with respect to a type envi-
ronment A, written clsa (), is defined as the least set closed under the following rules:
CLS-ID CLS-UP
TeT T € clsa(T) AR'T<N
T € clsa(9) N eclsa(T)
CLS-DECOMP

B(T) € clsa(7) (where B=C or B=1)
T; € clsa(T)

Each type environment A must fulfill the following well-formedness criteria:
WPF-TENV-1 The type environment A is finite.
WPF-TENV-2 The type environment A is contractive.

WF-TENV-3 If .7 is a finite set of types, then the closure of .7 with respect to A is finite.
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5.4 Well-formedness Criteria for Decidable Expression Typing
5.4.1 Programs
The CoreGl program under consideration must fulfill the following well-formedness criteria:

WF-PROG-7 Multiple instantiation inheritance for interfaces is not allowed. That is, it K* <, T (T)
and K <, I(U) then T =U.

WF-PROG-8 Multiple inheritance for single-headed interfaces that are neither positive nor nega-

tive is not allowed. That is, if 1 ¢ pos™([), 1 ¢ pos™(I), I{T) <, Ky, and I(T) <, K>, then
either K1 <, K5 or K5 <, K.

5.4.2 Type Environments
Each type environment A must fulfill the following well-formedness criteria:

WF-TENV-4 A type variable does not have several unrelated G-types among its bounds. That is,
if X extendsG; € A and X extendsGo € A then A+ Gy <Gy or AF Gy <Gy

WF-TENV-5 A type variable is not a subtype of different instantiations of the same interface.
That is, if A’ X < I{T) and Ak, X < I{U) then T = U.

WPr-TENV-6 A type variable has only negative interfaces among its bounds. That is, if X extends I(T) €
A then 1 € pos™(I).

WPF-TENV-7 The type environment A does not contain two implementations for different instan-
tiations of the same interface or for different non-dispatch types. That is:

1. For each pair of constraints

‘G implements I(T) € sup(A)
H implements I(W) € sup(A)

such that A+ G; M H; exists for all i € disp([), it holds that T = W and G; = H; for
all j ¢ disp(I) U pos—(I).

2. For each constraint and each implementation definition

G implements I(T) € sup(A)

implementation(X) I(W) [N|] where P ...
such that A = G; M [U/X]N; exists for all i € disp(I) and some U, it holds that
T =[U/X]W and G; = [U/X]|N; for all j ¢ disp(I) U pos™(I).

6 Equivalence of Declarative and Quasi-algorithmic Ver-
sions of Entailment and Subtyping

We make the global assumption that the underlying program prog is well-formed, that is - prog ok.
Especially, this implies that class, interface, and implementation definitions of the underlying
program are closed. Moreover, we assume that types and constraints are only formed from classes
and interfaces defined in the underlying program.

Definition 6.1 (& € sup(&)). We generalize the definition of sup to extends-constraints:
FKJ, L

T extends U € sup(T extends U) T extends L € sup(T extends K)

Lemma 6.2 (Class and interface inheritance is transitive). If Ny <. Ny and No <. N3 then
N1 S]C Ng. Ile S]i K2 and Kg Sli Kg then Kl S]i Kg.
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PROOF. By straightforward inductions on the derivations of N7 <. Ny and K; <, K>, respec-
tively. O

Lemma 6.3. If N <. N’ and N’ # Object then N # Object.
ProOOF. Follows because programs do not define Object explicitly. O

Lemma 6.4 (Kernel of quasi-algorithmic subtyping is reflexive). A Fq’ T < T is derivable for all
types T'.

PRrROOF. If T is a type variable or an interface type, the claim follows with suB-Q-ALG-vAR and
SUB-Q-ALG-TFACE, respectively. If T' is a class type, then the claim follows with SUB-Q-ALG-CLASS,
unless T' = Object, then it follows with suB-q-aALG-0BJ. O

Lemma 6.5 (Kernel of quasi-algorithmic subtyping is transitive). If D; = A k' T < U and
Dy AR/ ULV then AR/ T<V.

PRrROOF. By induction on D;.
Case distinction on the last rule used in D;.

e (lase suB-Q-ALG-0BJ: Then Dy also ends with suB-Q-ALG-0BJ (rule SUB-Q-ALG-CLASS is impos-
sible because of Lemma [6.3)). Hence, V = Object and the claim follows with suB-Q-ALG-0OBJ.

o (ase SUB-Q-ALG-VAR-REFL: Trivial because T' = U.

e Case SUB-Q-ALG-VAR: By inverting the rule we get T = X, X extendsT’ € A, and A K,
T'<U. IV =X orV =0bject, then the claim follows directly. Otherwise, we apply the
LH. to Ay’ T" < U and get A k," T” < V. The claim now follows with SUB-Q-ALG-VAR.

e Case suB-Q-ALG-CLASS: If V' = Object, then the claim follows with suB-q-aLG-0BJ, otherwise
by applying Lemma [6.2

o (ase suB-Q-ALG-IFACE: Follows from Lemma

End case distinction on the last rule used in D;. O

Lemma 6.6. If A |k, K implements L then K <, L.

PRrROOF. Assume K = I(V). Then we have

lepost(I) I{(V)<Q, L
A k" I{V) implements L

ENT-Q-ALG-IFACE

so I{V) <, L as required. O

Definition 6.7 (€ and €*).

€ -DIRECT etsTEP .
X extendsT € A X extendsY € A Y extendsT €t A €-b .
- - X extends X €* A
X extendsT €™ A X extendsT €™ A

€™-PLUS
X extendsT €t A

X extendsT €* A

Lemma 6.8 (Transitivity of €™ and €*).
(i) If X extendsY € A and Y extendsT €t A then X extendsT € A.

(it) If X extendsY €* A and Y extendsT €* A then X extendsT €* A.
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PrROOF. Claim () is proved by induction on the derivation of X extendsY €™ A. Claim
follows by claim ([if) and a case distinction on the last rule used in the derivation of X extendsY €*
O

Lemma 6.9 (¢ and €* imply subtyping). If X extendsT €™ A or X extendsT €* A then
AR/ X<T.

Proor. If X extendsT €7 A then the claim follows by a straightforward induction on the
derivation given. The other case is now trivial. Note that we use Lemma [6.4] O

Definition 6.10 (B and B <, B). We let B range over both class types (N ) and interface types
(K). When we write B <., B, then either B=N, B =N', and N <. N', or B=K, B' = K’,
and K <, K'.

Lemma 6.11 (Inversion of kernel of quasi-algorithmic subtyping). Suppose A+, T <U.

(i) If T = X for some X then either U =Y for someY and X extendsY €* A, or U = Object,
or U = B for some B # Object and X extends B’ € A for some B’ with B’ <., B.

(it) IfU =Y for someY then T = X for some X and X extendsY €* A.
(iir) If T = N for some N then U = N’ for some N' with N <, N’'.
(i) If T = K for some K then either U = K’ for some K' with K <1, K’ or U = Object.

PROOF. Propositions (3) and (4) follow by inspecting the rules defining the relation - ' - < -.
Proposition (2) follows by inspecting the rules defining the relation - " - < - and by proposition
(1).

We now prove proposition (1) by induction on the derivation of A I—q’ T < U. Thereby, we
assume that U # Object as the claim holds trivially in this case. Because T' = X, the derivation
either ends with SUB-Q-ALG-VAR-REFL Or SUB-Q-ALG-VAR. The first case is trivial. For the second
case we have

X extends U’ € A U # Object,U # X ARU <U
AR X <U

SUB-Q-ALG-VAR

Case distinction on the form of U’.

e Case U’ = Z for some Z: Applying the LH. to A I,/ U’ < U yields that either U =Y for
some Y and ZextendsY €* A, or that U = B for some B and Z extends B’ €T A for
some B’ with B’ <; B. It is easy to verify that proposition (1) follows from these facts.

e Case U' = B’ for some B’: Using propositions (3) and (4) we get that U = B for some
B # Object with B’ <, B. The claim now follows trivially.

End case distinction on the form of U’. O
Lemma 6.12. If A I—q/ T<U and ArqU <V, then AT <V,

ProoF. If the derivation of A k; U <V ends with sUB-Q-ALG-KERNEL, then A I—q’ U <V so the
claim follows by Lemma Otherwise, we have V = K and

AR U<U Ak U’ implements K
AR ULK

SUB-Q-ALG-IMPL

With Lemma we have A I—q’ T < U’, so the claim follows with SUB-Q-ALG-IMPL. O

Lemma 6.13 (Type substitution preserves inheritance). If - B <., B’ then - oB <, oB’.
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PRrROOF. We show the claim for B = K and B’ = K’ by induction on the derivation of K <, K';
the proof for B = N and B’ = N’ is similar.
Case distinction on the last rule used in K <, K'.

e (Case EXT-I-REFL: Trivial because K = K’.

e Case ExT-1-sUPER: Then K = I(T) and

interface I(X)[Y whereR] ... R; = G implements L [T/X]|L <, K’
I{T) <, K'

Applying the LH. to [T/X]|L <, K’ yields o[T/X]L <, oK’. Because the definition of T
does not contain free type variables, we have o[T/X|L = [¢T/X]|L. Hence, c K <, oK' by
EXT-I-SUPER.

End case distinction on the last rule used in K <, K. O
Lemma 6.14 (sup is transitive). If R3 € sup(Ra) and Ry € sup(Ry) then R3 € sup(Ry).

PRrOOF. The proof is by induction on the height of the derivation of R3 € sup(Rq). The case
where this derivation ends with rule sup-1p is trivial. Now assume that the derivation ends with
rule sUP-STEP:

interface I(X)[Y where R ... U implements I (V) € sup(R2)

[V/X,U/Y]|Ry € sup(Rs)
—_—

=R

Applying the L.H. to U implements I (V) € sup(Rz) yields U implements I (V) € sup(R;). Apply-
ing rule sup-sTEP then gives us Rz € sup(Ry). O

Lemma 6.15 (Type substitution preserves sup). If R € sup(8) then oR € sup(c8).

PROOF. The proof is by induction on the derivation of R € sup(8). The claim holds trivially if
this derivation ends with rule sup-ip. Now suppose the last rule is SUP-STEP:

interface I{X)[Y whereR] ... U implements I (V) € sup(8)

[V/X,U/Y]Ry € sup(8)
—_——

=R

By the I.H. we have o(U implements I(V)) € sup(c§). Thus, by rule sup-step we get [0V/X,0U/Y|Ry €
sup(c8). The definition of I does not contain free type variables, so ftv(Rg) C {X,Y}. Hence
[0cV/X,cU/Y Ry = o([V/X,U/Y]Ry) = oRR. O

Lemma 6.16. If Aty T <U and U # K for any K then AR,/ T <U.
PRrROOF. Obvious. OJ

Lemma 6.17. Suppose A vy P for all P € sup(cA').

(i) If X extendsY €* A’ then either A k' X < oY or oY = K for some K such that
AbqoX <K' for all K" with K <, K'.

(ii) If X extends B €T A’ then either A k' 06X < oB or oB = K for some K such that
Aty oX <K' forall K" with K <, K.

PROOF. We first prove proposition (1) by induction on the derivation of X extendsY €* A’
Then we prove proposition (2) by induction on the derivation of X extends B €t A’.
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Proof of proposition (1) If X =Y then the claim follows with Lemma Otherwise, we
have
X extends Y’ € A’ Y’ extendsY €* A’
X extendsY €* A’

By the assumption we have
At oX <oV’ (1)
and, if oY’ = L for some L, then
AbyoX <L'forall L’ with L <, L' (2)
Applying the I.LH. to Y’ extends Y €* A’ yields either
AR/ oY <oY (3)
or cY = K for some K and
Ab, oY’ <K' forall K’ with K <, K’ (4)
Case distinction on the form of Y’ and on whether or holds.
e Case oY’ # L for any L and holds: By Lemma and we get
A Fq' cX <oY’
With and Lemma we get A I—q’ cX < oY as required.

e Case oY’ # L for any L and holds: As in the preceding case, we have A =,/ 0 X < oY”.
Using and Lemma we get

Aty oX < K'forall K’ with K <, K’

as required.

e Cuase oY’ = L for some L and holds: With and Lemmawe get either that oY =
Object or that oY = K for some K with L <, K. If cY = Object then A I—q' cX <oY by
SUB-Q-ALG-0BJ. Now assume oY = K. With and L <, K we get A b, 0X < K’ for all
K’ with K <, K'.

e Case oY’ = L for some L and holds: Suppose K <, K’ for some K'.

— If the derivation of A i, oY’ < K’ in (4]) ends with SUB-Q-ALG-KERNEL, then we have
AR,/ oY’ < K'. Hence, by Lemmal6.11} L <, K'. Using (2) we get A, 0X < K.

— If the derivation of A oY’ < K’ in ends with sUB-Q-ALG-IMPL, we have

AR/ oY <T Al T implements K’
At oY <K’

With Lemma we need to consider two cases for the form of T

* T = 0Object. Then we have A, 0 X <T,s0 Ak, 0X <K'
x* T=1L"and L <, L'. With Lemmal6.6| we get L' <, K’. Thus, L <, K’. Equation
then gives us A b o X < K.

We now have A b, 0 X < K’ for all K’ with K <, K’ as required.
End case distinction on the form of oY’ and on whether or holds.
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Proof of proposition (2) We have

X extendsY €* A/ Y extends B € A’
X extends B e A/

By proposition (1) we have that either

Ak 0X <oY (5)
or that
oY =L for some L and A b, o X < L' for all L' with L <, L' (6)
We have by the assumption
AtyoY <oB (7)
and, if o B = K for some K then
Aty oY < K'for all K’ with K <, K’ (8)

Case distinction on the form of 0B and on whether or @ holds.

e Case 0B = N for some N and holds: Then by (7) and Lemma At/ oY <oB.
With and Lemma A I—q/ 0cX < 0B as required.

e Cuase 0B = K for some K and holds: Assume K’ such that K <, K'.

— If the derivation of A b oY < K’ in ends with SUB-Q-ALG-KERNEL, then A I—q' oY <
K’ so A }—q' ocX <K' by and Lemma Hence, Ak o X < K’

— If the derivation of A, oY < K’ in ends with sUB-Q-ALG-IMPL, then we have

Ak oY <T Al T implements K’
Aty oY <K'

By and Lemma we then have Ak, 0 X < T, thus Ak, o X < K'.
We now have A b5 0 X < K’ for all K’ with K <, K’ as required.

e Case 0B = N for some N and () holds: Then by (7)) and Lemma Atk oY <oB.
With (6) we know that oY = L for some L. Hence, by Lemma 0B = Object. We

then have A k" 0 X < 0B by SUB-Q-ALG-OBJ.

e (Case 0B = K for some K and @ holds: By @ we have oY = L for some L. Assume K’
such that K <, K.

— If the derivation of A = oY < K'in ends with SUB-Q-ALG-KERNEL, then A I—q/ oY <
K'. Hence, L <, K’ by Lemma Using (6) we then have Ay 0 X < K.

— If the derivation of A = oY < K "in ends with sUB-Q-ALG-IMPL, then we have

Ar/oY <T Al Timplements K’
A oY <K'

With Lemma [6.11] we need to consider two cases for the form of T':
x T = Object. Then we have A Fq' X <T,s0oAk,o0X <K'

x* T=L and L <, L'. With Lemmawe get L' <, K'. Thus, L <, K’'. Equation
@ then gives us A o X < K.
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We now have A by 0 X < K’ for all K’ with K <, K’ as required.
End case distinction on the form of 0B and on whether or @ holds. O

Lemma 6.18. Suppose V implements .J(W) € sup(T implements [(U)) and A &' T; < T with
T; = T] unless i € pos™(I) for all i. Then there exist V' such that V'implements (W) €
sup(T” implements I(U)) and A k' Vi <V with V; =V, unless i € pos~(J) for all i.

?

PROOF. By induction on the derivation of V implements J(W) € sup(T implements I(U)). If
the last rule of this derivation is sup-1p, then choose V/ = T” and the claim holds trivially. Now
suppose the last rule of the derivation is SUP-STEP:

interface I'(X)[Y whereR] ... T"" implementsI’(U’) € sup(T implements I(U))
[U'/X,T" /YRy, € sup(T implements U)

with

[U'/X,T"/Y]Ry =V implements J (W)
Ry, =G implements .J(W’) 9)

Applying the LH. to T7" implements I'(U7) € sup(T implements I(U)) yields the existence of
T"" such that

T implements I'(U’) € sup(T’ implements I(U))
(v € ) AR/ TY <)
(Vje[n]) T =T;" or j € pos™ (I')

We then have by sup-sTEP

[U'/X,T"Y]|Ry, € sup(T’ implements I{U)) (10)

Suppose j € [n] such that 7}" # T}'. Then we have j € pos™(I’). By examining the definition of
pos—, we get Y; € pos™ (Ry). The definition of pos™ now gives us

Y; ¢ feu(1W7) (1)
(Vi € [m]) (Y; = G, and i € pos™ (J)) or Y; ¢ ftv(G;) (12)

Thus, we have with that
/X, 7" /YIW'=[U'/X,T"]Y|W =W (13)

Now define
V" =[U/X, T"]Y]G
Then we have with @[), , and that
V' implements J(W) € sup(T’ implements I(U))

Suppose i € [m] and V; # V/. Then there exists j € [n] such that Y; € ftv(G;) and T}" # T}'. By
we then have Y; = G; and i € pos™(J). Hence, V; = T](’ and V/ = ij“, so AR/ V;<V/. O

Lemma 6.19. If Al R then Al R.

ProoF. Obvious with rule ENT-Q-ALG-UP. O
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Lemma 6.20. Suppose J is a single-headed interface such that 1 € pos™(J). If now J(T) <, I{U)
then also 1 € pos™(I).

PROOF. Induction on the derivation of J(T) <, I(U). If the derivation ends with EXT-I-REFL,
then J(T) = I(U) and the claim holds trivially. Otherwise, assume

interface J(X)[Y where R] ..
R; = G" implements .J' (V) [T/X]J'(V ) <, I{U)
J(T) 2, I{U)

EXT-I-SUPER

By criterion Wr-IFACE{3| we have n =1 and G; =Y. With 1 € pos™(.J) we have Y € pos™(R;)
by POS-IFACE, so 1 € pos™(.J') by pos-coNsTR. We can now apply the L.H. to [T/X]J'(V) <, I{U)
and get 1 € pos”™(I) as required. O

Lemma 6.21. If D A Ik T" implements I(U) and there exists i € [n] such that Ty = K for
some K, then n =1 and 1 € post(I).

ProoOF. Case distinction on the last rule used in D.

e Case ENT-Q-ALG-ENV: Then T implements I{U) = R for some R, which is impossible if
there exists i € [n] such that T; = K for some K.

e Case ENT-Q-ALG-IMPL: We then have T = N for some N. Hence, this case is also impossible.

e Cuse ENT-Q-ALG-TFACE: We then have n = 1, Ty = J(V) for some J(V), 1 € pos*(J), and
J(V) <, I{U). By Lemma [6.20{ also 1 € pos™ ().

FEnd case distinction on the last rule used in D. O

Lemma 6.22 (Type substitution preserves quasi-algorithmic subtyping and entailment). Suppose
Al P for all P € sup(cA’).

(i) If D1 AN R T < U then either Ay’ oT < oU or oU = K for some K and A+, oT < K’
for all K’ wzthKﬁl K'.

(i) If Do A kg T < U then Aty oT < oU.
(iii) If Dy A'Ib, R then A by oR.
(iv) If Dy A Iy Q then A by 0Q.

PROOF. We proceed by induction on the combined height of Dy, Dy, D3, and Dy.
(i) Case distinction on the last rule used in Dj.

e (ase SUB-Q-ALG-0BJ: Trivial.
e (Case SUB-Q-ALG-VAR-REFL: Follows with Lemma

e (ase sUB-Q-ALG-VAR: We have T'= X. Thus, by Lemma [6.11] we can distinguish three
different cases:
— U =Y forsomeY and X extends Y €* A’. Then the claim follows with Lemmal6.17}
— U = Object. In this case, A I, 0T < oU holds by SUB-Q-ALG-OBJ.
— U = B for some B # Object and X extends B’ €™ A’ for some B’ with B’ <, B.

Then 0B’ <, 0B by Lemma By Lemma we either have A k' 0 X < 0B’
or 0B’ = L for some L and A+ o X < L' for all L' with L 9, L'.

x For the first case, we note that o B’ <, ¢B implies A Fq’ 0B’ < oB. The claim
now follows with Lemma [6.5]
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x For the second case, we have with ¢ B’ = L for some L that 0B = K for some
K such that L <, K. If now K <, K’ then L <, K’ (by Lemma , SO
Ay 0X < K’ as required.

e Case SUB-Q-ALG-CLASS: Follows with Lemma

o (ase sSUB-Q-ALG-IFACE: Follows with Lemma [6.13
End case distinction on the last rule used in D;.
(ii) Case distinction on the last rule used in Ds.
e (Case SUB-Q-ALG-KERNEL: We have
ANR'T<U
ANHT<U

By part of the LH., we have either A " T < oU (which implies A b, 0T < oU)
or Ak, 0T < oU, so the claim holds.

o Case suB-Q-ALG-IMPL: We have U = I(W) for some I(W) and

AR'T<V A’k V implements I (W)
AN, T < I(W)

Applying parts and of the I.H. yields

AR oV <V' ifoV #V' then 1€ pos™ () Ak V' implements oI (W)

Alky oV implements oI (W) 14)
and either
AR/ oT <oV (15)
or
oV =L for some L and Ak, 0T < L' for all L' with L <, L' (16)

— Suppose ([15]). Then we have by the first premise , by , and by Lemma
that A k" o7 < V'. With the last premise in (14) and with rule suB-Q-ALG-IMPL,
we then get A b, 0T < oI(W) as required.

— Suppose (16). Then we have by the first premise in , by the fact that oV = L,
and by Lemma that either V' = Object or that V' = L’ for some L’ with
L4, L.

* If V! = Object then A b,/ o7 < V', so the claim follows with the last premise
in and with rule SUB-Q-ALG-IMPL.

* Otherwise, V/ = L' and L <, L. From the last premise in (I4), we have
A+, L' implements ol (W), so with Lemma we get L' <, oI(W). Hence,
L <, oI{W) by Lemma By we then have A +, oT < oI(W) as
required (note that o I(W) = oU).

End case distinction on the last rule used in Ds.
(iii) Case distinction on the last rule used in Ds.

e Case ENT-Q-ALG-ENV: We have S € A’ and R € sup(S) such that R = R. With
Lemma we get oR € sup(cS). Clearly, ¢S € o/A’, so the assumption gives us
Al oR as required.
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e (ase ENT-Q-ALG-IMPL: We have

implementation(X) I(T) [N] where P ... Ak [V/XP
A" IR [V/X](N implements I(T))
=R

Applying part of the I.H. yields
Ak, o[V/X|P
Because implementation definitions do not contain free type variables, we have
olV/X|P = [oV/X]|P
o[V/X](N implements I(T)) = [¢V/X|(N implements I(T))

By ENT-Q-ALG-IMPL we then have A Ik," o[V/X](N implements I(T)), thus A I, oR by
Lemma [6.19)

e (lase ENT-Q-ALG-IFACE: We have

1 € post(I) V)<, K
AR, I{V) implements K

=R

By Lemma we have oI(V) <, 0 K. Thus, with ENT-Q-ALG-IFACE, we get A Ik, oR,
so Al oR by Lemma

End case distinction on the last rule used in Ds.
(iv) Case distinction on the last rule used in Dy.
e (lase ENT-Q-ALG-EXTENDS: Follows from part of the I.H.
o (lase ENT-Q-ALG-UP: We have
(Vi) A" R/ T; <U; if T; # U; then i € pos™(I) A’ Ik, U implements I(V)

A’ Ik, T" implements (V)
-0 (17) {eq:ass::lemma:subs

We get by part of the I.H.:
(Vi) ARy oU; <U! if oU; # U/ then i € pos™ (I)
Al U’ implements I (cV)
— — ENT-Q-ALG-UP
Alr oU implements I (o V) (18) {eq:subst-mu-ent::1

Suppose i € [n]. If ¢ € pos™(I) does not hold, then we have T; = U; and oU; = U].
Hence,

oT; = U] or i € pos™(I) (19) {eq:ti-eq-uip::lemm
Moreover, by part of the I.LH. applied to the first premise in we get that either
AR,/ oT; <ol (20) {eq:pos21i::lemma:su
or
oU; = K; for some K; and A, ¢T; < K] for all K with K; <, K., (21) {eq:pos22::lemma:su
We now partition [n] = .#; U .#> such that

A1 = {j € [n] | Equation holds for j}
Mo = {l € [n] | Equation holds for 1}
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— If j € #,, then we have with (20)), the first premise in (18)), and Lemma [6.5] that
A Fq/ ol; < UJ’».

— Ifl € A5, then oU; = K for some K;. By Lemma [6.11] applied to the first premise
in (18], we then have that either U] = K| for some K, or U] = Object.

Now we further partition .45 into .#5; U .#52 such that

Mo = {l € Mo | Ul/ = Kl/ for some Kl/}
Moy = {l € Mo | Ull = Object}

Case distinction on whether or not .#5; = 0.

— Case Mo = 0: Then we have [n] = A U Moz, so A, oT; < U/ for all i € [n].
Thus, with and the last premise in we can apply ENT-Q-ALG-UP and get
Al oT implements I(cV') as required.

— Case Mz # 0: With Lemma applied to the last premise in , we get that
n =1 and that

1 € pos™(I) (22) {eq:pos-plus::lemma
In the following, we may assume
1 € pos™ (1) (23) {eq:pos-minus::lemm

Otherwise, we have ¢T; = U{ with and the claim then follows with the last
premise in and ENT-Q-ALG-UP.

With n = 1 and 45, # 0, we have 1 € .#5,. Hence, U] = K] for some Kj.
With the last premise in and Lemmawe then have K| <, I{(cV). Because
1 € Moy C M5, we have we have cU; = K7 for some K;. The first premise in
and Lemma then gives us K; <, K|. With Lemma K, <, I{aV).
Equation holds because 1 € .#5, so

Aty oTy < I{(aV) (24) {eq:subst-t1::lemma

Case distinction on the last rule used in the derivation of .

% Case SUB-Q-ALG-KERNEL: Then A R,/ oTy < I(cV). With and we
then have

At/ oT) < IV

Lepost(I)  I{oV) <, I{cV)

B ENT-Q-ALG-IFACE — AN

1 € pos™ (1) AR I{oV) implements I{c V)

A vy 0Ty implements I (oV)

ENT-Q-ALG-UP

* (Case sUB-Q-ALG-IMPL: We then have

AR ocTh <W A |k W implements I{cV)
A |_q O'T1 S I<W>

With we get

AR/ oTh <W  léepos (I) Alr/ W implementsI{(oV)
A Ik 0Ty implements I (oV)

ENT-Q-ALG-UP
End case distinction on the last rule used in the derivation of .
End case distinction on whether or not .#5; = (.

We thus showed A I 0Q.
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End case distinction on the last rule used in D;. O
Lemma 6.23. If R € sup(T implements L) then R = T implements L' with L <, L.

PROOF. We proceed by induction on the derivation of R € sup(T implements L).
Case distinction on the last rule of the derivation of R € sup(T implements L).

e (Case rule sur-1p: Obvious.
e (Case rule sur-sTEP: We have

interface I({X)[Y whereS] ... U implements [ (V) € sup(T implements L)

[V/X,U/Y]S; € sup(T implements L)

with R = [V/X,U/Y]S;. Applying the L.H. yields

U implements [ (V) = T implements (V)

L <, (V)
Hence,
Y=Y
By criterion WF-IFACE2] and criterion WF-IFACE-3] we have

S; =Y implements K
Y ¢ ftv(K)

Hence,

[V/X,U/Y]S; =T implements [V/X|K

Moreover,

1(V) <, V/X|K

Hence, with Lemma (6.2

L <, [V/X|K

End case distinction on the last rule of the derivation of R € sup(T implements L). O
Lemma 6.24. If § € sup(R) then there exists a S with § = S.

ProOF. By induction on the derivation of 8 € sup(R). The case where the derivation ends with
rule sup-1D is trivial because 8§ = R. Now suppose that the derivation ends with an application of
rule SUP-STEP:

interface I{X)[Y whereS] ... U implements I (V) € sup(R)
[V/X,U/Y]Sy € sup(R)
—_———

=8

Suppose S, = G implements K. By using the I.H., we get that there exists H such that U = H.
From criterion WF—IFACE we then know that {[V/X,U/Y]G} C {H}. Thus, there exists S =
S. O

Lemma 6.25. If R € sup(c8) then there exists a R’ € sup(8) with oR’ = R.
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PROOF. By induction on the derivation of R € sup(c8). The case where the derivation ends with
rule sup-1D is trivial because R = 08. Now suppose that the derivation ends with an application
of rule sup-sTEP:

interface I(X)[Y whereR] ... U implements [ (V) € sup(c8)
[V/X,U/Y|Ry € sup(c8)
A —

=R

From the LH. we get the existence of U’ and V7 such that U’ implements I(V’) € sup(8) and
ocU"=U, oV’ =V. By rule sup-sTEP we then have

V'/X,U'/Y]Qy € sup(8)

Define R = [V//X,U’/Y|Ry. We then get

oR = o[VI/X, U YR, " ESYY VX TV Ry = [VIX, UV Ry = R

as required. O

Lemma 6.26. Suppose I is a single-headed interface. If I{T) <, K, then U implements K €

sup(U implements I(T)) for any U.

PROOF. By induction on the derivation of I (T) 4, K. If the derivation ends with EXT-I-REFL,
then I(T) = K and the claim follows trivially. Now suppose the derivation ends with EXT-1-SUPER:

interface I(X)[Y whereR] ... R; = G implements L [T/X|L <, K

I(T) <, K

By applying the LH. to [T/X]|L <9, K, we get

U implements K € sup(U implements [T/X]L) (25)

for any type U. B -
By sup-ip, we have U implements /(1) € sup(U implements [(T)). Thus, by sur-sTEP also
[U/Y, T/X]R; € supiﬁU implements I(T)) With criterion WF-IFACE{3| we have G = Y and with

criterion WF-IFACE-2|Y ¢ ftv(L). Thus, [U/Y,T/X]|R; = U implements [T/ X|L. Hence,

U implements [T/ X]L € sup(U implements I(T)) (26)
With Lemma we then get U implements K € sup(U implements I(T)) as required. O

Lemma 6.27 (Inversion of quasi-algorithmic entailment). If A Ik T" implements [ (V') then there
exist U such that A Iy" U implements I(V), and for all i € [n], A+, T; < U; and i € pos™(I)
unless T; = Uj;.

PROOF. The derivation of A I, T implements I(V) must end with rule exT-Q-ALG-UP. The
claim now follows from the premises of this rule. O

Lemma 6.28 (Entailment for super constraints).

(3) If D1 :: A kg P and Q € sup(P), then A Ik Q.
(ii) If Do Ak R and 8 € sup(R), then Al 8.
(1) If D32 AT <K and K 9, L, then A+ T < L.

PROOF. We proceed by induction on the combined height of D; and Ds.
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(i) Case distinction on the last rule used in Dj.
e (ase ENT-Q-ALG-EXTENDS: Then

AR T<LSU
Alky T extends U
—
=P

If U is not an interface type, the Q = P and the claim holds trivially. Otherwise U = K
for some K and Q = T extends L for some L with K <, L. By part of the L.H.,
we get A, T < L. Hence, A Iy Q by ENT-Q-ALG-EXTENDS.

e (Case ENT-Q-ALG-UP: Then we have
Vi) AR T, <T! if T; # T/ then i € pos™ (I Ak’ T" implements I (U
q 7 1 q p 27)
A by T implements I(U) '

=P

Assume Q = V implements J(W). With Lemma we get the existence of V/ such

that
V' implements J(W) € sup(T’ implements I(U)) (28)
(Vi) ARV <V (29)
(Vi) if V; # V/ then i € pos™(J) (30)

Applying part of the I.H. to and the last premise in yields
Al V' implements J (W)
Hence

(Vi) AV <V
(Vi) if V/ # V! then i € pos™(J) Ak V" implements J (W)
Al V' implements J (W)

ENT-Q-ALG-UP

With and Lemma [6.5| we get A, V; <V for all i. Moreover, if V; # V/” then
either V; # V/ or V/ # V/; hence, noting (30), we have i € pos™(J) for those i with

V; # V. By rule ENT-Q-ALG-UP we then get A I, V implements J(WW) as required.
End case distinction on the last rule used in D;.
(ii) Case distinction on the last rule used in Ds.

e Case ENT-Q-ALG-ENV: Then R = R for some R and R’ € A and R € sup(R’). With
Lemma [6.24] we know that there exists S = 8. Thus, we also have S € sup(R). With
Lemma [6.14 we then get S € sup(R’). Hence, A Ik, 8.

e (Clase ENT-Q-ALG-IMPL: We have

implementation(X) I(V) [N ] where Q ... Al oQ dom(o) = X
A by o(N implements I(V))
—R (31)

From Lemma Xve know that there exists 8’ € sup(N implements I(V)) such that
08 = 8. Let 8 = T implements J(U). By criterion WF—IMPL we get the existence
of a definition

implementation(Y) J(U’) [ M| where P ...
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and a substitution 7 = [W/Y] such that

(Vi) Q H T; <1M; (32) {eq:ti-st-subst-mi:

(Vi) if T; # 7M; then i € pos™(J)
U=1U" (33) {eq:mu-eq-mup: :lemm
QTP (34) {eq:entails-subst-m

Applying part () of the LH. to A Ik, 0@ in yields
Al Q for all Q" € sup(cQ)

Using this equation together with Lemma , and yields (note that o7 M; #
K for any K)
(Vi) A |—q/ ol; <orM; (35) {eq:ti-st-subst-sub
Alr oTP (36) {eq:entails-subst-s
Define ¢’ with dom(¢’) =Y and o/(X) = o7(X) for all X € Y. We then have
(Vi) Ak, oT; < o' M; with (Vi) if oT; # o' M; then i € pos™ (J)
implementation(Y) J(U’) [M] where P ...
A Ik, o' P with
Al o'(M implements J(U'))
A lry 0T implements J(o'U’)

ENT-Q-ALG-IMPL

ENT-Q-ALG-UP

With we get oU = o'U’. Hence,
oT implements J(0’U’) = oT implements J(cU) = 08’ = §

Thus, A I 8 as required.

e (ase ENT-Q-ALG-IFACE: We have

lepost(I) I{V)<4, K
Ak I{V) implements K

=R

With Lemma we get § = I(V) implements L with K <, L. With Lemma we
get 1(V) <, L. Hence, with ENT-Q-ALG-TFACE, we have A I, 8.

End case distinction on the last rule used in Ds.
(ili) Case distinction on the last rule used in Ds.

e (Case SUB-Q-ALG-KERNEL: Then we have A Fq’ T < K and from K <, L we get A Fq’
K < L. Using Lemma we get A k' T < L, from which we get A b, T < L by rule
SUB-Q-ALG-KERNEL.

o (ase suB-Q-ALG-IMPL: We have

AR/T<U Al U implements K
AR T<K

With K <, L and Lemma we get U implements L € sup(U implements K. Thus,
with part of the I.H. we get

Al U implements L
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By Lemma we get the existence of U’ such that

A/ U<U
Al U’ implements L

By Lemmawe then get A =, T < U’, so the claim follows by using rule ENT-Q-ALG-IMPL.

End case distinction on the last rule used in Ds. O

Corollary 6.29. Suppose A Ik oA,

(4)
(i)

IfAN' T <U then At 0T < oU.
If A Ik P then Al oP.

PrROOF. Combine Lemma [6.22] and Lemma [6.28] O

Lemma 6.30 (Transitivity of quasi-algorithmic subtyping). If D1 = A b, T < U and D :: A K
ULV then AT <V.

PRroor. Case distinction on the last rules used in the derivations D; and D-.

Case SUB-Q-ALG-KERNEL and SuUB-Q-ALG-KERNEL: Then the claim follows with Lemma [6.5
Case SUB-Q-ALG-KERNEL and suB-Q-ALG-IMPL: Then the claim follows with Lemma [6.12

Case SUB-Q-ALG-IMPL and SUB-Q-ALG-KERNEL: Then we have U = K for some K. With
Lemma we get that either V' = 0bject or V = L for some L with K <, L.

If V = 0Object, then the claim follows with suB-Q-ALG-0BJ and SUB-Q-ALG-KERNEL. Otherwise,
V = L for some L with K <, L. The claim now follows with Lemma, |6.28

Case SUB-Q-ALG-IMPL and suB-Q-ALG-IMPL: We then have U = K for some K and V = L for
some L. Moreover,
AR/ T<T Al T implements K Ak, K <U’ Al U’ implements L
ART<K AR K<L

With A I—q’ K <U’" and Lemmawe know that either U’ = Object or U’ = K’ for some
K’ with K <, K'. If U’ = Object, then A /' T' < U’ by suB-Q-ALG-0BJ, s0 A b T < L
follows by SUB-Q-ALG-IMPL.

Now suppose U’ = K’ for some K’ with K <, K’. By Lemma and A Ik," U’ implements L
we have K’ <, L. Hence, with Lemma K <, L. With AT < K and Lemmawe
then get A T < L as required.

End case distinction on the last rules used in the derivations D; and Ds. O

Lemma 6.31. If A Ik, T" ' U'V inplements I(W) and n € pos™(I) and A &,/ U < U’, then

Al UV implements [(W).
PROOF. From A I, T" ' U'V implements I(W) we get with Lemma the existence of
T U" V7 such that

(Vi) Ary T; < T!
(Vi) if T; # T} then i € pos™ (I)
(i) ARy Vi <V
(Vi) if V; # V; then n+1i € pos™ (I)
AR U <U"
Al T ' U" V7 inplements (W)

35



With Lemma [6.5] we then have
AR/ U<U"
Because n € pos™(I) we can apply rule ENT-Q-ALG-UP and get A Ik, T" ' UV implements (W)

as required. O

Lemma 6.32. Suppose A Ik, T implements (W) and [n] = A U A5 such that Ty = K; for all
i €M and T; = G; for all i € N5. Then one of the following holds:

o Ak, U" implements I(W) for any U with U; = G; for alli € N5. Moreover, i € pos™ (I)
forallie A.

o M = {1}, S =0, 1 € post(I), and K; <, I{W). Moreover, if 1 ¢ pos™(I) then, if
K, = J(W'), 1€ post(J)

PROOF. From A Ik, T implements I(W) we get with Lemma the existence of 77" such
that
(Vien) AR/ T, <T]
(Vi € [n]) if T; # T/ then i € pos™ () (37)
Al T implements I (W) (38)
With Lemma we know for all ¢ € .4 that either 7] = K/ for some K| with K; <, K| or
T! = Object.

° Assumi there exists somii € M such that T} = K] for some K. Then the derivation of
Al T"" implements I{(W) must end with rule ENT-Q-ALG-TFACE. Hence:

[n] = {1}
M ={1}
No =10

Ti = J(W) (= K1)
J(W') <, I(W)
1 € post(J)
With K; <, Kj we then also have K; <, I(W). With Lemma 1 € post(I).
e Assume 7] = Object for all i € #1. Because T; = K; # Object we have i € pos™(I) by
. Let U" be given with U; = G, for all ¢ € A45. Then
(Vi € [n]) if U; # T} then i € pos™ (1)
With and rule ENT-Q-ALG-UP we then have A Ik, U implements I(WW).

Finally, suppose 1 ¢ pos~(I). Then T} = T{ by (37)), so K1 = K{ = J(W’) and 1 € pos™(.J)
as required. O

Lemma 6.33. If A+, T < U and Ak U implements K and K <, I(V) and 1 € pos™(I), then

Alky T implements I(V).

Proor. With K <, I(V) and Lemma we have U implements I (V) € sup(U implements K).
Hence, with Lemma [6.28| we have

A Ik U implements I (V)
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By Lemma we then get the existence of U’ with
AR/ UU
Al U’ implements I (V)

By Lemma we have A k' T < U’, so with 1 € pos™(I) and rule ENT-Q-ALG-UP, we get

A |k T implements I(V). O

Theorem 6.34 (Completeness of quasi-algorithmic entailment and subtyping).
(3) If AIFP then Al P.

() FAFT <U then AT <U.
PROOF. Induction on the combined height of the derivations of A lF P and AT < U.
(i) Case distinction on the last rule used in the derivation of A I+ P.

e (lase ENT-EXTENDS: Follows with part of the I.H.

e (Case ENT-ENV: With rules supr-1D and ENT-Q-ALG-ENV we have A Il—q' P. The claim then
follows from Lemma [6.19]

e (Case ENT-SUPER: Then we have

interface I(X)[Y whereR] ... A I+ U implements I(T)

AW [T/X,U/Y|R;
~—_———

=P

We then get by part (i) of the I.H.
A lr, U implements I(T)
By looking at the rules defining sup, we also have
P € sup(U implements I(T))
The claim A Ik, P now follows from Lemma

e (ase ENT-IMPL: We have

implementation(X) I(T) [N ] where P ... AR [U/X|P

A IF [U/X](N implements I(T))

=P

By part () of the LH. we get A Ik, [U/X]P. With rule ENT-Q-ALG-IMPL we then have
Al P. The claim now follows with Lemma
e (ase ENT-UP: We have
AFU<U AIFTU'V implements I (W) n € pos™ (I)
AFT UV implements I (W)
=% (39)

Applying part ({ij) of the I.H. yields
A by TU'V implements I (W) (40)

and part yields
AR U<U (41)

Case distinction on the last rule used in the derivation of .
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— Case rule sUB-Q-ALG-KERNEL: Then Ak, U < U’. With Lemma we then have
A Ik P as required.
— Case rule suB-Q-ALG-IMPL: Then we have U’ = K for some K such that

A Fq' U<u” A |Fq' U” implements K
AR ULK

Applying Lemma to with U" = K yields that either A I, P (we are done
in this case) or that n = 1, m = 0, and K <, I(W). With A /' U <U”, A It/
U” implements K, K <, I{W), 1 € pos™(I) (follows from (39)), and Lemma
we get

A Ik U implements I (W)

as required.
End case distinction on the last rule used in the derivation of .

e Case ENT-1FACE: We then have P = I(T)implements [(T) and 1 € pos™(I), so the
claim follows with rule ENT-Q-ALG-IFACE.
End case distinction on the last rule used in the derivation of A I+ P.

Case distinction on the last rule used in the derivation of AFT < U.

e (ase suB-REFL: Follows with Lemma and rule SUB-Q-ALG-KERNEL.
e (ase suB-oBJECT: Follows with rules suB-Q-ALG-0BJ and SUB-Q-ALG-KERNEL.
e Case suB-TRANs: Follows with Lemma [6.30

e (Case suB-vAR: Then we have T'= X for some X and X extendsU € A. If U = X or
U = Object, then the claim follows using rules SUB-Q-ALG-VAR-REFL OI SUB-Q-ALG-OBJ,
respectively, together with suB-Q-ALG-KERNEL. Otherwise, rule SUB-Q-ALG-VAR is appli-
cable (note Lemma, so the claim follows with SUB-Q-ALG-KERNEL.

e (lase suB-cLAsS: Follows with SUB-Q-ALG-CLASS or SUB-Q-ALG-OBJ.
e (ase sUB-IFACE: Follows with SUB-Q-ALG-IFACE.
e (lase suB-tmPL: Then
A |F T implements K
AFT< K
et

Applying the I.H. yields A Ik, T"implements K. With Lemmawe get the existence
of T such that

AR/ T<T
Ak T' implements K
Using rule suB-Q-ALG-TIMPL we now can derive A T < K.
End case distinction on the last rule used in the derivation of A - T < U. O
Lemma 6.35. If Al- R and § € sup(R) then A IFS.

ProOF. By an induction on the derivation of 8§ € sup(R). If the derivation ends with sup-p,
then 8§ = R and the claim follows trivially. Suppose the derivation ends with sup-sTEP:

interface I{X)[Y whereS] ... V implements I (W) € sup(R)
(W/X,V/Y]S; € sup(R)
—_————

=8
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Applying the I.H. yields
A IFV implements [ (W)
The claim now follows with ENT-SUPER. O
Theorem 6.36 (Soundness of quasi-algorithmic subtyping and entailment).
(i) If D1 = AR/ T <U then AT <U.
(it) If Do AT <U then AT <U.
(i) If D3 :: Ak R then Al-R.
(i) If Dy Al P then Al-P.
PROOF. We proceed by induction on the combined height of Dy, Dy, D3, and Dj.
(i) Case distinction on the last rule used in D;.

o (ase suB-Q-ALG-0BJ: Follows with suB-oBJECT.
o (ase SUB-Q-ALG-VAR-REFL: Follows with SUB-REFL.
e (lase sUB-Q-ALG-VAR: Follows by appeal to part ({il) of the I.H., SUB-vAR, and SUB-TRANS.

e (Case sUuB-Q-ALG-CLASS: Follows by combining (possibly repeated) applications of suB-cLAss
with SUB-TRANS.

e Case sUB-Q-ALG-TFACE: Follows by combining (possibly repeated) applications of SUB-IFACE
with SUB-TRANS.

FEnd case distinction on the last rule used in D;.
(ii) Case distinction on the last rule used in Ds.

e (lase sUB-Q-ALG-KERNEL: Follows from part of the I.H.
o (Case suB-Q-ALG-IMPL: We have

AR/ T<T Al T’ implements K

AHT< K
—~—
=U
By parts (i) and ({iii) we get
AFT T

A - T implements K
With suB-impPL we then have A T’ < K, so sUB-TRANS yields the desired result.
End case distinction on the last rule used in D,.
(iii) Case distinction on the last rule used in Ds.
e Case ENT-Q-ALG-ENV: We then have S € A and R € sup(S) With ENT-ENV we get A |- S.
Applying Lemma then yields A I+ R.
e (lase ENT-Q-ALG-IMPL: By appeal to part of the I.H. and rule ENT-TMPL.

o Case ENT-Q-ALG-TFACE: We then have R = I(V)implements K, 1 € pos*(I), and
I{(V) <, K. With Lemma we get

I(V) implements K € sup(I(V) implements I(V))

Because 1 € pos™(I) we have with ENT-1FACE
AlF I{V) implements (V)
Then A IF R by Lemma [6.35)
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End case distinction on the last rule used in Ds.
(iv) Case distinction on the last rule used in Dy.

e (lase ENT-Q-ALG-EXTENDS: Follows by part of the I.H. and ENT-EXTENDS.

e Case ENT-Q-ALG-UP: We have P =T implements (V) and

(Vi) A/ T; < U; (Vi) if T; # U; then i € pos™ (I) Al U implements (V)
Al T" implements I (V) (42)

By part and , we get
(Vi) AFT, <U; (43)
AIFT" implements I (V)

We now show A IF T" implements I(V) by an inner induction on the number m of
indices i with T; # U;.

— If m =0 then T = U and the claim follows trivially.

— Assume m > 0. W.Lo.g., suppose T}, # U,. We get by the inner I.H.

AFT U, implements I (V) (44)

Because T;, # U, we have n € pos—(I) by ([#2). With (43),([#4), and ext-vp we
then get A IFT" implements I(V) as required.

End case distinction on the last rule used in Dy. O

7 Type Soundness

Lemma 7.1 (Type substitution preserves entailment and subtyping). Suppose A I+ ocA'.
(i) If A"+T <U then AFoT <oU.
(i) If A" I P then Ak 0.
ProOOF. Follows with Corollary Theorem [6.34] and Theorem [6.36) O

Lemma 7.2 (Weakening). Assume A C A,
(i

) If Al- P then A’ IF P.
(i)

)

)

IfAFT<U then AT <U.
(i) If A+ P ok then A’ P ok.
(iv) If A+ T ok then A"+ T ok.

PROOF. We prove the first two parts by induction on the combined height of the derivations
of AlF P and A+ T < U. Similarly, we prove the last two parts by induction on the combined
height of the derivations of A+ P ok and A F T ok. O

Lemma 7.3 (Substitution preserves well-formedness). Suppose A IF oA’ and A+ oX ok for all
X € dom(o) and dom(A) O dom(A’) \ dom(o).

(i) If A"+ T ok then A F oT ok
(it) If A"+ P ok then A+ oP ok
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PRrROOF. We proceed by induction on the combined height of the two derivations given.
(i) Case distinction on the last rule used in the derivation of A’ T ok.

e Case rule ok-TvaR: Then T'= X and X € dom(A).

— If X € dom(o) then A ¢X ok by assumption.
— If X ¢ dom(o) then X € dom(A) by assumption. Hence, A F X ok.

e (ase rule ok-oBJECT: Trivial.

e Case rule ok-crLass: Follows from the I.H., Lemmal7.1] and the assumption that classes
of the underlying program are closed.

o (Case rule ok-1FACE: Then
interface I{X)[Y where R] where P ...
AN FTok Y ¢fv(T,A) A'Y implements I(T) I+ [T/X]|R, P
A"F I(T) ok

with 7 = I(T). By the LH. we have A F oT ok. W.log, Y ¢ ftv(oT,A) U
dom(c). We get with the assumption A |- ¢A’, Lemma and rule ENT-ENV that
A,Y implements [{(oT) IF (A’ Y implements I(T)). Lemma|7.1| now yields

A,Y implements I(oT) I o[T/X|R, P

=[cT/X|R,P
Hence, by rule ok-1racg, A = o I(T) ok.

End case distinction on the last rule used in the derivation of A’ - T ok.

(ii) We proceed by case distinction on the last rule used in the derivation of A’ = P ok. For rule
OK-IMPL-CONSTR, the claim follows with Lemma [7.1] and the I.H. For rules OK-EXT-CONSTR
and OK-MONO-CONSTR, the claim follows directly from the I.H. O

Lemma 7.4. If Al oA’ and mtypen,(m,T) = msig then mtypen (m,cT) = omsig.

PRrOOF. Follows by case distinction on the rule used to derive mtypen,(m,T) = msig. The case
where this rule is MTYPE-TFACE relies on Lemma [7.1] Moreover, we use the assumption that classes
and interfaces of the underlying program are closed. O

Lemma 7.5. If AlF oA’ and smtypen,(m, K[T]) = msig then smtypen (m,oK[T]) = omsig.

PROOF. Follows immediately from Lemma[7.1] and the assumption that interfaces of the under-
lying program are closed. O

Lemma 7.6. Iffields(N) =T f then fields(oN) = oT f.
PROOF. Straightforward induction on the derivation of fields(N) =T f. O

Lemma 7.7 (Type substitution preserves expression typing). Suppose Al oA’ and A+ X ok
for all X € dom(o) and dom(A) D dom(A’) \ dom(c). If A;TFe: T then Ajol' - oe:oT.

ProOF. We proceed by induction on the derivation of A’;T'Fe: T.
Case distinction on the last rule of the derivation of A’;T'Fe: T.

e (ase rule xpr-var: Obvious.
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e (uase rule exp-riELD: Then

AT ke : C(T) class C(X) extends N where P{U f...}
AT e f [T/X]U;

EXP-FIELD

with e = €’.f; and T = [T/X]U;. Applying the LH. yields A;oT + o€’ : C{oT). With
rule Exp-FIELD we then get A;oT' - o(e’.f;) : [T/ X]U;. Because the underlying program is
well-typed, we have ftv(U;) C X. Hence, [0T/X|U; = o[T/X|U; = oT as required.

e (ase rule ExpP-INVOKE: Then

AT e T mtypen,(m, T') = (X)U x — U where P

(Vi) AT Fe : [V/XIU; A IF[V/X]P  A'FV ok
AT e m(V(e) : [V/X|U

EXP-INVOKE

with e = ¢/.m(V)(€) and T = [V/X]U. From the LH. we get

A;oT Foe 0T
(Vi) Aol - oe; : o[V/X|U;

By Lemma [7.1] we get
Al-o[V/X|P
By Lemma [7.3] we get
A+ oV ok
W.lo.g., X fresh, so with Lemma

mtypen (m,oT’) = (X) oU x — oU where 0P

With X fresh we have o[V/X](U,U,P) = [oV/X]o(U, U, P), so we may apply rule EXP-INVOKE
and get A;ol'F oe: [0V/X]|oU. But [oV/X]oU = oT as required.

e (Case rule EXp-INVOKE-S: Then
smtypen, (m, [(W)[T]) = (X) Uz — U where P (Vi) AT ke, : [V/X]U;
AV, / 1P 1 ¢ pos™(I) or (3i) A’ IF T; mono A =T,V ok
AT = IW)HT).m(V)(e) : [V/X|U

EXP-INVOKE-S

with e = I(W)[T].m(V)(e) and T = [V/X|U. W.lLo.g., X fresh. Hence, by Lemma

smtypen (m, o [(W)[T]) = (X)oU x — oU where 0P

Moreover, o[V/X|(U,U,P) = [0V/X]o(U,U,P). Applying the I.H. then yields

(Vi) A;oT = oe; : [oV/X]oU;

With Lemma [7.1] we also have

Al [oV/X]oP
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Moreover, with Lemma [7.3]
A+ o(T,V) ok
Also, if A’ IF T;mono for some 7, then with Lemma [7.1

A I+ oT; mono

We now get with rule Exp-INvOKE-s that A;oT - oe : [oV/X]oU. Noting that [oV/X]oU =
oT finishes this case.

e Case rule exp-NEw: Follows from the I.LH., Lemma[7.3] and Lemma [7.6
e Case rule Exp-casT: Follows from the I.H. and Lemma [T.3]
e Case rule Exp-sUuBSUME: Follows from the I.H. and Lemma [T.1]
End case distinction on the last rule of the derivation of A’;T'Fe:T. O

Lemma 7.8 (Expression substitution preserves expression typing). If A;Tyx : T F e : U and
AT e 2T then AT F (el /zle: U.

PrROOF. By induction on the derivation given.
Case distinction on the last rule used in the derivation of A;T,x : Tk e: U.

e Case rule exp-vAR: If e = z then T' = U and [¢//z]e = ¢/, so the claim follows from the
assumptions. Otherwise, e = y for some y # x with (I',z : T)(y) = U. Hence, I'(y) = U, so
the claim follows with rule EXP-VAR.

e Case rule exp-rieLD: Follows from the I.H. and rule Exp-FIELD.
e (ase rule exp-INVOKE: Follows from the I.H. and rule EXP-INVOKE.
o (lase rule exp-INVOKE-S: Follows from the I.LH. and rule EXP-INVOKE-S.
e Case rule exp-NEwW: Follows from the I.LH. and rule Exp-NEW.
e Case rule Exp-cast: Follows from the I.LH. and rule Exp-casT.
e Case rule Exp-suBsuME: Follows from the I.LH. and rule EXP-SUBSUME.
End case distinction on the last rule used in the derivation of A;T,x : T e: U. O
Lemma 7.9. If ) I T implements I (V') then one of the following holds:
o There exists an implementation definition
implementation(X) I(V’) [N] where P ...
and a substitution [U/X] such that () IF [U/X|P, V = [U/X|V’, and (Vi) O - T; < [U/X|N;
with T; # [U/X]|N; implying i € pos™ (I).
o T =T such that ) = T < J({U), J{U) <, I{V), 1 € post(J), and 1 € pos~(I) unless

T = J{0).

PROOF. From §) |- T implements (V) we get () Iry T implements I(V) by Theorem @ By
Lemma we then get the existence of T” such that

0l T’ implements I(V)
(Vi) 0+ T < T
(Vi) i € pos™ (I) unless T; =T} (45)

By Theorem [6.34] and rule SUB-Q-ALG-KERNEL we have
Vi) OF T, < T (46)

Case distinction on the last rule of the derivation of §) I," 77 implements I (V).
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e (ase rule ENT-Q-ALG-ENV: Impossible.

e (Case rule ENT-Q-ALG-IMPL: Then

implementation(X) I(V') [N] where P ...
0l [U/X]P
with V = [U/X]V” and T” = [U/X|N. By Theorem we get 0 I+ [U/X]P. Thus, with
and , we conclude that the first case of the lemma holds.

e Case rule ENT-Q-ALG-1FACE: Then 77 = J(U), 1 € pos™(J), and J(U) <, I(V). With
and ([46)), it is now easy to see that the second case of the lemma holds.

End case distinction on the last rule of the derivation of §) I=," T’ implements I (V). O

Lemma 7.10. If =T < N then either N = Object or N # Object and T = N’ for some N’
with N' <. N.

PrOOF. If N = 0bject then we are done. Thus, assume N # 0bject. With Theorem we
have ) by T'< N, so 0 I,/ T'< N with Lemma The claim now follows with Lemma O

Lemma 7.11. IL@ }—i\f < I{V) theniN <. M for some M and there exists a deﬁm’tign
implementation(X) I(V') [M'] where P ... and a substitution [U/X] such that 0 I- [U/X]P,
V=[U/X|V'", and M = [U/X|M’.

PROOF. From () = N < I(V) we get 0 -y N < I(V) by Theorem@

Case distinction on the last rule of the derivation of § Hy N < I(V).
e Case rule suB-Q-ALG-KERNEL: Then () " N < I(V), which is a contradiction to Lemmam
e (ase rule suB-q-aLG-IMPL: Hence
DH'N<T
0l T implements I(V)

By Lemma we have T' = M for some M with N <. M. Moreover, the derivation of
0 I, M implements I (V) must end with rule ENT-Q-ALG-1MPL. Inverting this rule and using
Theorem [6.36] finishes this case.

End case distinction on the last rule of the derivation of § b, N < I(V/). O
Lemma 7.12. If § IF Tmono then T = N for some N.
PRroor. Obvious. O

Lemma 7.13. If A;TFe: T then D AT Fe: T with AT < T such that D does not end
with an application of rule EXP-SUBSUME.

PRrROOF. Straightforward induction on the derivation of A;T' Fe: T. O

Lemma 7.14. If C(T) <. D(U) then, for fresh and pairwise distinct type variables X, C(X) <,

D(T) with [T/X|D{T”) = D{T).

PROOF. By induction on the derivation of C(T) 4. D(U).
Case distinction on the last rule in the derivation of C(T) <. D(U).

e Case EXT-c-REFL: Obvious with U’ = X.
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o (lase EXT-C-SUPER: Then

class C(Y) extends C'(V)..

By the L.H. there exists Z, U with
C'(Z)y 9, D{U")
[T/Y]V/2)D{U") = D(U)

We also have for o = [X/Y] that C(X) <. oC(V). From C'(Z) <.
with Lemma [6.13] that [0V/Z]C"(Z) <. [0V/Z)D(T"). With [o0V/Z]C'(Z) = 0C"(V) and
Lemma [6.2] we then have

C(X) <. [oV/Z]D{U")

Moreover,

[T7X)[oV/Z) D7) * " ([T/Y]V/2)D (@) = D(T)

Define U’ = [¢V/Z]U" to finish the proof.
End case distinction on the last rule in the derivation of C(T) <, D(U). O
Lemma 7.15.
(i) If AF T ok then ftv(T) C dom(A).
(it) If A+ P ok then ftv(P) C dom(A).

PROOF. We prove the first claim by induction on the derivation of A - T ok. The second claim
follows from the first one by inverting the last rule in the derivation of A - P ok. O

Lemma 7.16 (Class inheritance propagates well-formedness). If N <. M and A - N ok then
A+ M ok.

PROOF. We proceed by induction on the derivation of N <. M.
Case distinction on the last rule of the derivation of N <. M.

e (Case rule ExT-c-REFL: Obvious.
e (ase rule ExT-Cc-SUPER: Then

class C(X) extends N’ where P... [V/X|N' <. M
AFC(V)<M

with N = C(V). Because A - N ok, we have A I [V/X]P and A+ V ok. The underlying
program is well-typed, so P, X = N’ ok. With Lemma then A F [V/X]N’ ok. Applying
the I.H. now yields A - M ok.

End case distinction on the last rule of the derivation of N <1, M. O
Lemma 7.17. If A;T 2 :The:U and AT <T then A;T,x:T' Fe:U.
PrOOF. Straightforward induction on the derivation of A;T,z : Tk e: U. O

Lemma 7.18. If N <. M then AF N < M.
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PrOOF. The claim is obvious if M = Object. Otherwise, it follows using rule suB-Q-ALG-CLASS,

rule sUB-Q-ALG-KERNEL, and Theorem [6.36]

Lemma 7.19. Suppose mtypey(m®, N) = (X) U x — U where P and getmdef®(m®, N')
U’ where ' {e} and D N’ ok and N’ <. N and 0 I+ 0P for some substitution o with dom(o)

and O = 0 X ok for all X € dom(o).
Then X = X', T =2/, and 0;this : N,z : cU F oe: oU.

O

PROOF. In the following, we write simply m instead of m®. The proof is by induction on the

derivation of getmdef®(m, N') = (X’) U’ 2’ — U’ where P’ {e}
Case distinction on the last rule used in this derivation.

e (Case rule DYN-MDEF-C-BASE: Then

class C(Z) extends M where Q{... m : mdef } m=m

k
DYN-MDEF-C-BASE

getmdef®(m, C(T)) = [T/Z]mdef ),
—— —_———
=N’ =(X"YU &' —U’ where P’ {e}

Assume

mdef,, = (X')U" 2’ — U" where P {¢'}

=msig
The underlying program is well-typed, so we have
Q,Z - my, : mdef,, okin C(Z)

Hence,

Q,P",Z,X'";this: C(X), 2’ : U" ¢ : U”

=A =T

override-okg 7 (my : msig, C(Z))

Assume N = D(V). From C(T) <. D(V) we get with Lemma that

for some W.

From mtypey(m, D(V)) = (X) Uz — U where P we get

class D(Z') ... {... m/: msig{e"}}

o

msig; = (X)U" x — U" where P
(X)Uzx — U where P = [V/Z'|msig;

Hence, with criterion WF-CLASS{2|

mtypeg z(m, D(W)) = [W/Z'|msig;

From , , and rule OK-OVERRIDE

Q,Z + msig < [W/Z'|msig
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Define

o1 =[T/Z]
=[V/Z']
o3 = [W/Z']
We then have from 7 and that
X=X
z=a
T’ — UgU”’ (55) {eq:u’’’-eq: :lemma:
P =g P (56) {eq:p’’-eq::lemma:s
AFU" <o3U"” (57) {eq:u’’-sub::lemma:

From the assumption () = C(T) ok we get that §) IF 0,Q (by inverting rule OK-cLAsS) and
that ftv(T) = 0. (by Lemma 7.15). The underlying program is well-typed, so ftv(Q) C Z,
50 001Q = 01Q by definition of o1. Hence

0IFooQ (58) {eq:entails-q::lemm
We have () IF P by assumption. Moreover,
oP i oo P . [ W2 P wlo.g. Zﬂftv(PW) 0 0103W ool P’
Hence,
0I- oo, P” (59) {eq:entails-p’’::le
Noting that ftv(T) = (), we see that oo = [0 X/X,T/Z]. Thus, with X = X’
dom(A) \ dom(coy) =0
Moreover, from () - C(T) ok we have () - T ok, so with the assumptions we get
0 oo1Y ok for all Y € dom(ooy)
Hence, we may apply Lemma [7.7] to and get
0;00.T F ooe : oo U” (60) {eq:1::lemma:soundn
With ftv(T) = 0, we have ooy N’ = N'. Moreover,
o U/’ ooyo3U]" wlo-g. Z0ftu(U77)=0 oloW/zZ"u" oo U]" oU;
Hence,
ool =this: N,z : oU (61) {eq:2::lemma:soundn
We also have from and

oo1e’ =oe (62) {eq:3::lemma:soundn

With , , and Lemma we get

0F oo U’ <ooio3U"
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We also have

lo.g.,. Znftv(U""")= —_— 51 53
 wlo.g, Z0f(UT)=0 olosW/z"u" oo U" oU

ooro3U"”
Hence,
OF oo U <oU
With , , , and rule ExXpP-SUBSUME then
0:this: N,z : ocU F oe : cU
as required.

e (lase rule DYN-MDEF-C-SUPER: Then
class C(Z) extends M where Q{... m: mdef }
m¢m  getmdef®(m,[T/Z]M) = (X")U' 2’ — U’ where P {e}
getmdef®(m, C(T)) = (X') U’ 2’ — U’ where P’ {e}

DYN-MDEF-C-SUPER

with N’ = C(T).

Assume [T/Z]M 4. N. Then, because N’ J. N, we must have N' = N. But with
mtypey(m®, N) = (X) U x — U where P we then have m € 7, which is a contradiction.
Thus, [T/Z]M <. N. Obviously, also N’ <, [T/Z]M, so with Lemma 0+ [T/Z|M ok.
Thus, we can apply the I.LH. and get

X=X
=1
0;this: [T/ZIM,x : oU + oe : cU
By Lemma 0+ N' <[T/Z]M, so an application of Lemma finishes this case.

End case distinction on the last rule used in this derivation. O

Lemma 7.20. I[fmtypey(m®,N) = (X YUz " — U where P and N’ <, N then getmdef®(m¢, N’) =
Y"YVy™ =V where Q{e}.

PRrRoOF. We proceed by induction on the derivation of N’ <. N.
Case distinction on the last rule used in the derivation of N/ <, N.

e (Cuase rule ExT-c-REFL: Then N’ = N and the claim follows with rule pyN-MDEF-C-BASE and
criterion WF-CLASS{2]

e (Case rule EXT-c-SUPER: Then

class C(X) extends M where P’ {... m: mdef } [T/X|M 4. N

EXT-C-SUPER

c({T)<4. N
with N’ = C(T).
— Assume m° ¢ m. We get by the L.H. that getmdef®(m®, [T/ X|M) = <Zn>@m —
V where Q{e}. With m® ¢ m we then have getmdef®(m¢, C(T)) = Y\ Vy" —

V where Q {e} by rule DYN-MDEF-C-SUPER.

’ ’
=13 T m

— Assume m° € m. Then getmdef®(m®, C(T)) = (Y )Vy — V where Q{e} and,

by rule MTYPE-cLASS, mtypen (m®, C(T)) = (Y )Vy — V where Q{e}. Because
the underlying program is well-typed, we know that method m¢ of class C' correctly

overrides method m¢ of class D, where N = D(W). But this implies n = n’ and m = m’
as required.
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End case distinction on the last rule used in the derivation of N’ <. N. O

Lemma 7.21. If N 4. C(T) and class C(X) ... {Uf ...} and fields(N) = Vg, then Vg =
Vig (T/XJU [V g”

PROOF. Straightforward induction on the derivation of N <. C(T). O

Lemma 7.22. Iffields(N) = Uf" andi,j € [n] with i # j, then f; # f;.

Proor. Follows by induction on the derivation of fields(N) = U f, using criterion Wr-CLASS-

m O
Lemma 7.23. For all N, there exist U and f such that fields(N) = U f.

ProoOF. Assume N = C(T). The claim now follows by induction on the depth of C' in the
inheritance tree. O

Lemma 7.24. If 0 IF T implements I(V) and there exists j with O &= M < T} for some M, then
there exists a definition

implementation(X) I(V’) [N ] where P ...

and a substitution [U/X] such that

(i) 0+ [U/X]P;

(i) V = [U/X]V7;
(ii) O F M < [U/X]N;
(iv) if j ¢ post(I) then O - T; < [U/X|N; with T; # [U/X|N; implying j € pos™ (I);

(v) ifj € post(I) and j ¢ pos™(I) and Tj # [U/X]|N;, then T = T; = J(W) with J(W) <, I{V)

and 1 € pos™(J);

(vi) (Vi#37) 0T, <[U/X]|N; with T; # [U/X|N; implying i € pos™ (I).

PrOOF. By Lemma there are two possibilities. The first of these possibilities implies the
existence of a definition

implementation(X) I(V’) [N ] where P ...

and a substitution [U/X] such that

o 0I-[U/X|P
o V=[U/X|V

o (Vi) 0+ T; < [U/X]N; with T; # [U/X]N; implying i € pos~(I).

With () = M < T; we then also have () - M < [U/X]|N; by transitivity of subtyping. Claim
also holds because it is impossible to have j ¢ pos™ (I) and T; # [U/X]|N; at the same time.
Now assume that the second possibility holds. That is,

1 € pos™ (I) unless T = J(W)
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This implies j = 1. By transitivity of subtyping, we have () - M < I(V) Hence, with Lemma 7.11}
we know that there exists M’ such that

We then have ) - M < [U/X]N by Lemma , so claim holds. Moreover, we get from
1 € post(J) and Lemma [6.20] that 1 € pos*(I), so claim holds. Now assume 1 ¢ pos™(I).
Vi

Then T = J(W), so claim (v holds. Claim holds trivially. Setting N = N finishes the
proof. O

Lemma 7.25. If () IF T implements I (V) and there exists j with j ¢ pos™(I), then there exists a
definition - -
implementation(X) I(V’) [N] where P ...

such that
e 0IF [U/X]|P
.« V- [O/XV

o (Vi) - T; < [U/X|N; with T; # [U/X|N; implying i € pos™(I)

Proor. By Lemma there are two possibilities. The first of these possibilities directly
implies the claim.

Now assume that the second possibility holds. That is, T =T and 1 € pos™(J). Hence, j = 1.

With Lemma we then get 1 € post(I). But this contradicts the assumption 1 ¢ pos™ (7). [

Lemma 7.26. If N <, N1 and N <. Ny then either N1 <. Ny or Ny <. Nj.
PROOF. By straightforward induction on the derivations given. O

Lemma 7.27. Let
M = {(o,implementation(X) I(V) [Nl] o)
| dom(o) = X, (Vi € [I]) M = nil or M <. oN;}

?

If # # 0, M finite, and i € disp(I) implies M; # nil for all i € [I], then there exist (o, impl) such
that minimpl.Z = (o, impl).

PROOF. Assume

M = {(o1,imply), ..., (on,impl,,)}
(Vi € [n]) impl; = implementation(X;) I(V;) [ﬁzl}
We then need to show that there exists some k € [n] such that

(Vi € [n)) 0% Mg . 0iN;'

(The notation N <. M is short for (Vie[l]) N; <. M;.)
We proceed by induction on n.

e n = 1. Obvious because subtyping is reflexive.
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e 1> 1. Assume
M= {(o1,imply), ..., (0n_1,1mpl,,_1)}

such that that .# = .#' U{(0,,impl,)}. By the LH. we know that there exists k' € [n — 1]
such that

(Vi € [n—1]) o Ny <, o;N; (63) {eq:IH::lemma:minim
Now consider impl,,. We partition [I] into [I] = £ U % U %3 such that
(VJ S szl) UTLN7Lj <. Uk:’Nk:’j
(Vj € &) on Ny A, o Ny but o Ny j 4, 0, Ny (64) {eq:def-L123: :lemma
(VJ S gg) (TnNnj ﬂc O'k/Nk/j and O'k/Nk/j ﬂc O'nNnj

We first show that j € %5 implies j ¢ disp(I). For the sake of a contradiction, assume
j € % and j €disp(f). Then M; 2 nil, so we have

M; S]c JnNnj
M; <. o1 Ny

By Lemma we then have either o, N,,; <. 0 Nisj or o3 Ny . oy Nyj. But this is a
contradiction to the definition of .%%5. Thus, we have shown that

j € % implies j ¢ disp(I) (65) {eq:not-in-disp::le
Next, we define for j € 4 U % U Zs:

O'nNnj lfj A
M; = opwNy,; ifje s (66) {eq:def-Mj::lemma:m
onlNp; ifje s

We then have by definition of .#; and % that

Moreover, from we have that j € disp(]) implies j ¢ %5 which in turn implies j €
L U%,. Thus, criterion WF-PROG yields 0, N, ; = op Ny for all j ¢ disp(I), so we have
with that

(Vj S fg) 0nNpj = 04 Ny (67) {eq:L3::lemma:minim

Thus, we have
OF o, N, NowNy' =
By criterion WF-PROG[3] we get the existence of a definition
impl = implementation(Y) I(V') [M'] ...

and a substitution 7 with dom(7) =Y such that 7M’ = M. By construction of M, we know
that

(r,impl) € A (68) {eq:impl-in-M::lemm
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Moreover, we have for all i € [n — 1], j € [I] = %4 U % U 25 that

©3) o
JnNnj <. Uk’Nk’j <. UiNij 1f] S fl

. N
TMj - Mj - Jk/Nk/j <. o;N;; if j e %
(63)

onNp; = o Ny . 0Ny ifje s

Moreover, we have for all j € [l =4 U4 U %

UnNnj ifje€24

, (&) (64)
TM; = M; = op Ny o onNyy  if j € 25
UnNnj ifje%

Thus,
(Vi € [n],j € [I]) 7™M} 9. 0Ny
Finally, with and rule MIN-MDEF, we get
minimpl.# = (7, impl) O

Lemma 7.28. Let
M = {(0, implementation(X) I(V) [Wl] cl)
| dom(o) = X, (Vi € []) N; =0bject or M; 4. oN;}
If # # 0 and A finite, then there exist (o, impl) such that minimpl.Z = (o, impl).
PROOF. Assume

M = {(o1,imply), ..., (on, impl,)}
(Vi € [n]) impl; = implementation(X;) I(V;) [ﬁll]
Then we have for all i € [n] and all j € [I]:
N;j = 0bject or M; <4, o;N;;
Now define

2 :={j € [l]| there exists i € [n], M; <. o;N;;}
L=\ % =i ll]| for alli € [n]. Ny, = Object}
Object ifj € %

(Vj € [l]) Mj = {

We now show for
e — |

AM" = {(o,implementation(X) I(V) [N ] ...)
| dom(o) = X, (Vi € [I]) M/ Q. oN;}
that .# = .#'. The claim then follows with Lemma [7.27]
o “M C .. Assume (o, impl) € A, that is, (o, impl) = (0;, impl;) for some i € [n]. Then
(Vj € [l]) Mj Q. 04Ny

by construction of M;. Then (o, impl) € A'.
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o “M DM, Assume (o, impl) € A" with

impl = implementation(X) I(V) [Nl]

Then (Vi € [I]) M; <. oN;. Suppose j € [I]. If M} = Object then N; = Object. Otherwise,
M} = Mj, so M; 4. oN;. Hence, (o, impl) € A . O

Lemma 7.29. If A;T FnewN(e) : T then A+ N <T and A+ N ok.

PRrROOF. By Lemma we have D :: A;T F new N(€) : 77 such that A+ T’ < T and D does
not end with rule exp-suBsume. Thus, D ends with rule exp-NEw. Inverting the rule yields 7" = N
and A F N ok 0

Lemma 7.30. If AF N < M then N . M

PROOF. By Theorem we have A k; N < M, so A+ N < M by Lemma The claim
now follows with Lemma [6.11] O

Lemma 7.31. If Ml S]C N and M2 S]C N then Ml L M2 S]c N.

PROOF. By induction on the derivation of M; <, N.
Case distinction on the last rule of the derivation of M; <, N.

e (ase rule EXT-c-REFL: Then M7 = N and My U My = Ms, so the claim holds.

e (ase rule ExT-Cc-SUPER: Then

class C(X) extends M ... [T/X]|M, <4, N
— EXT-C-SUPER
C{T) <. N

with M; = C(T). Applying the I.H. yields
[T/X]M; UMy 4. N
The claim holds obviously if My <. My or My <. M;. Otherwise, we have
My UM,y = [T/X|M] U M,
by rule LUB-SUPER, so the claim also holds.
End case distinction on the last rule of the derivation of M; <. N. O
Lemma 7.32. If M; <. N for all i € [n] with n > 0, then | {Mi,...,M,} <. N.
PROOF. We proceed by induction on n.
e n=1. Then | |[{M;,...,M,} = M; and the claim is obvious.
e n > 1. By the I.LH. we know that
| (o, My 20N

By inverting rule LUB-SET-MULTI we get

| o, M yuM, =| [{M;,.. ., M}

The claim now follows from the assumption M,, <. N and Lemma [7.31] O
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Definition 7.33 (Stuck on a bad cast). An expression e is stuck on a bad cast if and only if there
exists an evaluation context £, a class type N, and a value v = new M (W) such that e = E[(N) v]

and M L, N.

Theorem 7.34 (Progress). If ;0 F e : T then either e = v for some value v or e — €' for some
e or e is stuck on a bad cast.

PROOF. By induction on the derivation of ;0 e : T.
Case distinction on the last rule of the derivation of §;0 Fe: T.

e Case rule Exp-vaRr: Impossible.
e (Case rule Exp-FIELD: Then

0;0Feo: C(T) class C(X) extends N where P{U f...
— EXP-FIELD
0;0F eo.f; : [T/X]U;

with T'= [T'/X|U;. Applying the LH. to 0;0 - eq : C(T) leaves us with three cases:
1. ¢o = v for some v. Then v = new D(V)(v) and ) = D(V) < C(T) by Lemma

By Lemma then D(V) <. C(T). By Lemma there exists W and g such that
fields(D(V)) = Wg. By Lemma and Lemma we know that there exists a
unique ¢ such that W; g; = [T/X]U; f;. Hence, v.fj — v; by rule pyN-FIELD and rule

DYN-CONTEXT.

2. eg — ¢, for some . It is easy to see that in this case also eg.f; — €f.f;-

3. e is stuck on a bad cast. Then eg.f; is also stuck on a bad cast.

e (Case rule Exp-INVOKE: Then

B;0Feo: To mtypeg(m, Tp) = (X) U x — U where P

=
(Vien]) 0;0Fe : [V/XIU;  OIF[V/X]P 0FV ok
— EXP-INVOKE

0;0F eo.m(V)(e") : [V/X|U
~ ~ (69)

We now apply to LH. to @;0 - e; : T; (for i = 0,...,n). This leaves us with three possibilities:

1. There exist vy, ..., v, such that e; = v; for all ¢ = 0,...,n. We deal with this case
shortly.
2. There exist some m < n and some vy, ..., v, such that e; = v; for all i =0,...,m, and

€m+1 — €),,1. It is easy to see that in this case e also makes an evaluation step.

3. There exist some m < n and some vy, ..., v,, such that e; = v; for alli =0,...,m, and
em+1 1s stuck on a bad cast. In this case, e is also stuck on a bad cast.

We now deal with the case that there exist vg,...,v, such that e; = v; for all i =0,...,n.
Assume

e; =v; =new N;(w;) fori=0,...,n (70)
Define 07 = [V/X]. By Lemma and we get

DFE Ny <Tp

Case distinction on the form of m.

o4
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— Case m = m®: From (69) we get by inverting rule MTyPE-cLASS that Ty = C(T)) with
C # Object. By Lemma we have No <, C(T). Hence, with Lemma

getmdef®(m, Ny) = (X') U’ 2’ — U’ where Q{e"}

such that X and X’ as well as Uz and U’ 2’ have the same length. But then by rule
DYN-INVOKE-C

eo-m(V)(€") — leo/this,e/x'|[V/X']e”
— Case m = m': Then we can invert rule MTYPE-IFACE and get

interface I{Z') [Zl where R] where P {... rcsig}
resig; = receiver {m : msig}
0 IF T implements I(T") mE =m T; =T

mtypeg(m,Ty) = [T/Z,T"/Z'|msig;,

MTYPE-IFACE

=(X?")Ua" —U where P (71) {eq:invoke-d-pil::th

Define oo = [T/Z,T"/Z’]. By Lemma we get

implementation(Z”) I{T"") [ M ] where Q ... (72) {eq:impl-def::theor

dom(o3) = Z"

@ I+ Ug@
T7 = 0y T7
0 F Ny < o3M; (73) {eq:NO-sub-Mj: :theo
j€post(I)or )k T; < o3M; (74) {eq:Tj-sub-Mj: :theo
(Vi#j) 0 T; < o3M; (75) {eq:Ti-sub-Mi: :theo
Assume

msig;, = (X) U’z — U’ where P (76) {eq:invoke-d-p2::th

Suppose i € [I]. Then define

(77) {eq:def-Mi::theorem

7

M7 = {contribzi(’,N) B ifi#j
contribz, (Z;U’, NoN) otherwise
Our goal is now to prove
(Vi € [I]) M} = nil or M} <, o3 M; (78) {eq:goall::theorem:
Assume i € [I] and M; # nil. We then show M; <. o3M;. First, we define
C ={Np[pen.U, =2}

and show that N, <. o3M; for all N, € 4. Assume N, € 6,. Then p € [n| and
U, = Z;. Hence,

U, = O'QUZI) =o097; =T,
From , we then have

;0 ep:onT;
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W.lo.g., X Nftv(T) = 0, so o1T; = T;. From we have e, = new N, (w,). Thus,
with Lemma [7.29] we get

DEN,<T;

If i = j then U} = Zj, so j ¢ pos™(I). With and we thus have () - T; < o3 M;.
Thus, by transitivity of subtyping 0 - N, < o3M;, so with Lemma

N, <. 03M; for all N, € 6; (79) {eq:Np-sub-Mi: :theo

Now we show MZ <. 03M; depending on whether or not ¢ = j.
x If i # 7, then, by and the definition of contrib

M= |%

The claim follows from and Lemma
x If ¢ = 7, then, by and the definition of contrib

M =] |{No}u)

The claim follows from (79), (73)), and Lemma
This finishes the prove of
We now define

M = {(04, implementation(Z”") I(W') [M'] where Q' ...) (80) {eq:def-M::theorem:
| dom(ay) = Z, (Vi € [I]) M} = nil or M} <, o4 M!}

With we have (o3, impl) € .# where impl is the implementation definition from
. Clearly, . is also finite because a program has only finitely many implementation
definitions. Moreover, suppose i € [l], ¢ € disp(I). Hence, either i = j or there exists
some argument type Uy with Uy = Z;. In any case, we have with that MZ 2 nil.
With Lemma, @ we then get that there exists (o, impl’) such that

minimpl.# = (o, impl’) (81) {eq:invoke-d-p3::th

Assume impl’ = implementation ... {... redef} Because the underlying program is
well-formed, it is easy to check that

redef ; = receiver {mdef} (82) {eq:invoke-d-p4::th
mdef,, = (XY U7 2" — U" where P’ {¢"'}

With , 7 , , , , and rule DYN-MDEF-1, we get
getmdef'(m, Ny, N) = omdef,,

Hence, with rule DyN-INVOKE-T and DYN-CONTEXT

eg-m(V)(€") — [eo/this,e/x"][V/X']e"
End case distinction on the form of m.

e (Case rule EXp-INVOKE-S: Then

smtypey(m, [(V)[T]) = (X")Uz" — U where P (Vi) 0;0 F e; - [W/X]U;
0lI-[W/X])P 1 ¢ post(I) or (3i) 0 I- T;mono O+T,W ok

0:0 F IV [T'].m(W)(@) : [V/X|U
—e - (83) {eq:invoke-s::theor

EXP-INVOKE-S
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We now apply the LH. to 0;0 + e; : [W/X]U;, for ¢ = 1,...,n. As in the case for rule
EXP-INVOKE, the only interesting case is the one where

(Vi) e; = v; = new N;(w;)
Define oy = [W/X]. With Lemma we have
(Vi) O+ N; < o1 U;
Inverting rule MTYPE-STATIC yields

interface I(7l> [Z where R] where Q {m : static msig ...}

0 IF T implements I (V) m=my
—— — MTYPE-STATIC
stypea(m, IV T]) = [V/Z', /2] msis
—_—

=02

Assume 1 € pos™(I). By we then have () I T; mono for some j. Thus, with Lemma
we have T; = M for some M. We now use Lemma for the case 1 € pos*(I) and

Lemma for the case 1 ¢ pos™(I) and get

impl = implementation(Y) I(V’) [Nl] where Q' ...
dom(o3) =Y
0IF o3Q’
V=03V’
(Vie[l) 0FT; < 03N,

With Lemma we then get for all i € [I]
N; = Object or T; = M; for some M; with M; <. o3N;
Now define

M = {(04, implementation(Y”) (V") [Wl] where Q" ...)
| dom(oy) = Y7, (Vi € [I]) N/ =0bject or T; <, 04N, }

Clearly, (o3, impl) € .4 . Moreover, .# is finite because programs contain only finitely many
implementation definitions. Hence, by Lemma we know that there exists (o, impl’) such
that

minimpl.# = (o, impl’)

Suppose that static mdef are the static methods of impl’. Because the underlying program
is well-typed, we know that mdef, = (X"") U2’ — U’ where P’ {¢"}. Hence, we have

getsmdef(m, [{(V)[T]) = omdef,
by rule pyN-MDEF-s and so
L(V)[T).m{W)(e) — [e/«|[W/X"]e"
by rule DYN-INVOKE-s and rule DYN-CONTEXT.

Case rule Exp-NEW: Then e = new N(e") and (Vi) 0;0 + e; : T;. Applying the L.H. yields
three possibilities:

— All e; are values. Then e is a value.

o7



— The first m expressions are values (m < n) and ey, 11 — €, 1. Thene — new N(ey, ..
— The first m expressions are values (m < n) and and e, +1 is stuck on a bad cast. Then
e is stuck on a bad cast as well.

e (ase rule exp-cast: Then

0+ N ok @;@FeoiT
D;0F (N)eg: N

EXP-CAST

with e = (N) eg. Applying the I.H. leaves us with three possibilities:

— ¢p is a value. Then ey = new M (v). If M <. N then e — ¢ by rules pyN-casT and
DYN-CONTEXT. Otherwise, e is stuck on a bad cast.

— eg — €. Then e — (N) ¢}, by rule DYN-CONTEXT.

— ep is stuck on a bad cast. Then e is also stuck on a bad cast.
e Case rule Exp-suBsUME: In this case, the claim follows directly from the I.H.

End case distinction on the last rule of the derivation of §;0 Fe: T. O
Lemma 7.35. If fields(N) =T f and fields(N) =Ug then T =U and f = 3.

PROOF. Straightforward induction on the derivation of fields(N) =T f. O
Lemma 7.36. If Ny U Ny =M then N; <. M fori=1,2.

PROOF. Straightforward induction on the derivation of Ny LI Ny = M. O
Lemma 7.37. If N € A and M =| | A then N <. M.

PROOF. Straightforward induction on the derivation of M = | |4, making use of Lemma

U
Lemma 7.38 (Well-formedness for subterms).
(i) If AR [U/X]|T ok and X € ftv(T) then A+ U ok.
(it) If A+ [U/X]P ok and X € ftv(P) then A+ U ok.
Proor. We prove both parts by routine inductions on the derivations given. O
Lemma 7.39. If implementation(X) I(V) [Nl] ... and M} # nil for all i € disp(I) and, for

all i € [I) with M} # nil, A+ M} ok and M} <. [U/X]N;, then A+ U ok.

PROOF. Suppose i € [I] such that M # nil. Then we get with Lemma that A
[U/X]N,; ok. By Lemma we then know that A = Uj ok for all j with X; € ftv(IV;). Moreover,
by criterion WF—IMPL we have that X C ftv{N; | i € disp(I)}. Hence, A F U ok. O

Lemma 7.40. If implementation(X) I(V) [Nl] ... and for all i € [l] either N; = Object or

M; <. [U/X]|N; for some M; with O = M; ok, then A F U ok.
PROOF. The proof is similar to that of Lemma [7.39] O
Lemma 7.41. If| |4/ = M and A+ N ok for some N € A, then A+ M ok.

PROOF. From Lemma [7.37] we have N <. M. Because A = N ok we then have A - M ok by
Lemma [7. 16l 0

98

/
-y Cm, €m+17em+27 ...



Theorem 7.42 (Preservation for top-level evaluation). If ;0 Fe: T and e — €' then 0;0 ¢ :
T.

PRroOF. By induction on the derivation of 0;() Fe : T.
Case distinction on the last rule of the derivation of §;0 e : T.

e (lase rule ExP-vAR: Impossible.

e (Case rule Exp-FIELD: Then
0;0F e : C(T) class C(X) extends M where P{U f...}

— EXP-FIELD
0;0F eo.f; : [T/ XU,
with T' = [T/X]U; and e = eg.f;. From e — €’ we get
eo = new N(7)
fields(N) =V f/
e =v;
fi=1
We have by Lemma [7.13] inspection of the expression typing rules, Lemma [7.30] and
Lemma [7.35] that
;0 N ok  fields(N) =V f7 (Vi) 0;0Fv; : V;
EXP-NEW

0;0 FnewN(v): N
such that N <, C(T). From Lemma we get V; = [T/X]Uj, so 0;0 €' : T as required.

e (ase rule Exp-INVOKE: Then

;0 Fvo: Tp mtypey(m, Tp) = (X) U x — U where P

(Vien]) 0;0F v : [V/X]U; DIF[V/X]P  0FV ok
—— EXP-INVOKE

0:0 F vo.m(V)Y(@™) : [V/X|U
i - (84)

Case distinction on the rule used to reduce e.
— (Case rule pYN-INVOKE-C: Then
vg = new N (W)
getmdef®(m, N) = (X') U’ 2/ — U’ where P’ {¢"}
¢’ = [vo/his, v/a][V/X)e"

m = m°

By definition of mtype, we know that Ty = N’ for some N’. By Lemma [7.29| and
Lemma [7-30] we get

We now get with Lemma [7.19] that

0;this: N,z : [V/X|U - [V/X]e: [V/X|U
Possibly repeated applications of Lemma [7.8] yield
0:0-€:T
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— Case rule DYN-INVOKE-1: Then m = m! and €’ = [vg/this,v/z][V/X]o1e” and

interface I(Z’) [Z where R] where Q' {... rcsig}
m=my msig, = (XYW a" — W where Q
(Vi € [l],i # j) contriby, (W,N) = M{  contribz, (Z;W, NoN
(01, implementation(Z”) [(W”) [M'] where Q" { ... rcdef }) = mlnlmpl,///

rcsig; = receiver {m : msig}

redef ; = receiver {mdef}

getmdef’(m, Ny, N) = oy mdef,
where

mdef,, = (X')U' ' — U’ where P’ {€"}
(Vi €{0,...,n}) v; = new N;(wy)
M = {(o,implementation(Z”) [(W") [M'] ...)

| dom(c) = Z7”, (Vi € [I]) M} = nil or M} <. oM/}

?

By definition of mtype and criterion WF-PROG we have from that

interface I(Z’) [71 where R] where Q' {... rcsig }
rcsig; = receiver {m : msig}
m=my 0 IF T implements I(T") T; =T

mtype@ (m7 TO) = [T///Z/v T/Z] m‘%gk

=(X)Ux—U where P
With oo = [T"/Z',T/Z] we then get

X=X
T =xa"

JQ(vaé) = Uv Uai

The underlying program is well-typed, so we have

Q",7Z"; this : M & redef ; implements [W" /2", M | Z] resig,;
—_—

=03
This especially implies
Q",Z"; this : M} - mdef , implements o3msigy,
which in turn implies
07,77 P, X+ T7,U", P ok

—A
A;this : M’ o U e U

=T
X' =X
' =z
U =o3sW
P =03Q

AFU <osW
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{ea:
{eq:
{eq:

{eq:
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{eq:
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{ea:

DYN-MDEF-1
{eq:

getmdef-i: :theo

def-vi::theorem

mtype: :theorem:

X=X’’::theorem:
x=x’’::theorem:
wqg=up: :theorem:

def-delta: :theo

type-e’’::theor

X’=X’’::theorem
x’=x’’::theorem
u’=w::theorem:p
p’=q::theorem:p

U’-st-w: :theore



By we get ;0 F v : Ty, so with and Lemma
OF No<Tp (98)

Using we get () IF T implements I(T") with T; = Tp. Applying Lemma yields

impl = implementation(Z3) I(W3) [ M3] where Q3 {... rcdef’}

0 IF04Qs (99)
dom(oy) = Z3

T = 0, W3 (100)

0 F Ny < 04 Ms; (101)

if j ¢ pos™(I) then @ - T; < o4Ms; with
T; # 04Ms; implying j € pos™(I)
(V’L 7é j) 0+ T; < o4Ms; with T; 7& o4 Ms; anlylng 1 € pos— (I) (103)
if j € post(I) and j ¢ pos™(I) and T # o4Ms,; then
T=T;=J(W,) and J(W,) <, I(W3) and 1 € pos™(J)

(102)

(104)

We now show that (o4, impl) € .#. To do so, we prove that (Vi € [I])M; = nil or

M} <, 04Ms;. Suppose i € [I] and assume M, # nil. By definition of M in and
by Lemma it suffices to show that N, <. o4Ms; for all p € [n] with W, = Z,,
and that Ny <. 04Ms;. The latter follows directly from and Lemma Now
assume p € [n] with W, = Z;. Then

O'QWp = Tz

From we have 0;0 - v, : [V/X]U,, so with
0:0 1 vy : [V/X]T;
W.lo.g., X Nftv(T;) = 0, so [V/X|T; = T;. Thus, with and Lemma
OFN, <T;

Because W, = Z;, we have i ¢ pos™(I). Hence, we get from (102 and (103]) that
0+ T; < 04Ms;. By transitivity of subtyping and Lemma we then get NV, <. 04 M3;
as required. We now have established the fact that

(o4, impl) € M
From and the definition of minimpl, we get that
(Vi € [I]) o1 M; Q. 04 Ms; (105)
We then get from and Criterion WF—PROG that
0o Q" (106)
By criterion WF—PROG we get oW = 04 W3, so with
o W"=T" (107)

By criterion WF—IFACE we have Z Nftv(Q) = 0. Then ftv(Q) C Z’ as the underlying

program is well-typed. W.Lo.g., Z” N ftv(Q) = 0, so

0105Q = o [W/Z1Q = (W ]Z1Q = [T7]7Q = 0@
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NO-st-TO: :theor
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impl3::theorem:

{eq:M’=M3i: :theorem
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From and we get () IF [V/X]o2Q. Thus,

0IF[V/X]o103Q (108)

We have vy = new Ny (wp) by (86). By (85), the definition of contrib, and Lemma
Ny <, M; Moreover, M; <. alMJ’- by definition of .# and minimpl. Then with

ExP-sUBSUME {); 0 = vg : 01 M. We have () = V ok by s0 0;0 - [V/X]vg : [V/X]o1 M
by Lemma W.lLo.g., X Nftv(vy) = 0, so

0;0 o : [V/X]o1 M; (109)

Next, we prove that 0;0 = v; : [V/X]oaU] for all i € [n]. Assume i € [n]. By
criterion WF—IFACE we have either ZNftv(W;) = 0 or W; € Z. Because the underlying
program is well-typed, we have ftv(W;) C {Z,Z'}. W.lLo.g., Z" N ftv(W;) = 0.

* Assume Z N ftv(W;) = (). Then

0'10'3Wi = Ul[W///Z/]Wi = [0’1W”/Z’]Wi [T”/ZI]WZ‘ = O'QWi
Hence,

(190 (95)
Ui ! O'QWi = 0’10’3Wi ! UlUiI

From we have 0; 0 F v; : [V/X|U;. Thus, 0;0 & v; : [V/X]o1U].

x Assume W, = Z;, for some k € [l]. We have v; = new N;(w;) by . By ,
the definition of contrib, and Lemma M,Z # nil and N; <. M;. Moreover,
M} 4. o1 M}, by definition of .. By rule EXP-NEW, Lemma Lemma and
rule exp-suBsuME we then have ;0 - v; : 01 M}, We also have

(195)
(71]\4]/c = 0'10'3Z]c = 0’10‘3Wi ! UlUiI

We have ) - V ok by (84) so 0;0 - [V/X]v; : [V/X]o1U} by Lemmal[r.7] W.lo.g.,
X Nftv(vg) =0, 0 0;0 - v; : [V/X]o U,
This finishes the proof of

(Vien]) 0;0F v : [V/X]o U, (110)

Next, we prove ()  g103W < 03 W. Note that ftv(W) C {Z, Z’} because the underlying
program is well-typed. W.lo.g., Z" N ftv(W) = (.
Case distinction on whether or not Z N ftv(W) = ().

x Case Z N ftv(W) = (): Then

o105W = o [WIZTW = [erwr 120w & [z w = gyw
By reflexivity of subtyping then
@ - g1 O'3W S O’QW

x Case Z N ftv(W) # 0: By criterion WF—IFACE then W = Zj, for some k € [I].
Then

k ¢ pos—(I) (111)
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We first concentrate on the case where k # j or j ¢ pos™ (I) or 04 M3y, = T),. Then
we have

(105) (102) or (103)) or assumpti
- - ssumption
o103W = 01037, :0'1]\4;C <. o4Ms3y = Ty

def.gf o2

= 094, = oW
Thus, we get
O oro3W < oW
by Lemma [7.1§|

Now we consider the case k = j and j € post(I) and o4 M3y, # Tk. From (104) we
get

j=k=1= (112)
T =1T; = J(Wi) (113)
J (Wi <, 1(Ws) (114)
1 € pos™(J) (115)

With and we then get () = Ny < J(W,). Applying Lemma yields

implementation(Zy) J(W}) [ N}] where Q4 ... (116)
dom(7) = Z4

01 704 (117)

AV =W (18)

No <. 7N (119)

With (114) and Lemma we get
7N} implements I (W3) € sup(7 N} implements J(Wj))
With Lemma and (T18) we get the existence of N/ and I{W}) such that
N{ implements I(W}) € sup(N implements J(W}))
TN} = 7N}, (120)
TI(W§) = I(Ws)
Now by criterion Wr-ImMPL{2} (111)), and (T12)
impl’ = implementation(Zs) I(W4) [N{'] ...
dom(r') = Z5
N =7 Ny (121)
L(W3) = 7' (W)
With (120) we then get 7N} = 77/ N}’. Hence, with (119))

No <. 7' NY’

From (L1F) it is easy to see that Z; ¢ ftv(W). Thus, from and the definition
of contrib, we have M; = Ny. With (112]) and the definition of .#Z we then have

(7', impl') € M
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From and the definition of minimpl we then have

/ / "
o1 M; <. 77 Ny

From (116)), (117), (118), and rule ext-mvpL, we have ) IF 7N} implements J(Wy).
Hence, with rule sus-ivpL then 0 - 7Nj < J(Wy). With and ([12I): 7V} =
77/ NY', and with ([13): J(Wy) = T;. With Lemma transitivity of subtyping,
and we then have

0oy My, < Ty
Moreover, we have
o103W = 01032 = O’lM]é
T: def. of o2 097y, = oW
Thus, we get
OF oro3W < oW

End case distinction on whether or not Z N ftv(W) = (.
We now have proved @) - o103W < 0oW. Using Lemma. [7.1| we conclude

@ - [V/X}alag,W S [V/X]O'QW (122)
W.lo.g., ftv(c1Q”) N X = 0, so with (L06): 0 I+ [V/X]o1Q”. From (108) and we
get 0 I- [V/X]oy P'. Hence, with (91)):

I [V/X]onA (123)

=

Assume o1 = [V'/Z"]. W.Lo.g., ftv(V') N X = (. With and then [V/X]oq =

[V/X',V'/Z"]. Hence, with (91)):

dom(A) \ dom([V/X]o1) =0

From we have () = V ok. From Lemma (84), and we get O F N; ok
for all 7 = 0,...,n. By definition of contrib and Lemma we then get 0 = M; ok

unless M, = nil. Moreover, by definition of contrib and disp, we get M; # nil for all
i € disp(I). Hence, with (85), the definition of .#, and Lemma we get O F 01X ok
for all X € dom(oy). Thus,

0+ [V/X]o1Z for all Z € dom([V/X]o1)

We now get with and Lemma that

0;[V/X]o1T F [V/X]ore” : [V/X]o U’

We have with , , and that I' = this : M}, 2 : U’. Thus, with (109), (110),
and repeated applications of Lemma [7.8] we get

0;0 & [vg/this,v/x][V/X]ore" : [V/X]o U’

—e’/

To finish this case, we still need to show that @ - [V/X]o U’ < T. (The claim then
follows with rule Exp-suBsuME.) From we get with (123) and Lemma [7.1| that

(ZH— [V/X]O'lU/ < [V/X]0'10'3W
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Moreover, with and transitivity of subtyping we then get
0+ [V/X]oWU' < [V/X]ooW
Ultimately, we have
V/X)e:w @ 7w € 1
— Case other rules: Impossible.

End case distinction on the rule used to reduce e.

Case rule Exp-INVOKE-s: Then

smtypey(m, [(W)[T]) = (X)Ux — U where P (Vi) 0;0 e, : [V/X]|U;
ODI-[V/X]P  1¢post(I)or (3i)0I-Tymono  OFT,V ok
— — EXP-INVOKE-S
0:0 = L(W)[T].m(V)(e) : [V/X]U
—e - (124) {eq:invoke-s: :theor

Expanding the definition of smtype yields:

interface [{Y”)[Y where R| where Q' {m : static msig ...}
0 IF T implements I (W) m=my

smtypey (m, 1(W)[T]) = [W/Y", T/ |msigy

=(X)Uz—U vwhere P (125) {eq:smtype: :theorem

MTYPE-STATIC

Define oy = [W/Y’,T/Y] and assume

msig), = (X")U" 2" — U" where P

Then
X=X (126) {eq:X’’=X::theorenm:
=7 (127) {eq:x’’=x::theorenm:
UQ(W, UH,P) = (U, U, T) (128) {eq:subst2-eq: :theo

By looking at the form of e, we see that ¢ —— ¢ must have been performed by rule
DYN-INVOKE-S. Thus,

getsmdef(m, (W), T) = (X' U’ 2’ — U’ where P’ {¢"'}
DYN-INVOKE-$
m

IW)[T].m(V)(@) = [v/2][V/X]e"
e (129) {eq:dyn-invoke-s::t

v=e¢e (130) {eq:v=e::theorem:pr
Expanding the definition of getsmdef yields together with criterion WF-IFACEI] that

interface I(Y’)[Y where R| where Q' {m : static msig ...} m=my

(01, implementation(Z) (W) [Wl] where Q {static mdef ...}) = minimpl.#
]

DYN-MDEF-S

getsmdef (m, (W), T ) = oymdef
———
=(X")U 2’ —U’ where P’ {e''} (131) {eq:getsmdef: :theor
where
M = {(o,implementation(X) I(U) [N ] )
| dom(o) = X, (Vi € [I]) N; = Object or T; <. oN;}
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Assume
mdef,, = (XY U" 2/ — U"' where P’ {e""}
Then
o (U U P ") =U U P, (132)

Because the underlying program is well-typed, we have by inverting rule ok-iMpL and crite-
rion Wr-Irace{dl

Q,Z; 0+ mdef,, implements [W’'/Y’,Y/N'] msig,,
—_—

=03

We then have

Q,Z, P, X'"+-U" U", P ok (133)
—————
=A
A U e U" (134)
——
=r
X =X (135)
U7 = o307 (136)
=z (137)
P =0sP (138)
AFU" <o3U” (139)

From ([124)) and (125]) we have () I- T implements I (W) and either 1 ¢ pos™ (I) or there exists
some j with () I T;mono. In the latter case, we have T; = N for some N by Lemma If
now 1 ¢ pos™(I) or j ¢ pos™(I) then we immediately see with Lemma that

impl = implementation(Z’) I{W") [N”] where Q" ...

dom(oy) = 7'
0k o,Q" (140)
W =o,W" (141)
(Vi) 0 = T; < o4N]" with T; # o4 N]" implying i € pos™ (I) (142)

On the other hand, assume j € pos™(I) and T; = N. Using Lemma it is straightforward
to show all claims except that it is not obvious why T; # 04N}’ should imply j € pos™([).
For the sake of contradiction, assume T # o4 N} and j ¢ pos™ (I). We also have j € pos*(I),
so with Lemma [7.24|(v), we get T; = K for some K. But this is a contradiction to Tj = N.

With Lemma and by looking at the definition of .#, we see that

(04, impl) € A (143)
Thus, with and the definition of minimpl:
(Vi) o1 N] <, 04N/ (144)
With and criterion WF—PROG we get () I 0,Q. With Lemma then
01k [V/X]o1Q (145)
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From (143), (131), ([144), and criterion Wr-PrROGI2 we get o, W7 = o1 W7, so with (141)
W=oW (146) {eq:w=w’::theorem:p

We get from criterion Wr-IFACE{4] that ¥ Nftv(P) = 0. W.Lo.g., dom(o1) = Z Nftv(P) = 0.
Hence,

03P = WV |P & [0, W VP = 01 [W/V]P = 0105P

From (124) we have § I [V/X ]7 and from we have [V/X])P = [V/X]ooP. Thus,
01k [V/X]o105P, so with (I38) 0 I [V/X] O'1P/ Wlth and (33) then

0I-[V/X]oA (147) {eq:entails-tenv2::

Next, we show that (Vi) 0;0 = v; : [V/X]o1U]"”. Assume some i. W.lo.g., dom(oy) =
ZNfv(U!) = 0.

Case distinction on whether or not Y N ftv(U/) = ().
— Case Y Nftv(U]") = 0: Then
v B oy = vy B Wl = WYL = ovosU? B2 gy
Using reflexivity of subtyping, we get

@ = Ui S 0’1Ui/”

— Case Y Nftv(U]") # 0: By criterion WF—IFACE we than have U/” =Y for some j € [I].
Then

(128) "
Ui — 0'2Ui :O'2Y} ZTj
We also have
def. of o: (i
O'lN{ = 30’10’3Y}=0’10’3U{, — O'1Uim

By definition of .# we have that either o1 N} = Object or 7j <. 01 N}. In both cases,
using Lemma [7.18]if T} <. 01N}, we get

0+U; <o U”

End case distinction on whether or not Y N ftv(U/") = 0.

In both cases, we have establibhed that § - U; < o,U}”. With Lemma we get 0
V/X|U; < [V/X]o U}". From and (130) we have (Vi) 0;0 - v; : [V/X]U;, so we get
with rule Exp-sUBSUME that

(Vi) 0;0 - v; : [V/X]o U (148) {eq:type-vi::theore

Our next goal is to show that () - [V/X]o, U < [V/X|U. W.l.o.g., dom(oy) = ZNftv(U") =
0.

Case distinction on whether or not Y N ftv(U”) = 0.
— Case Y Nftv(U") = (): Then
v o0 — Wiy B WU = o [ WU = 0v05U"
Hence,

@"0’10’3[]” S U
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— Case Y Nftv(U") # (: By criterion WF—IFACE we than have U” =Y; for some j € [I].
Moreover, j ¢ pos™(I). Then

def. of o (L43).def. of minimpl (142) (128)
0'10'3U//:O'10'3}/j = 30'1N]/4 S]c O’4NJ{,!E:UQ}/J‘:O'2UH!U

We then get with Lemma [7.1§|
@ = O'10'3U” S U

End case distinction on whether or not Y N ftv(U”) = ().

In both cases, we have shown () - 0103U"” < U so with Lemma [7.1

@ l_ [V/X}O’lng,/ S [V/X]U
From (139), (147), and Lemma [7.1] we have

@ F [V/X]UlUI” S [V/X}O’lngH

With transitivity of subtyping, we then get

0= [V/X]o U < [V/X|U (149)

Now we combine the various results. Assume oy = [V//Z] W.lo.g., ftv(V’) N ftv(X) = 0.

Thus, with (126)) and (135 we have [V/X]o1 = [V/X,V'/Z]. With (133) then

dom(A) \ dom([V/X]o1) =0

From ([124) we get 0 - T,V ok. With Lemma and the definition of .# we then get
0 F 01X ok for all X € dom(cy). Thus,

0+ [V/X]o1Z for all Z € dom([V/X]o1)
With (147]), , and Lemma 7.7 we now get

0;[V/X]o1T F [V/X]o1e"” 2 [V/X]o U

With (148)), the definition of I, and possibly repeated applications of Lemma we then
get

0:0 + [o/a][V/X]ore" : [V/X]o U™

With (129) and (132) we get [v/z][V/X]o1e” = €'. Thus, with (124]), (149), and rule
EXP-SUBSUME we get

0:;0-€ T
as required.

Case rule Exp-NEw: Then e = new N (€). But this is a contradiction to e — €.

Case rule Exp-cast: Then
0~ N ok 0:0Feq:T
(Z); @ H (N) €o N

EXP-CAST
with e = (N) eg and T'= N. The reduction step e — ¢’ must have been performed through
rule pyn-casT. Thus,

e =ep
eo = new M (w)
M<. N
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By Lemma and a case analysis on the form of ey, we know that
(Z); @ [ €o - M
By Lemma we have ) = M < T, so the claim 0; ) - ¢’ : T follows with rule EXP-SUBSUME.

e Case rule Exp-suBsUME: In this case, the claim follows directly from the I.H. and rule
EXP-SUBSUME.

End case distinction on the last rule of the derivation of 0;0 e : T. O
Theorem 7.43 (Preservation). If );0Fe:T ande — €' then §;0 e’ : T.

PROOF. From e — €’ we get (by inverting rule pYN-cONTEXT) the existence of an evaluation
context £ and expressions ey, ef, such that e = E[eg] and ey — ¢f) and E[ej)] = €’. Hence, it suffices
to show the following claim:

If0;0 - Ele] : T and e — €’ then O;0+ Ele’] : T.

The proof of this claim is by induction on €. If £ = [], then the claim holds by Theorem
In all other cases, we first use Lemma to obtain a derivation D for ;0 + E[e] : T” such that
() =T’ <T and D does not end with rule Exp-suBsuME. Then the form of £ uniquely determines
the last rule v used in D. In each case, the claim then follows by the I.H. and applications of rules
t and EXP-SUBSUME. U

Definition 7.44 (Reflexive, transitive closure of evaluation relation). The relation —* denotes
the reflexive, transitive closure of the evaluation relation —.

Theorem 7.45 (Type soundness). If ;0 e : T then either
(i) e diverges, or
(i) e —* v for some value v such that ;0 v : T, or

(iii) e —* €’ for some expression e such that €' is stuck on a bad cast.

PROOF. Assume that the evaluation of e terminates. (Otherwise, e diverges and we are done.)
Hence, there exists e/ such that e —* ¢’ and there exists no e’ such that ¢/ — ¢’. With
Theorem [7.43] we get (by induction on the length of the evaluation sequence) that @;0 ¢’ : T.
Theorem then gives us either that ¢’ = v for some value v or that ¢’ is stuck on a bad cast. [

8 Determinacy of Evaluation

Lemma 8.1. If minimpl.# = (o1, impl,) and minimpl.#Z = (o2, imply) then o1 = o and impl; =
imply.

PROOF. Assume

impl, = implementation(X) I{

~=

(] ...
(V] ...

Then dom(oy) = X, dom(o2) =Y, and, by definition of minimpl, 01 M <. 0N and 02N <, o1 M.
(The notation N <, M is short for (Vj) N; <. M;.) The class graph is acyclic by criterion WF-
PROG so 01M = o3 N. Criterion WF—PROG@ then yields #mpl, = impl,. Hence, X =Y and
M = N. We have X C ftv(M) by criterion WF—IMPL so with oy M = 09N also o1 = 0. O

CIG!
=S

impl, = implementation(Y) I{

Lemma 8.2.
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(i) If getmdef®(m, N) = mdef and getmdef®(m, N) = mdef’ then mdef = mdef’.
(it) If getmdefi(m, N,N) = mdef and getmdefi(m,N, N) = mdef' then mdef = mdef’.
(i) If getsmdef(m, K, N) = mdef and getsmdef(m, K, N) = mdef’ then mdef = mdef’.

PRrROOF.

(i) It is easy to see that both derivations must end with the same rule. The claim now follows
with a routine rule induction.

(ii) We first prove that Ny U Ny = M and Ny LI Ny = M’ imply M = M’. This proof is by
induction on the derivations of Ny LI Ny = M and N; LI Ny = M’. If both derivations end
with the same rule then the claim follows directly (rules LUB-RIGHT and LUB-LEFT) or via the
LH. (rule Lus-supeRr). Otherwise, one derivation ends with rule Lus-ricHT and the other
with rule LuB-LEFT. Then Ny <, Ny and Ny <, Ny, so M = Ny = Ny = M’ as the class
graph is acyclic by criterion WF-ProG-5}

We then get that | |.#" = M and | |4 = M’ imply M = M’. From this we have that
contribx (T, N) = M and contribx (T, N) = M’ imply M = M’.

The claim now follows with Lemma [8.1]

(iii) Follows with Lemma

Lemma 8.3. Ife+—— ¢’ and e — €” then e’ =¢".

ProoF. Case distinction on the form of e.
e Case e = x: Impossible.

e Case e = eg.f: Then both reductions are due to rule pyn-riELD. Hence, ey = new N (),
fields(N) = U f, f = fj, and ¢’ = v;. Clearly, fields is deterministic. Moreover, field
shadowing is not allowed, so f occurs exactly once in f. Thus, e’ =v; =¢€’.

e Case e = eg.m(T)(€): If m = m° then both reductions are due to rule DYN-INVOKE-C.
Otherwise, m = m' and both reductions are due to rule pYN-INVOKE-I. In any case, the claim
follows with Lemma [R.2l

e Case e = K[T].m(U)(e): The claim follows directly from Lemma

e Case e = new N (€): Impossible.

e Case e = (N)eg: Obvious.
End case distinction on the form of e. O
Lemma 8.4. Assume &i[e1] = Eslea]. If ey — €| and eq — €} then & = &,.

PROOF. We prove the claim by induction on the combined size of £ and &. A case distinction
on the form of &;[e;] reveals that either & = 0 = & or that £ and & are identical up to sub-
contexts &1 and &) with &f[e1] = Ej[ea]. (This follows from the fact that, for all values v, v # £[é]
such that € — €’.) In the first case, the claim is immediate. In the second case, we get by the
LH. that & = &. But then also & = &;. O

Theorem 8.5 (Deterministic evaluation). If e — €' and e — ¢€” then ¢/ = ¢€”.
PROOF. By rule byN-cONTEXT, we have that e = £[¢], é — &', ¢/ = £[¢’], and that e = £’[¢],

ér—é e’ = &'[¢']. By Lemma[8.4| we get £ = &', so we have € = é. By Lemma [8.3| we then get
¢’ = ¢é'. Hence, ¢’ =¢€”. O
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9 Equivalence of Quasi-algorithmic and Algorithmic Ver-
sions of Entailment and Subtyping

Definition 9.1 (Small derivations). A derivation D is small iff its direct subderivations are small
and all its proper subderivations end with a conclusion other then the conclusion of D.

Lemma 9.2. If D’ is a subderivation of a small derivation D, then D' is also small.

ProOF. By induction on the height of D. If D’ = D then the claim is immediate. Otherwise,
there exist a direct subderivation D" of D such that D’ is a subderivation of D”. By Definition [0.1]
we know that D" is small. Applying the I.H. proves that D’ is small. O

Notation 9.3.
o We write D :: J to denote that D is a derivation of judgment J .
o We write D;v:: J iff D:: J and D ends with an application of rule .
o We write height(D) to denote the height of a derivation D.

Lemma 9.4. Let J be a judgment such that the inference rules defining J do not put restrictions
on properties of derivations for judgments in the premises or the conclusion of a rule. For example,
the following rule would not be allowed:

D:J height(D) =1
J

Now suppose D :: J. Then there exists D:: J such that D is small and height(D) < height(D).

PrOOF. By induction on the height of D. If D is already small then we are done. Assume D is
not small. Hence

DN Dn::jnt
D:J

By applying the I.H. we get D;:: J; for all i € [n] whereby D; is small and height(D}) < height(D;).
An application of rule t now yields D’ :: J such that height(D’) < height(D). If D’ is small then
we are done. Otherwise, we have the following situation:

D' g

T
D:J

with height(D") < height(D). We now apply the L.H. to D" :: J and get D’ :: J such that D" is
small and height(D"") < height(D") < height(D). O

Definition 9.5 (Entailment goals). Let D be a derivation. The set of entailment goals occurring
in D is defined as follows:

goals(D) = {R | D contains a subderivation D'; ENT-Q-ALG-IMPL :: A Iy R}
Lemma 9.6. If D’ is a subderivation of D then goals(D’) C goals(D).
ProoFr. Obvious. O
Lemma 9.7. Suppose D; ENT-Q-ALG-IMPL:: A Iy R. If D is small and D’ is a proper subderivation

of D, then R ¢ goals(D').
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PROOF. Assume R € goals(D’). Hence, there exists a subderivation D”; ENT-Q-ALG-IMPL :: A |k
R of D'. But this is a contradiction to D being small because D" is a proper subderivation of
D. O

Lemma 9.8.
(4) If D1:: Al P and Dy is small, then A;9; 8 1k, P for all 8 and all 9 with goals(D1)NY = ().

(1) If Dy A vy U implements I(V) and Dy is small and A; 5;1 =, T 1 U, then A;9; 0 |,
T implements I(V) for all 4 with goals(D2) ¥ = 0.

(1) If D3 Abq T < U and D3 is small, then A; 9 =, T < U for all 4 with goals(D3) N¥ = 0.
PROOF. We proceed by induction on the combined height of Dy, Dy, and Ds.

(i) Suppose ¢ is a set of entailment goals such that goals(D1)N¥ = () and let 8 € {false, true}.
Case distinction on the last rule used in D;.

e (Case rule ENT-Q-ALG-EXTENDS: We then have P = T extends U. By inverting the rule,

we get D} :: A b T < U such that D] is a subderivation of D;. From Lemma we

know that Dj is small and Lemma gives us goals(D}) N¥Y = (). Applying part
of the I.H. yields A; ¢ -, T < U, so the claim follows with rule ENT-ALG-EXTENDS.

e (ase rule ENT-Q-ALG-UP: We then have
(Vi) A Fq' T, <U;
1)1 1y ; then 7 € pos™ I 7imp1ements \%
Vi) if T; # U; then 4 I D AH—q’U IV
D; :: Ak, T implements [ (V)

=P

Thus, we have
A IRTTU
by rule ENT-ALG-LIFT. Moreover, D; is small so
D is small
by Lemma Furthermore,
goals(D))N¥ =10

with Lemma and goals(D;) N¥ = (. Applying part of the I.H. now yields
A9 B 1R P.

FEnd case distinction on the last rule used in D;.
(ii) Case distinction on the last rule used in Ds.

e Case rule ENT-Q-ALG-ENV: We then have U implements I(V) = G implements (V).
Inverting the rule yields R € A and G implements (V) € sup(). The claim now
follows with the assumption A;3; 1+, T'T G by rule ENT-ALG-ENV.

e (ase rule ENT-Q-ALG-IMPL: We have

implementation(X) I(V’) [N ] where P ... Al [W/X]P
Dy Al [W/X](N implements I(V7))
=U implements I (V) (150) {eq:init-deriv::lem



Suppose D} ::A I [W/X]P;, let & be a set of entailment goals such that goals(D2)NY =
(), and assume § € {false, true}.

D5 is small by assumption, so
D} is small

with Lemmam Using Lemmawe get U implements (V) ¢ goals(D’). Moreover,
goals(D}) C goals(Dz). Because goals(D2) N¥ = () we then have

goals(D}) N (4 U {U implements [(V)}) = ()
By part (ji) of the I.LH. we now get
A;9 U{U implements I(V)}; false b, [W/X]P; (151)

Moreover, U implements I (V) € goals(Ds) by Definition [9.5/and goals(D2) N¥ = ) by
the assumption, so

U implements (V) ¢ ¢4 (152)
Furthermore, U = [W]N from and A;8;1 T 1 U by the assumption; hence

A BT T T [W/XIN (153)
We conclude

[W/X]|N implements (V)

implementation(X) I (V') |

¢ from (152)) and ( -
| where P . from
A;ﬂ,]l— T1[W/X|N from
= [W/X|V" from
A9 U{[W/X|N 1mp1ements I{V)};false H— [W/X]P from

A;9; 31k, T implements I (V)

ENT-ALG-IMPL

Case rule ENT-Q-ALG-TFACE: We then have U = J(W) such that

1 € post(J) (154)
J(W) <, I(V) (155)

With Lemma [6.20]
1 € pos™(I) (156)

With the assumption A; 3; I+, T T U we get T = T for some T and
AR'T<JW)
BorT=J(W)orlepos (I) (157)
With (155), rule ENT-Q-ALG-IFACE, and Lemma [6.5] we get
AR'T<IV) (158)

Case distinction on the form of T.

— Case T # J(W): With (157) we get 3 or 1 € pos~(I). With (158) and rule
ENT-ALG-LIFT we get A; 3;1 =, T T I(V). With (156 and rule ENT-ALG-IFACE; we
get A;9; 3, T implements (V).

— Case T = J(W): The claim then follows with (154)), (155)), and rule ENT-ALG-IFACE.
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End case distinction on the form of T.
FEnd case distinction on the last rule used in Ds.
(iii) Case distinction on the last rule used in Dj3.

e Case rule SUB-Q-ALG-KERNEL: By inverting the rule, we get A,/ T <U,so Ak’ T <U
by SUB-ALG-KERNEL-QUASI, SO0 A; ¥ b, T' < U by SUB-ALG-KERNEL.

o Case rule suB-Q-aLG-MPL: We have U = I(V) for some I(V) such that

AR/T<T Dy Al T implements (V)

Dy AT <IV)

By SUB-ALG-KERNEL-QUASI we have A R’ T < T, so
Astrue; I, T 1T
by rule ENT-ALG-LIFT. Because Dj is small, we get with Lemma[9.2] that
Dy is small

Moreover, by Lemmal[0.6|goals(D4) C goals(D3), so with the assumption goals(D3)N¥ =
() we have

goals(D5)N¥Y =)
Applying part of the I.H. now yields

A;9;true |k, T implements I(V)

so we get A; 4, T < I{V) by rule SUB-ALG-IMPL.
End case distinction on the last rule used in Ds. O

Theorem 9.9 (Completeness of algorithmic entailment and subtyping).
(3) If D1t Al P then Al P
(ii) If Da: Al R then Ak, R.

(468) If D3 AT <U then A, T < U.

() If Dy AR T<U then AR’ T<U.
PRrROOF. By Lemma@ we may safely assume that Dy, Dy, D3, and Dy are small.

(i) Follows from Lemma and rule ENT-ALG-MAIN.

(ii) With Lemma we have A;false;I F, T 7 T for all I and all T. The claim now follows
from Lemma 0.8 and rule ENT-ALG-MAIN.

(iii) Follows from Lemma and rule SUB-ALG-MAIN.

(iv) Follows directly with rule SUB-ALG-KERNEL-QUASI. O

Definition 9.10 (A, T 1 T).
ENT-Q-ALG-LIFT
Vi) AR T, <U; B or ((Vi) if T; # U; then i € pos™ (1))
N BT TTU
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Lemma 9.11. IfA Ik, U implements I (V) and A;false; I =, T T U then A Ik, T implements I (V).

PrOOF. From the assumption A;false;/ T 71U we get
(Vi) A I—q’ T <U;
(Vi) it T; # U, then i € pos™ (1)
The claim now follows with rule ENT-Q-ALG-UP. O

Lemma 9.12.
(i) IfFAR'T<U thenAl—q'TgU.

(it) If N; B3 1= T 1 U then A; 331 = T 1U

Proor. Obvious O
Lemma 9.13.
(i) If D1 = A9 8 |k T implements I(V) then A Ik,' U implements I(V) for some U with
AN BT HTTU.

(i) If Do A9 T < U then Abyg T < U.

PRrROOF. We proceed by induction on the combined height of D; and Ds.
(i) Case distinction on the last rule used in Dj.

e (lase ENT-ALG-EXTENDS: Impossible.

e (ase ENT-ALG-ENV: Inverting the rule yields

RecA
G implements (V) € sup(R)
NBIRTTG
By Lemma “ we get A;3;1 =, T 1 G. With rule ENT-Q-ALG-ENV we have A |’
G implements I (V). Defining U = G finishes this case.

e (Case ENT-ALG-IMPL: Inverting the rule yields

implementation(X) I(V’) [N ] where P ... (159)
Aﬂ;] T 1 [W/X|N (160)

= [W/x|v’
A;%4 U {[W/X]|N implements I(V)}; false I, [W/X|P (161)

Case distinction on the form of [W/X|P;

- C’ase [W/X]|P; = T’ implements J(U’) Assume Applying part () of the LH. to
gives us the existence of T” such that

A lv)/ T implements J(U’)
A;false; J b, T/ 1T

With Lemma [0.11] we then have

Ak T” implements J(U’)

(6]

{eq:impl-def: :lemma

{eq:1lift::lemma:sou

{eq:entails-mc:

:lem



— Case [W/X|P, = T' extends U’: Inverting the derivation in yields
A;9 U {[W/X]|N implements [(V)} F, T' < U’
Applying part of the L.H. yields Ak, T" < U’. Thus
Ak, T' extends U’

with rule ENT-Q-ALG-EXTENDS.

End case distinction on the form of [W/X]P;. Thus, we have

Al [W/X]P (162) {eq:gq-entails-mc::
With (159)), (162]), and rule ENT-Q-ALG-IMPL we get
Al [W/X]N implements I(V)

Define U = [W/X]N; then (160) finishes this case.

e Case ENT-ALG-IFACE;: We then have T = T for some T'. Inverting the rule yields
A B TR T 1 I(V)
1 € post(I)

By rule ENT-Q-ALG-TFACE, we have A Ik," I(V) implements I(V). Defining U = I(V)
finishes this case.

e Case ENT-ALG-1FACE2: Then T = J(W) for some J(W). Inverting the rule yields

1 € post(J)

J(W) <, I{V)
The claim now follows directly with rule ENT-ALG-TFACE:.
FEnd case distinction on the last rule used in D;.

(ii) Case distinction on the last rule used in Ds.

e Case SUB-ALG-KERNEL: Inverting the rule yields A ' T < U. With Lemma
A I—q' T < U, so the claim follows with rule sUB-Q-ALG-KERNEL.

e Case suB-aLG-iMpL: Then U = I(V) for some I(V). Inverting the rule yields
A;¥9;true Ik, T implements I(V)
Applying part (i) of the I.H. gives us the existence of T” such that

Al T' implements (V)
Ajtrue; [ H T 1T

Thus, we have A I—q' T < T'. Rule SUB-Q-ALG-IMPL now proves the claim.
End case distinction on the last rule used in Ds. O

Theorem 9.14 (Soundness of algorithmic entailment and subtyping).
(3) If Ak, P then Al P.

() FART<U then AT <U

PROOF.
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(i) The derivation of A Ik, P ends with rule ENT-ALG-MAIN. Inverting the rule yields

D:A;P;falselr, P

Case distinction on the form of P.

e Case P = TextendsU: Then D ends with rule ENT-ALG-EXTENDS. Inverting the rule
yields A; k=, T < U. By Lemma we get A b T < U, thus A |y P by rule
ENT-Q-ALG-EXTENDS,

e Case P = T implements I(V): Applying Lemma to D yields the existence of U
such that

Ak U implements I (V)
Asfalse; I =, TTU
We then get A Ik, P by Lemma
End case distinction on the form of P.

(ii) The derivation of A k, T < U ends with rule suB-arLg-maIN. Inverting the rule yields
A;(k, T <U. The claim now follows with Lemma O

10 Soundness, Completeness, and Termination of Entail-
ment and Subtyping Algorithms
Definition 10.1. A substitution o is more general than a substitution o’ iff there exists a substi-

tution T such that o' = 7o. In this case, we write o < o’. If 0 < o’ and o' =< o, then we write
!
o~da.

Lemma 10.2. o ~ o’ iff there exists a renaming T such that o = 70’.
PROOF. See, for example, [1]. O

Definition 10.3 (Unification modulo subtyping). A unification problem modulo subtyping is a
triple o
U= (AX, {1y <"Uy,... T, <" U,})

A solution of U is a substitution o with dom(c) C X such that A &' oT; < oU; for all i € [n].
We write sol(U) for the set of all solutions of U. A most general solution of U is a solution o such
that for any other solution o' it holds that o < o’. We say that U is well-formed iff ftv(A)NX = {)
and T, =Y (or U; =Y ) implies Y ¢ X for any i € [n)].

Definition 10.4. The weight of a type T with respect to a type environment A, written weight (T'),
is defined as follows:

weighta (X) = 1 + max({weighta (T) | X extendsT € A})
weighta (V) =1
weight (K) =1

(By convention, max()) = 0.) The definition of weight is proper (i.e., terminates) because A is
contractive by criterion WrF-TENV-{2]

Theorem 10.5 (Termination of unify.). unify(U) terminates for any U.

7



PROOF. We first show that the rewrite rules in Fig.[T4] terminate. The depth of a type, written
depth(T), is defined as follows:

depth(C(T)) = depth of C in the class hierarchy
depth(I(T)) = 1 + depth of I in the inheritance hierarchy
depth(X) =0

2

We then define the measure of a unification problem modulo subtyping (A, X, {Ty <’ Uy,..., T, <
Un}) as

() weight, (Ti), > depth(T})) € N x N
i=1 i=1

It is easy to see that each transformation rule from Fig.[T4] decreases this measure with respect to
the usual lexicographic ordering on N x N.
Termination of unify. now follows because unify_ terminates. O

In the following, we extend =2 to unification problems module subtyping:
(T "0 = {1 <70}
(A X AT <" Ui}) = (A, X AT <" U}

Lemma 10.6. If U is well-formed and U == U’ then U’ is well-formed.

PRrROOF. Easy. U
Lemma 10.7. If U is well-formed and U= U’ then sol(U) = sol(U").

PROOF. Easy, using Lemma [T0.6] O

Theorem 10.8 (Soundness of unify.). If unify (U) = 0K(c) and U is well-formed, then o is
an idempotent, most general solution of U.

ProOOF. Follows with Lemma O

Theorem 10.9 (Completeness of unifyg). If a well-formed unification problem modulo subtyping
U has a solution, then unify_(U) # FAIL.

ProOF. Follows with Lemma [[0.71 O

Theorem 10.10 (Soundness and completeness of entailment and subtyping algorithms).

e Al P iff entails(A,P) returns true.

A;9; 01k, P iff entailsAux(A, ¥, 3, P) returns true.

Ak, T <U iff sub(A,T,U) returns true.

A9, T <U iff subAux(A,9,T,U) returns true.

AR'T <U iff sub’ (A, T,U) returns true.
o A; B3I T1U iff Lift(A,B,1,T,U) returns true.

PRrROOF. Completeness (<) follows by straightforward induction on the combined sizes of the
given derivations. Soundness (=) follows by induction on the depth of the recursion. In the
proofs, we use Theorem Theorem [10.8] and Theorem [10.9 O

78



Lemma 10.11 (Transitivity of cls). If 93 C clsa(%) and F5 C clsa(F7) then T3 C clsa(57).

PROOF. It suffices to show that T € clsa(%%) implies T € clsa(Z1) for all T. The proof is by
induction on the derivation of T' € clsa(93).
Case distinction on the last rule used in the derivation of T' € clsa (%3).

e Case crs-ip: Then T € F5, s0 T € clsa(F1) because T C clsa(Z1) by assumption.
e (Cuase cLs-ur: Then

U € clsa(%) AR U<LT
T e ClsA(%)

Applying the I.H. yields U € clsa(.71). The claim now follows with rule crs-up.

e (Case cLs-DECOMP: Then
B(T) € clsa (%)
T; € clsa(%)

with T = T;. Applying the LH. yields B(T) € clsa(:71). The claim now follows with rule
CLS-DECOMP.

End case distinction on the last rule used in the derivation of T' € clsa (:Z2). O

Definition 10.12 (Entailment candidates). The set of entailment candidates of a constraint P
with respect to a type environment A, written canda(P), is defined as the least set closed under
the following Tules:

CAND-CLS B -
U Cclsa(T)
U implements K € canda (T implements K)
CAND-IMPLy

implementation(X) I(V) [N] where P ...
U Cclsa(T) U’ Cclsa(T) P; =W implements L

U implements [U’/X]|L € canda (T implements K)

CAND-IMPL2

implementation(X) I(V) [N] where P ... CAND-EXTENDS
U € clsa(T) U’ Cclsa(T) P, = W extends W’ P € canda (T implements K)
U extends [U’/X|W’ € canda (T implements K) P € canda (T extends K)

Definition 10.13 (left). For a constraint P, we define left(P) as follows:

left(T implements K) =T
left(T extends U) = U
Lemma 10.14. If P € canda(Q) then left(P) C clsa (left(Q)).
PRrROOF. Case distinction on the last rule used in the derivation of P € canda(Q).

e Case canp-cs: Then P = U implements K and Q = T implements K with U C clsa(T)
and the claim is immediate.

e (lase cAND-IMPL;: We then have

implementation(X) I(V) [N] where P ...
U Cclsa(T) U’ Cclsa(T) P; =W implements L

U implements [U’/X]L € canda (T implements K)
N—— ———

=P =Q

and the claim is immediate.
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e Case cAND-IMPL2: The claim follows analogously to the preceding case.

e Case cAND-EXTENDS: Then P = T extends K and P’ € clsa (7" implements K). Because this
derivation cannot end with rule cAND-EXTENDS, the claim follows with the same argumenta-
tion as in one of the three preceding cases.

End case distinction on the last rule used in the derivation of P € canda (Q). O
Lemma 10.15. If P € canda(Q) then canda(P) C canda(Q).

ProOF. We show that P" € canda (P) implies P’ € canda(Q) for all .
Case distinction on the last rule used in the derivation of P’ € canda (P).

e (ase caND-cLs: We then have
P = U implements K
P =T implements K

U Cclsa(T)
By Lemma [10.14| we have T C clsa (left(Q)), so with Lemma [10.11
U C clsa(left(Q)) (163) {eq:subset-left::le

Case distinction on the last rule in the derivation of P € clsa(Q).

— Case canp-crs: Then Q = V implements K. With (163) we have U C clsa(V), so
P’ € clsa(Q) by rule canp-cLs.
— Case caND-IMPL;: Then
implementation(X) I(V') [N ] where P ...
T Cclsa(V) T Cclsa(V) P; = W implements K’

T implements [1"/X]K’ € canda(V implements L)
——— — —————

=K =Q

With ([163)) we have U C clsa(V), so P’ € clsa(Q) by rule CAND-IMPL.
— Clase cAND-IMPLy: Impossible because P is not an extends-constraint.

— Case cAND-EXTENDS: Then Q = Vextends L and P € clsa(V implements L). Because
this derivation cannot end with rule caND-EXTENDS, the claim follows with the same
argumentation as in one of the three preceding cases.

End case distinction on the last rule in the derivation of P € clsa(Q).

o (ase caAND-IMPL;: We then have

implementation(X) I(V) [N ] where P ...
U Cclsa(T) U’ Cclsa(T) P; =W implements L

U implements [U’/X]L € canda (T implements K)

=P =P
By Lemma [10.14] we have T C clsa (left(Q)), so with Lemma [10.11
U C clsa(left(Q)) (164) {eq:subset-leftl::1
U’ C clsa(left(Q)) (165) {eq:subset-left2::1

If now Q = W’ implements L’ for some W’ and L/, then the claim follows with rule cAND-IMPL .
Otherwise, Q = W' extends W”. Because P € clsa(Q), we must have that W = L’ for some
L’. With rule canp-mvprLi, we have P’ € clsa (W' implements L), so the claim follows with
rule CAND-EXTENDS.
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e (ase caAND-TMPLy: The claim follows analogously to the preceding case, replacing CAND-IMPL;
with cAND-IMPL,.

e Case cAND-EXTENDS: Then P = T extends K and P’ € clsa (T implements K'). Because this
derivation cannot end with rule cAND-EXTENDS, the claim follows with the same argumenta-
tion as in one of the three preceding cases.

End case distinction on the last rule used in the derivation of P’ € canda (P). O

Lemma 10.16. If implementation(X) I(V) [N]where P ... and U C clsa(T) then [U/X]P; €
canda (T implements K) for all i.

Proor. Case distinction on the form of C;.

e Case P; = T" implements K’ for some 77 and K’: By criterion WF—IMPL we have T" C X.
Hence, [U/X]T" C U C clsa(T implements K). Thus

implementation(X) I(V) [N ] where P ...
[U/X]T' C clsa(T) U Cclsa(T) P, =T’ implements K’

[U/X]P; € canda (T implements K)

CAND-IMPL{

e Case P, =T extendsT": By criterion WF—IMPL we have 77 € X. The claim now follows
analogously to the preceding case, replace rule CAND-IMPL; with CAND-TMPLs.

End case distinction on the form of C;. O

Definition 10.17 (Call tree). The call tree of entailsAux(A,¥,3,P) is a root node labeled
entailsAux(A, ¥, 3, P) whose subtrees are the call trees of all the direct recursive calls of entailsAux
and subAux. The call tree of subAux(A, 9, T,U) is defined analogously.

Definition 10.18 (cache). We let cache(n) denote the set of goals cached at node n; that is,

cache(entailsAux(A,¥,5,P)) =¥
cache(subAux(A, 9, T,\U)) =¥

Lemma 10.19. Ifn is a node in the call tree of entailsAux(A, 9, 3, P) (or subAux(A,¥,T,U))
then cache(n) C ¢ Ucanda (P) (or cache(n) C 4 U canda (T extendsU)).

PRrROOF. We prove the following, stronger claim:

Suppose n is a node in the call tree of entailsAux(A, ¥, 3, P) (or subAux(A, ¥4, T,U)).
Define .# = canda(P) (or .4 = canda(T extends U)). Then cache(n) C ¢ U .# and
canda(n) C A.

(The notation canda (n) is defined as canda (entailsAux(A, ¥, 8, P)) = canda(P) and canda (subAux(A, ¥4, T,U)) =
canda (T extends U).)

The proof is by induction on the depth of n. If n is the root node, then the claim is immediate.
Otherwise, n is the child of some node n’. Assume that the claim already holds for n’; that is,

cache(') CY U .# (166) {eq:ih1::lemma:cach
candA(n’) c.# (167) {eq:ih2::lemma:cach
Case distinction on the form of n’.

e Case W = entailsAux(A’,¥’,3',P'): It is obvious that the type environment A remains
constant throughout the whole call tree; hence, we may safely assume that A" = A.

Case distinction on the line number of the call site corresponding to n.
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— Case Line [5f Then cache(n) = cache(n’) and canda(n) = canda(n’), so the claim is
immediate.

— Case Line22k} We have

P =T" implements I(V)
implementation(X) I(V’) [N] where P ...

1ift(A, 8,1, T,[U/X]|N)

V=[U/xX|V'
[U/X]N implements I(V) ¢ 4’

4y =% U{[U/X]|N implements I{V)}

and

n = entailsAux(A, %, false, [U/X|P;)

for some i € [n].
From 1ift(A, 8, I,T,[U/X]N) we get with Theorem that A B,/ T; < [U/X]N;
for all j € [m], hence

[U/X|N; € clsa(T) (168) {eq:in-cls::lemma:c

for all j € [m] by rule cLs-up. With (168)) and rule canp-cLs we get

[U/X]|N implements I(V) € canda (T implements I(V))

By (167) we have canda (T implements I(V)) C .#, so we get

[U/X]|N implements I(V) € .«

Hence

cache(n) = %' U {[U/X|N implements I(V)}

cache(n’) U {[U/X]N implements I{V)}

(L66) _— _
g G J.# U{[U/X]|N implements [(V)}

GuM

We still need to show canda(n) C .#. By criterion WF—IMPL we have X C ftv(N),
so for each X} there exists some N; such that X € ftv(N;). Thus, Uy is a subterm

of [U/X]N;. With (168) and possibly repeated applications of rule cLs-pECOMP, We get
Uy € clsa(T). Thus

U Cclsa(T)

With Lemma [10.16]

[U/X]P; € canda (T implements I(V))

Lemma [10.15| now yields

canda ([U/X]P;) C canda (T implements I (V)

From (167)) we have canda (T implements I(V)) C .#. Moreover, canda (n) = canda ([U/X]P;),
so canda ([U/X]|P;) C A .
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End case distinction on the line number of the call site corresponding to n.

e Case n' = subAux(A',¥9',T',U’): Again, we may safely assume A = A’. The call site
corresponding to n must be in ine We then have
G =9
U’ = K for some K
n = entailsAux(A, ¥, true, T’ implements K)

We get
(T66)
cache(n) = ¢ = cache(n’)
and

by rule CAND-EXTENDS
v = canda (T" extends K)

()
=canda(n’) C

canda (n) = canda (T’ implements K)

End case distinction on the form of n’. O

Definition 10.20 (Size of types and constraints). The size of a type or constraint (size(T) € NT,
size(P) € NT) is defined as follows:

size(X
size(C(T)
)

)
) =1+ size(T)
size(I(T)) = 1 + size(T)
size(T implements K) = 1 + size(K) + size(T)
) = (

size(T extends U) = 1 + size(T) + size(U)
Thereby, the size of a sequence of types T is defined as size(T) =", size(T}).
Lemma 10.21. Suppose clsa () is finite for every finite 7. Then canda(P) is finite for all P.

PRrROOF. We show that for all P there exists a 6(P) € NT such that size(Q) < §(P) for all
Q € canda(P). The original claim then follows immediately because the set of types of a certain

height is finite.
Let p € NT be a bound on the size of the constraints in the set & where
% = {P; | implementation(X) I(T) [N] where P" ...,i € [n]}
Let 9(P) € NT be a bound on the size of the types in clsa (left(P)). (Note that 9(P) exists because
clsa (left(P)) is finite by the assumption.) Define
5(P) = p-¥(P) - size(P)
Now suppose Q € canda (P).
Case distinction on the last rule in the derivation of Q € canda (P).
e Case canp-cLs: Then P = Y implements K and Q = U implements K with U C clsa (7).
Hence, size(U;) < ¢¥(P) for all j and the following inequality holds:
size(Q) = 1 + size(U) + size(K)
< I(P) + size(T) - I(P) + size(K) - ¥(K)
= Y(P) - size(P)
< I(DP) - size(P) - p = 6(P)
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e (ase cAND-IMPL;: Then

implementation(X) I(V) [N] where P ...
U Cclsa(T) U’ Cclsa(T) P; =W implements L

U implements [U’/X]|L € canda(T implements K)
N—— ————

=Q =P

We have size(U;) < 9(P) and size(U;,) < 9(P) for all j, k. Moreover, size(P;) < p. Then the
following inequality holds:

size(Q) = 1 + size(U) + size([U’/X]L)
< I(P) + size(W) - 9(P) + size(L) - 9(P)
= (P) - size(P;)

< I(P) - p-size(P) = §(P)

e Case CAND-IMPL2: Analogously to the preceding case.

e Case cAND-EXTENDS: Then P = Textends K and Q € clsa (T implements K). Because this
derivation cannot end with rule cAND-EXTENDS, the claim follows with the same argumenta-
tion as in one of the three preceding cases.

End case distinction on the last rule in the derivation of Q € canda (P). O

Theorem 10.22. The functions entails(A,P), sub’ (A, T,U), and sub(A,T,U) terminate for
allP, T, and U.

PROOF. By well-formedness criteria WF-TENV{I] WF-TENV] and WF-TENV{3] we know
that A is finite and contractive and that clsa () is finite for every finite 7.

sub’ terminates The weight function from Definition [I0.4]is extended to recursive calls of sub’
in the obvious way:

weight (sub’ (A, T, U) = weight A (T') + weight, (U))

It is straightforward to verify that for each recursive call of sub’, the weight of the recursive
call is strictly smaller than the weight of the original call. Moreover, the algorithms for
checking class (<,) and interface (<,) inheritance terminate because the class and interface
hierarchy is acyclic by criterion Wr-PROG-{5] Thus, sub’ terminates.

entails terminates To prove that entails(A, P) terminates, we show that entailsAux(A, ¥, 5, P)
and subAux(A, ¥, T, U) terminate for finite 4. The claim then follows because entails(A, P)
invokes entailsAux and subAux only with ¢4 = ().

For the sake of a contradiction, assume that a concrete invocation of entailsAux(A, ¥, 3, P)
or subAux(A,¥,T,U) diverges. It is easy to see that infinitely many calls of entailsAux or
subAux must cause divergence:

e There are only finitely many choices for R in line [10] because A is finite.

The algorithms for checking the relations R € sup(R), i € pos™(I), i € pos™(I) and
K <, K terminate because the interface graph is acyclic by criterion Wr-PrROG{5]

The function 1ift terminates because sub’ terminates as shown in the preceding case.

The function unify. terminates by Theorem [10.5]

84



Hence, there exists a call tree t of infinite size. We lead this to a contradiction by defining a
measure p from call tree nodes into N x N that strictly decreases (with respect to the usual
lexicographic ordering on pairs) when moving from a node to any of its children.

Suppose the root node of t is entailsAux(A,¥,3,P) (or subAux(A,¥,T,U)) and define
M = canda(P) (or A = canda(T extendsU)). We have the assumption that clsa(7) is
finite for every finite .7, so . is finite by Lemma Because ¢ is also finite, we now
may define

5=|9|+|#| €N

We have by Lemma [10.19] cache(n) C ¢ U.# for all nodes n in t. Hence, (6 — |cache(n)|,4) €
N x N for all © € N and all nodes n in t. We now define the measure g on nodes in t as

follows:
p(entailsAux(A', 9 3/, T implements K)) = (6 — |¢4],0) e NxN
p(entailsAux(A', 9, 3/, T extends K)) = (6 — |¥4'],2) eNxN
p(subAux(A', 9 T, U)) = (6§ — |4'|,1) eENxN

Finally, we show that this measure strictly decreases when moving from a node to its children.
Assume n is a node in t with children ny,...,n, and suppose i € [n].

Case distinction on the line number of the call site corresponding the n;.

e Case Line We have n = entailsAux(A,¥,0,T extendsU), n = 1, and n; =
subAux(A,¥,T,U). Hence,

p(n) = (0 —19],1) < (0 —|9],2) = p(n)
e Case Line 22k We have

n = entailsAux(A, ¥, 3,T implements I(V))
4y =9 U{oN implements I(V)}
oN implements [(V) ¢ ¢
n; = entailsAux(A, %, false, o F))
Thus, |%| = |¥4| + 1. Hence,
p(ni) = (6 =%l 5) = (6 = |9] = 1,j) < (6 = 19],0) = u(n)

for some j € {0, 1, 2}.

e Cuse Line We have n = subAux(A,¥,T,K),n =1, and ny = entailsAux(A, ¥, true, T implements K).
Thus

p(ny) = (6 —1¢1,0) < (6 — 9],1) = p(n)
End case distinction on the line number of the call site corresponding the n;.

sub terminates In the preceding case, we have shown that entailsAux(A, ¥, 3, P) and subAux(A, ¥4, T,U)
terminate for finite ¢. The claim follows immediately because sub(A, T, U) invokes entailsAux
only with ¢ = () and does not invoke subAux at all. O
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11 Equivalence of Declarative and Algorithmic Versions of
Expression Typing
Lemma 11.1.
(i) A+ T ok if and only if A+, T ok.
(it) AF P ok if and only if Ak, P ok.

PRrROOF. Follows by straightforward induction on the combined size of the given derivations.
Note that A IF P iff A Ik, P by Theorem [6.96}, Theorem Theorem [0.14] and Theorem O

From now on, we use the equivalences and implications of the following corollary implicitly.

Corollary 11.2.

AT <U iff ART<LU (Theorem [6.34), Theorem |6.30)
AP if AP (Theorem [6.34], Theorem [6.56

AR T<U iff ART<U (Theorem (9.9, Theorem 9.1}
AR/T<U iff AR'T<U (Rule SUB-ALG-KERNEL-QUASI
Al P iff Alk P (Theorem Theorem (9.1

AR TG implies A I—q/ T<G (Lemma|6.10
A I—q’ T<U implies ART<U (Rule SUB-Q-ALG-KERNEL )
Ak P implies Al P (Lemmal6.19)

A+ T ok iff AR T ok (Lemma|11.1
A+ P ok iff Ak Pok (Lemma|11.1

Lemma 11.3 (Soundness of entailment for nillable constraints). If A I T7 implements I (W7) —
R then A Ik, R.

ProoF. We first show that
A9 B I—; 7" 10" = V" implies N\;9; 8-,V 10" (169) {eq:aux-lemma::lemm
From A;¥; 3 1} " T U" - V" we get
(Vi) T} =nilor AR T < U;
Bor ((Vi)if T} # U; and T} # nil then i € pos™ (I))
(Vi) if T} = nil then V; = U; else V; = T}

Hence, (Vi) A k' V; < U; and (B or (if V; # U; then i € pos™(I))). We then have by rule
ENT-ALG-LIFT that A;%; 6, V' 1 U: L

We now prove that D::A;¥; 3 I’ T7 implements I({W?) — R implies A; ¥; 3 I, R by induction

on D. The claim then follows with rule ENT-ALG-MAIN.
Case distinction on the last rule used in D.

e (lase Rule ENT-NIL-ALG-ENV: Then
Re A
G implements I (W) € sup(R)
NBIE TG —-T
(Vi) Wi § W;

with R = T implements I (W). We then have by (169)) that A;3; I+, T T G. The claim now
follows with rule ENT-ALG-ENV.
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e (ase Rule ENT-NIL-ALG-TFACE:: Then
A3 I T 1 I(W)
1 € pos™(I)
(Vi) Wi W,

with 77 = T and R = T implements I (W). The claim follows from rule ENT-ALG-IFACE;.

e (Case Rule ENT-NIL-ALG-IFACE2: Then

1 € post(J)

J(V) <, 1(W)
(Vi) Wi & W
with 77 = J(V) and R = J(V) implements I (). The claim follows from rule ENT-ALG-IFACE;.
e (Case Rule ENT-NIL-ALG-IMPL: Then
implementation(X) I(V) [N ] where P ...
N B TH TP 1 [U/XIN - T
(vi) Wi ¢ [U/X]V;
[U/X]N implements [{[U/X|V) ¢ 4

A;9 U{[U/X]N implements I{[U/X]V)};false Ik, [U/X]|P

with R = T implements I({[U/X|V). From A;3;I ) T7 1 [U/X|IN — T we get with (169)
that A; 3; 1 H, T 1 [U/X]N. The claim now follows with rule ENT-ALG-IMPL.

End case distinction on the last rule used in D. O
Lemma 11.4. If I is a single-headed interface, then 1 € disp(I).

PRrROOF. The proof is by induction on the depth of I in the interface inheritance hierarchy. If
the depth is 0 then I’s definition has the form

interface I(X)[Y] where R{... rcsig }

It is now easy to verify that 1 € disp(I).
If the depth is n > 0 then I’s definition has the form

interface I{X)[Y where R] where S{... rcsig }

with (Vi) R; =Y implements J;(T}) by criterion WF—IFACE and the depth of each J; is smaller
then n. By the I.H., we have (Vi) 1 € disp(J;). It is now easy to verify that 1 € disp(I). O

Lemma 11.5 (Completeness of entailment for nillable i)nstraints). If Al T implements I (V)
and T* VI § TV and T} # nil fori € disp(I), then A I} T" implements I(V?) — U implements I (V)
such that AV, Ty < U; for all i and U; = T; for those i with T} # nil ori ¢ pos™(I).

PRrROOF. We first show:

Ifﬁn ﬁTn and A;false; Ik, T" TU” then A;false; I H, 7" Tﬁn - V"
such that AR T; <V; for all i and
Vi =1T; for those i with Ti? # nil or i ¢ pos™ (I). (170) {eq:lemma-aux::lemm

Assume A;¥;false H, T" 1 T" and T7" ﬁTn. By inverting rule ENT-ALG-LIFT, we get A I—aE <
U; for all i and T; = U; for i ¢ pos™(I). By rule ENT-NIL-ALG-LIFT, we have A;¥;false b, T 1
U" — V" for some V. Now let i € [n].
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e If T/ = nil then V; = U;. Hence, A I, T; < V;. If additionally i ¢ pos~(I), then V; = U; = T;.
o If 77 +# nil then V; = T}. With T7 ¢ T; then V; = T}.

This finishes the proof of .

We now show that D:: A;¥; false Ik, T implements I(V) and T? V? § TV and T} # nil for i €
disp(i) imply A;¥; false IF’ T7 implements [(V?) — U implements I (V) such that AV, T; < U;
for all i and U; = T; for those i with T} # nil or i ¢ pos™(I). The claim then follows with rule

ENT-NIL-ALG-MAIN.

Case distinction on the last rule used in D.

e (lase Rule ENT-ALG-ENV: Then

ReA
G implements I (V) € sup(R)
A;false; IR T TG

By (170) we have A;9; 3 F} T? 1 G — U such that U has the desired properties. The claim
now follows by rule ENT-NIL-ALG-ENV.

e (Case Rule ENT-ALG-TFACE:: Then

A;false; I, T 1 I{V)
1 € pos™(I)

with T = T. By Lemma 1 € disp(I). Hence, T} = Ty = T. We get with (170) that
A; 9B T 1 I{V) — T. The claim now follows by rule ENT-NIL-ALG-IFACE; .

e (lase Rule ENT-ALG-IFACE2: Then

1 € post(J)
J(W) 2, I(V)

with T = J(W). By Lemma 1 € disp(I). Hence, T{ = Ty = J(W). The claim now
follows by rule ENT-NIL-ALG-IFACE>.

e (Case Rule ENT-ALG-IMPL: Then

implementation(X) I(V') [N ] where P ...
A B IR T 1 [W/XIN

V=[W/X|V'
[W/X]N implements I (V) ¢ ¢4

A; G U {[W/X]N implements I(V)}; false Ik, [W/X|P

By (170)), we have A; 3;1 &/ 71 [W/X|N — U such that U has the desired properties.
The claim now follows by rule ENT-NIL-ALG-IMPL.

FEnd case distinction on the last rule used in D. O

Lemma 11.6. IfAFTSGl CLTLdAFTSGQ thenAFGlgGQ O’I’AFGQSGL

PROOF. We first note that A - T < G; implies A k' T' < G; by Corollary If Gy = 0bject
or Gy = Object, then the claim is obvious. Thus, assume G; # Object and G5 # Object.

Case distinction on the form of T'.
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o Case T = X for some X: If G; = X or Gy = X then the claim is obvious. Now assume
Gy # X and G2 # X. By Lemma [6.11] we have that

XextendsG; €™ A (i =1,2) (171) {eq:inplus::lemma:m
Define level : TvarName — N as follows. Let 4 = (¥, &) be a directed graph with

¥ ={X € TvarName | X extendsT € A or Y extends X € A}
& ={(X,Y)|Yextends X € A}

A is contractive by criterion WF-TENV-{2] so ¢ is acyclic. Hence, there exists a topological
ordering Xo, X1,...,X,, on ¥ such that (X, X;) € & implies ¢ < j. Then

i ifX e¥ and X = X;

level(X) = {0 X ¢y

We have that
X extends Y € A implies level(X) > level(Y)

We now show that X extends G; €' A for i = 1,2 implies A I—q’ Gi1 <Gqor A I—q’ Gy <Gy
by induction on level(X). Together with (171]), this finishes the case “T' = X”.

— level(X) = 0. Assume X extendsY € A. Then 0 = level(X) > level(Y) which is
impossible because level(Y') € N.
Hence, G; = N; for some N; and X extendsG; € A (for i = 1,2). The claim now
follows with criterion Wr-TENV{4]
— level(X) = n > 0 and the claim holds for n’ < n.
Case distinction on the last rules in the derivations of X extends G; €T A.
+ Case e*-pIrECT / €*-pIRECT: The claim follows with criterion Wr-TENV{4]
* Case €t-sTEP / €*-DIRECT: Then

X extendsY € A
Y extends G; €t A (172) {eq:1::lemma:multi-
X extends Gy € A

By criterion WF-TENV{4] either A Y < G5 or A+ Gy < Y. By Corollary
either A l—q/ Y <Gy or A l—q' Gy <Y.
- Suppose A b, Y < Ga. If Y = Go then A - G < Gy by and Lemma
If Y # G then Y extendsGy €7 A by Lemma Because level(Y) <
level(X) we can use the I.H. on and get the desired result.
- Suppose A K, G2 < Y. By Lemma Go = Z for some Z with either
Y = Z or ZextendsY €t A. If Y = Z = G5 then A + Gy < Gy by (172)
and Lemma Otherwise, Z extends Gy €T A by and Lemma
A+ Gy < Gy by Lemma 6.9
* Case et-piRECT / €t-sTEP: Analogously to the preceding case.
x Case €*-stEP / €™-sTEP: Then

X extendsY; € A

Y] extends Gy €T A (173) {eq:2::lemma:multi-
X extends Y, € A
Y, extends Go €T A (174) {eq:3::lemma:multi-
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By criterion WF-TENV{4]either A Y} < Y5 or A Y, < Y;. We now consider the
case A Y] <Y5, the proof for the other case is very similar. From A+ Y; <Y,
we get A I—q/ Y1 < Y; by Corollary With Lemma either Y7 = Y5 or
Y) extends Y2 €T A. In the following, note that level(Y;) < level(X) for i = 1, 2.
- If Y1 = Y5 then the claim follows by applying the I.H. to and .
- If Y1 extends Yo €t A, then we get by the and the I.H. that either A F
Yo < Gy or A -Gy <Ys,. In the latter case, we have with Y5 extends G, €T
A, Lemma and transitivity that A F G; < Go. If A F Yy < Gy then
A l—q' Y < G; by Corollary With Lemma [6.11 either Y5 = G7 or
Ys extends G; €T A. In the former case, we get with il74 and Lemma
that A F G1 < Ga. In the latter case, the claim follows by applying the I.H. to
Y5 extends G; €T A and .

End case distinction on the last rules in the derivations of X extends G; €T A.

e Case T = N for some N or T = K for some K: Because A I, T < G; and G; # Object we

have with Lemma that T = N and G; = N; (i = 1,2). Hence, N 9. N7 and N <. N,.
The claim now follows by Lemma [7.26]

End case distinction on the form of T. O

Lemma 11.7 (Antisymmetry of kernel subtyping). If Ak’ T <U and AR,/ U < T then T =U.

PrOOF. We proceed by case distinction on the last rules of the two derivations. The only
combinations possible are:

ALG-OBJ / SUB-Q-ALG-OBJ:
,G-CLASS / SUB-Q-ALG-OBJ:
FL / SUB-Q-ALG-VAR-REFL:

ALG-VAR / SUB-Q-ALG-VAR!:

CLASS / SUB-Q-ALG-CLASS:

-IFACE / SUB-Q-ALG-IFACE:

Then T' = Object = U.
Impossible because programs cannot define Object.
Then T'= X = U for some X.

Then T = X, XextendsT' € A,and U =Y, YextendsU' € A,and AR/ T <Y, AR/
U’ < X. By Lemma/[6.11|then T/ = Y’, Y/ extends Y €* A, and U’ = X/, X' extends X €*
A. Hence, we have X extendsY’ € A, Y'extendsY €* A, Yextends X' € A, and

X'extends X €* A. This is a contradiction because A is contractive by criterion WF-
TNV

Then T'= Ny, U = Ny with N7 <. Ns and No <. N;. Because the class graph is acyclic by
criterion WF-PROG{H] we have Ni = Ns.

Then T = K1, U = Ky with K7 <, K5 and Ko <, K. Because the interface graph is acyclic
by criterion WF-PrROG{5] we have K1 = K». O

Lemma 11.8. If A+, Object < T then T = Object.

PROOF. With rule sus-q-aLG-oBJ, we have A k" T < Object. The claim now follows with
Lemma [1.7 O

Lemma 11.9 (Existence of M). If A+ T < G; fori = 1,2 then there exists H with A+ G1MGy =

H.

PrOOF. With Lemma [TT.6] we have either A - G; < G5 or A - G5 < Gy. With rule GLB-LEFT
Or GLB-RIGHT, respectively, we then have A+ G MGy =G or AF G NGy = Gs. O

Lemma 11.10. If A+ Ny M Ny = H then A’ = Ny M Ny = H for any A’.

ProOF. From A - N; M Ny, = H we have w.lo.g. N; <, N,. Hence, A’ - N; < Ns, so the
claim holds. 0
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Lemma 11.11. If A I+ Tlmplements I(U) and A bV implements I(W) such that for all i €
disp(1) there exists T with AR,/ T) < T; and AV, T} <V;, then U = W and T; = V; for all

j & disp(I) U pos~ (I).
PROOF. Define P = A I+ T implements I (U) and Q = A I- V implements I(W). We first prove
the following auxiliary lemma:
If Al P and Ak Q and for all i € disp(I) there exists T, with
AR/ T <T; and AR/ T} <V;, then U =W and T; =V
for all j ¢ disp(I) U pos™(I).
The proof is by induction in the combined height of the derivations of A I’ P and A Ik, Q. We
proceed by case analysis on the last rules of these derivations. The following table lists all possible

cases; cases marked with ¢ can never occur because they put conflicting constraints on the form
of P and Q. The remaining cases are dealt with shortly.

(175)

Al Q
] | ENT-Q-ALG-ENV [ ENT-Q-ALG-IMPL | ENT-Q-ALG-IFACE |
Alky" P [ BENT-Q-ALG-ENV (1) (2) ¢
ENT-Q-ALG-IMPL (2) (3) ¢
ENT-Q-ALG-IFACE ¢ ¢ (4)

For (1), (2), and (3) we have T = G and V = G’ for some G and G’. Hence, by Lemma m
for all i € disp(I) exists H; with A+ G; NG, = (176)

1. Then P € sup(A) and Q € sup(A). The claim now follows with criterion Wr-TENV-7]

2. Then, w.lo.g., P € sup(A) and Q = [U’/X](N implements I(W’)) for some

implementation(X) I(W’) [N] where P ...

As in the preceding case, the claim follows with criterion WF-TENV{7]

3. Then

implementation(X) I(U’) [N ] where P ...

"y [M] where Q ...

implementation(Y) I

such that P = o(N implements I(U’)) with dom(¢) = X and Q = 7(M implements I (W’))
with dom(7) =Y. We have by (176 and Lemma |11.10| that

for all 4 € disp(I) exists H; with § - oN; M7 M; = H;
The claim now follows with criterion Wr-ProG421
4. Then T = J(U"), 1 € pos*(J), J(U') <, I{U), and V = J'(W'), 1 € pos*(J'), J'(W’) <,
I{(W). Because I is a single-headed interface, 1 € disp(I) by Lemma Hence,
AR T < J({T)
AR T < J (W)
By Lemma one of the following holds:

e 7] = X and X extends K € A with K <, J(U’) and X extends K’ €™ A with K’ <,
J'(W'). With Lemm and Lemmathen AR'X<I{U)and AR X < I(W).
5

Criterion WF-TENV45| now yields U = W. as required.
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o T = L with L <, J(U") and L <, J(W"). With Lemma [6.2] then L <, I(U) and
L <, I{(W). Hence, U = W by criterion Wr-Proc{7}

This finishes the proof of .
From A IF P and A I- Q we have A Ik, P and A I Q. By Lemma there exists 7” and V/
such that for all ¢
AT <T/
T, =T/ if i ¢ pos™ (1)
Al T" implements I(U)
ARV, <V
Vi=V/ if i ¢ pos(I)
A |k V' implements I (W)
With Lemma [6.5] then A B,/ T/ < T/ and A R/ T/ < V/ for all i € disp(I). With now

U=W and T = V/ if i ¢ disp(I) Upos™ (I). Assume i ¢ disp(I) Upos~(I). Then i ¢ pos~(I), so
T, =T/ and V; = V/. Hence, T; =V, for i ¢ disp(I) U pos~(I). O
Lemma 11.12 (Finiteness of set of kernel supertypes). The set {U | A,/ T < U} is finite for
any T and A.

PROOF. We prove that there exists a bound on the size of all types U € {U | AR,/ T < U}.
Then, because the set of types of a certain size is finite, {U | A k' T < U} must be finite.

Let 9 € N be a bound on the size of A and the program’s superclasses and superinterfaces.
That is,

e if P € A then size(P) <,

e if class C(X) extends N where P ... then size(N) < 6,
e if interface I(X)[Y whereR| ... then size(R) < 4.
Define the weight of a type as follows:

weight(X) = max{weight(T") | X extendsT € A}
weight(N) = size(N)
weight(K) = size(K)
(We use the convention that max() = 1.) The definition of weight is well-formed (i.e. terminating)
because A is contractive by criterion Wr-TENVI2] Moreover, weight(7) € N* and weight(T') >
size(T') for all types T
Define the level of a type as follows:
level(Object) =1
level(C(T)) =n+1 if class C(X) extends N ... and level([T/X]|N) =
level(I(T)) if interface I{X)[Y] ...
) =

level(1(T) if interface I(X)[Y whereR] ...,
R; =V, implements K;, and
n = max;(level([T/ X]K;))
level(X) = max{level(T) | X extendsT € A}

The definition of level is well-formed (i.e., terminating) because the class and interface graph is
acyclic by criterion WF—PROG Moreover, level(T') € NT for all types T. We now show that

A |—q/ T < U implies weight(U) < glevel(™) . weight(T) (177) {eq:weight-dec::lem

The proof of (177) is by induction on the derivation of A ' T < U.
Case distinction on the last rule used in the derivation of A I—q' T<U.
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e (ase suB-Q-ALG-0BJ: Obvious.
e (lase SUB-Q-ALG-VAR-REFL: Obvious.
o (ase suB-Q-ALG-VAR: Then T = X and

X extends T’ € A A l—q' T <U
A l—q/ X<U

By the LH. weight(U) < §'®e(T") . weight(T") < §'®¢'(X) . weight(X).
e Case SUB-Q-ALG-CLASS: Then T'= N, U = N’, and N <, N’. We now show that
N <. N’ implies size(N') < glevel(V) - size(N) (178) {eq:size-dec-N::lem

We then have weight(N’) = size(N’) < §'*¢'(V) . size(N) = §'evel(N) . weight(N) as required.
The proof of (178)) is by induction on the derivation of N <, N'.

Case distinction on the last rule used in the derivation of N <1, N’.

— Case EXT-C-REFL: Obvious.
— Case ExT-c-supPER: Then N = C(T) and

class C(X) extends M ... [T/X|M <, N’
c(T) <. N’
We have
size([T/X|M) < size(M) + max;(size(T;)) - (size(M) — 1)

< size(M) + (size(N) — 1) - (size(M) — 1)

= size(N) - size(M) — size(N) + 1

< ¢ - size(N)

level(N) = level([T/X]M) + 1

Hence,

I.H. S _
size(N') < §'evelT/XIM) . size([T/X]|M)
< (slevel([T/iX}M) .5 size(N) _ 5IeveI(N) . size(N)
End case distinction on the last rule used in the derivation of N <, N’.

e (Case suB-Q-ALG-TFACE: Hence, T = K, U = K', and K <, K’. Similar to the preceding case,
we show that K <, K’ implies size(K’) < §'®¢(5) . size(K) by induction on the derivation
of K <, K'. The claim also follows analogously to the preceding case.

End case distinction on the last rule used in the derivation of A Fq’ T<U. O
Lemma 11.13. If T € MUBA(%) then AR U <T for allU € % .
PRrROOF. Obvious. O

Lemma 11.14. Let .7 be a non-empty set of types. Suppose AV, T <V for all T € F. Then
there exists a V' € MUBA(T) such that AR,/ V' < V.
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PROOF. We argue by contradiction. To do so, we construct an infinite chain Uy, Uy, Us, ... such
that U; # U; for all ¢ # j and A R/ T <U; forall T € .7 and all i. Hence, because .7 # (), there
exists some T' € 7 such that the set {U | AR,/ T < U} is infinite. This is then a contradiction
to Lemma

Here is how we construct the infinite chain Uy, Uy, Us, .. .:

e Assume V = Uy ¢ MUBA(7). (Otherwise, choose V' = Uy and we are done.) Hence, there
exists U # Uy with AR,/ T < U, forall T € .7 and A, U; < Up.

e Assume U; ¢ MUBA(.7). (Otherwise, choose V' = Uy and we are done.) Hence, there exists
Uy #A U, with AR/ T<Uyforal T €. and AR, Uy < Uj.

e Assume U; ¢ MUBA(.7). (Otherwise, choose V' = U; and we are done.) Hence, there exists
Ui+1 7& Ul with A Fa/ T < Ui+1 forall T €  and A Fa/ Ui+1 < Ul

From this construction we have:

AR'T<U, forallieN,TeZJ
U; #U;41 forallieN
A l_a/ Ui+1 S Uz for all 4 eN

We still have to verify that U; # U; if ¢ # j. Suppose ¢ < j with U; = U;. Because subtyping is
transitive we have A k,’ Uj < Ujt1. Hence, A R U; < Uiyq. But we also have A R,/ Uy < U
With Lemma [I1.7 now U; = U;11 which is a contradiction. O

If we choose V' = Object in Lemma [I1.14] then we get the following corollary:
Corollary 11.15. For any set of types 7 # 0, MUBA(T) # 0.

Lemma 11.16. Let 7 be a non-empty set of types. If G1 € MUBA(Z) and Gy € MUBA(S)
then G1 = Gs.

PROOF. Because 7 # (), there exists T € .7 such that A ' T < G; for i = 1,2. By
Lemma either A ' G < Gy or AR Gy < Gy. W.lo.g assume A ' G; < G,. But
because G2 € MUBA (7)) we must have that G1 = G». O

Lemma 11.17. If bounda(T) = N then AT < N.

ProoF. Obvious. O
Lemma 11.18. If AR’ T < N then bounda(T) = M with M <, N.

PRrROOF. Follows with a straightforward case distinction on the form of 7. O

Lemma 11.19.
(i) If N <, N’ then ftv(N') C ftv(N).
(i) If K 9, K' then ftv(K') C ftv(K).
(iii) If AR/ T <U then ftv(U) C ftv(A, T).
PROOF. We prove all three parts by straightforward inductions on the given derivations. O

Lemma 11.20 (Strengthening). Let A’ = A, X implements K and A" = A, X.
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(i
(i) If A" P ok and X ¢ ftv(A, K, P) then A+ P ok.

If A"+ T ok and X ¢ ftv(A, K, T) then A+ T ok.

)
)
(iii) If A" F T ok and X ¢ ftv(A,T) then A+ T ok.
(iv) If A"+ P ok and X ¢ ftv(A,P) then A+ P ok.

ProOF. We first prove:

(a) If Dy = ARV < U then ARV <U.

(b) If Dy A’ IR P and X ¢ ftv(A, K, P) then Ak, P.

(¢) If D3 = A"V <U and X ¢ ftv(A,V,U) then A,V <U.
(d) If Dy :: A" I P and X ¢ ftv(A, K, P) then Al P.

The proof of @ is straightforward because kernel subtyping does not use implements constraints.
The proof of (]E[), , and @ is by induction on the combined height of Dy, D3, and Dy.

(]ED Case distinction on the last rule of the derivation of A’ \Fq/ P.

— Case rule ENT-Q-ALG-ENV: Then R € A’ and P € sup(R). Assume R = X implements K.

By Lemma we have P = X implements K’. But this is a contradiction to the as-
sumption X ¢ ftv(P). Hence, R # X implements K, so R € A and the claim follows
with ENT-Q-ALG-ENV.

— (ase rule ENT-Q-ALG-IMPL: Then

implementation(Y) I(T) [N ] where P ... Al [U/YP
A IR/ [U/Y](N implements I(T))
=P

With criterion Wr-Tvpr]1] we have X C ftv(N). With X ¢ ftv(P) we then have X ¢
ftv(U). Hence, X ¢ ftv([U/X]P). Applying part (d) of the LH. yields A I, [U/X]P,
so the claim follows with ENT-Q-ALG-IMPL.

— (ase rule ENT-Q-ALG-IFACE: Obvious.
End case distinction on the last rule of the derivation of A’ I, P.
If the last rule of D3 is sSUB-Q-ALG-KERNEL, then the claim follows by @ Otherwise, we have
ANH'V<W
A IR, W implements L

with U = L. By (ED then A " V < W. With Lemma [11.19 we have ftv(W) C ftv(V, A).
Hence, X ¢ ftv(W). With part (b)) of the L.H. we then have A I’ W implements L. The
claim now follows with rule sUB-Q-ALG-IMPL.

@ Follows trivially from @ and parts , of the I.H.
Next, we prove:

If A" Iby P then Ak, P (179)

This claim holds trivially because constraint entailment does not use the type variable component
of A” at all.

Using @ and ([179)), we easily show the original claim by an induction on the given derivations.

O
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Lemma 11.21 (Interface inheritance propagates well-formedness). If K <, L and A+ K ok then
A+ L ok

PROOF. We proceed by induction on the derivation of K <, L
Case distinction on the last rule of the derivation of K <, L.

e (Case rule ExT-I-REFL: Obvious.

e (ase rule ExT-1-sUPER: Then
interface I({X)[Y where R] where P ... R; =Y implements K’ [V/X]K' <, L

AFIV)<L

with K = I(V). We now prove that A I [V/X]K’ ok. The original claim then follows by
the I.H.

Because A + K ok, we have

A,Y implements I{V),Y IF [V/X]|R, P
ARV ok

with
Y ¢ ftv(V,A) (180)

Legm& gives us A, Y implements /(V),Y I V ok. The underlying program is well-typed,
so R, P, X,Y - R; ok. Hence, with Lemma

A,Y implements [(V),Y  [V/X]R; ok

Then A,Y implements I{V),Y F [V/X]K’' ok. By criterion WF—IFACE Y ¢ ftv(K').
With (180) and two applications of Lemma [11.20} we get A F [V/X]K’ ok as required.

End case distinction on the last rule of the derivation of K <, L. O

Lemma 11.22 (Kernel subtyping propagates well-formedness). If - A ok and A + T ok and
Al—q’TgUthenAl—Uok,

PROOF. Straightforward induction on the derivation of A k," T' < U, making use of Lemma
and Lemma [[1.21] O

Lemma 11.23 (sup propagates well-formedness). If A+ R ok and 8 € sup(R) then A+ § ok.

PROOF. We proceed by induction on the derivation of § € sup(R). If this derivation ends with
rule sup-1p, then the claim holds trivially. Otherwise, we have

interface I(X)[Y where S]where P ... U implements (V) € sup(R)
[V/X, 0775, € sun()
—_—
=s

By the I.H., we have A - U implements I (V') ok. This derivation must end with rule OK-IMPL-CONSTR.
Inverting the rule then yields

AR [V/X,U/Y]S, P
AFU,V ok

The underlying program is well-typed, so we have S, P, X,Y F S; ok. With Lemma then
A F § ok. O
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Lemma 11.24 (Quasi-algorithmic entailment propagates well-formedness). Assume = A ok and
AFT ok. If Al T implements I(V) then A F T implements I(V) ok.
PROOF. We have
(Vi) AR'Ti <U; B
(Vi) if T; # U; then i € pos™ (1) Al U implements (V)
A by T implements I (V)

ENT-Q-ALG-UP

By Lemma [TT.22]

AT ok (181) {eq:u—ok::lemma:qua
Case distinction on the last rule of the derivation of A I, U implements (V).

e Case rule ENT-Q-ALG-ENV: Then R € A and U implements I(V) € sup(R). With - A ok we
have A F R ok. By Lemma [11.23| we have A F U implements I (V) ok.

e (uase rule ENT-Q-ALG-IMPL: Then

implementation(X) I(V') [N ] where P ... Al [W/X])P

A lrq [W/X](N implements 1(V7))

=U implements I (V)

Because the underlying program is well-typed, we have P, X F Niﬂ)lemeng I{V') ok.
Moreover, with (181) A = [W/X]N ok and by criterion WF—IMP X C ftv(N). Hence,
with Lemma A+ W ok. Thus, with Lemma AF [W/X](N implements I(V')) ok.

e (ase rule ENT-Q-ALG-IFACE: Then
1le pos+(J) J<W> <, I(V>
Al J(W) implements I(V)

ENT-Q-ALG-IFACE

=U implements I (V)

From A+ J(W) ok and Lemma [11.21| we have

A+ I{V) ok (182) {eq:1::lemma:quasi-
Assume
interface I{X) Y where R where P... (183) {eq:2::lemma:quasi-
From then
A,Y implements I(V),Y IF [V/X|R, P (184) {eq:3::lemma:quasi-
Y ¢ ftv(A, V)

With A Ik, J(W) implements I(V) we also have A I J(W) implements I{V) by Corol-
lary Hence,

AlF[J(W)/Y](A,Y implements I(V),Y)

Thus, with Corollary applied on ((184)
AR [J(W)/Y]IV/X]R, P (185) {eq:4::lemma:quasi-

=[J(W)/Y,V/X|R,P

We then have with A = J(W) ok, (182)), (183)), (185]), and rule ox-1MPL-CONSTR that

A+ J(W) implements I(V) ok
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End case distinction on the last rule of the derivation of A I, U implements I(V). Let

interface I(X)[Y where R]where P...

Because we just proved that A - U implements I(V) ok, we have

AFV ok

Al [V/X,U/Y|R,P

We now prove by induction on the number of indices i with 7; # U; that A I- [V/X,T/Y|R, P.
The original claim then follows with rule OK-IMPL-CONSTR.

e Assume there are no indices i with T} # U;. Then A I [V/X,T/Y]R, P holds trivially.

e Assume i such that T; # U;. The LH. then gives us that A I+ [V/X,T'/Y|R, P where

T, ifi#j
ﬂ:{ﬁ'p_-
j 1Ir7=7

From T; # U; we have i € pos™(I). Hence Y; ¢ ftv(P). Thus,

A [W/X,T]Y|P

Now suppose Y; € ftv(G implements J'(W’)) for some G implements.J'(W’) € R. Then we have
with ¢ € pos™(I) and well-formedness criteria WF—IFACE and WF—IFACE that Y; ¢ ftv(W’)
and that Y; € ftv(G,) implies Y; = G; and j € pos™(J'). Hence, with A I," T; < U; and (possibly)
some applications of rule ENT-UP, we also get A IF [W/X,T/Y]R, as required. O

Lemma 11.25. If+ A ok and A F T ok and bounda(T) = N, then A+ N ok.

ProOOF. Follows easily by case distinction on the rule used to derive bounda(T) = N. We use
Lemma [[1.22] for the case BOUND-VAR. O

Lemma 11.26. If A I/ T7 implements I(U?) — T implements I(TU) and T} # nil then T = T;.
PRrROOF. Follows by straightforward induction on the given derivation. O
Lemma 11.27. If A&, X < I(T) then 1 € pos—(I).

PrOOF. With A k" X < I(T) also A k" X < I(T). We then proceed by induction on the
derivation of A I—q/ X<I <T> The derivation must end with an application of rule SUB-Q-ALG-VAR.
Hence, X extendsT € A and A H,' T < I{T).

Case distinction on the form of T.

e Case T =7Y: The claim then follows from the I.H.
e Case T'= N: Impossible by Lemma [6.11

e Case T = J(U): Then J(U) <, I{T) by Lemma and 1 € pos~(J) by criterion WF-
TENVI6l The claim now follows with Lemma [6.20

End case distinction on the form of T. O

Definition 11.28 (- A ok and A T ok). A type environment A is well-formed, written = A ok,
if and only if A+ P ok for all P € A. A wvalue environment T is well-formed under the type
environment A, written A+ T ok, if and only if A-T : ok forallx:T €T.
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Lemma 11.29. Assume mtypep (m®, C(W)) = (X) Uz" — U where P and let o be a_substi-
tution with dom(o) = X. Suppose = A ok and A = N ok. If N I, C(W) and A I 0P, then
a-mtypeS(m, N) = (X)Uz" — U’ where P such that At oU’ < oU.

PROOF. From mtype, (m¢, C(W)) = (X)Uz" — U where P we get

class C(Y) extends M where Q{... m : msig{e}}
mj =m°

(X) Uz" — U where P = [(W/Y]msig (186) {eq:def-msig-j::lem

Case distinction on the last rule in the derivation of N <, C(W).
e Case BxT-c-rEFL: Then N = C(W), so the claim follows with rule ALG-MTYPE-DIRECT and

reflexivity of subtyping.
e Case ext-c-supEr: Then N = D(V) and

class D(Z) extends M’ where Q' {... m': msig’ {e'} } V/ZIM' 4, C(W)
D(V) <. C(W)

Clearly, D(V) <. [V/Z]M', so we get with A - N ok and Lemmathat AF[V/ZIM' ok.

Case distinction on whether or not m € m/'.

— Case m ¢ m’: The claim then follows from the I.H. and rule ALG-MTYPE-SUPER.

— Case m € m/: Assume m = m}. Because the underlying program is well-typed, we
have

Q',Z = m} : msig} {e;} okin D(Z)
Hence,
override-okg; (m; : msig;, D(Z))

With D(V) <. C(W) and Lemma there exists W’ such that

D{(Z) <. C(W')
V/Z\W =W

(187) {eq:subst-vz::lemma
By inverting rule OK-OVERRIDE
Q',Z + msig; < [W']Y]msig,
Assume
msig, = (X"")U" 2" — U"' where P

msig; = (X")U" z" — U" where P”

Then by rule suB-msiG

X7 — X7
Um = [W Y |0”
T —
P =[W']Y]|P" (188) {eq:p’’’::lemma:mty
Q.Z,P". X"-U" <[W'/Y|U" (189) {eq:sub::lemma:mtyp
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From (T50)

Moreover, we have with (187) and the fact that Z N fev(U”, U, P") = ()
V/Zw/Y|(U",U",P") = W/Y|({U",U",P") = (U,U,?) (190)

Hence, we have with rule ALG-MTYPE-DIRECT

3
N

msig;
Z](( ///> U/// " — U/// where P///)
Z]((X) [W’/Y]U”:r — U" where [W'/Y]|P")
Y [W/Y|U" 2 — [V/Z]U" where [W/Y|P"
VUx — [V/Z]U" where P

a-mtype®(m, D(V)) =

S

32\ EE\ 3

To finish this case, we still need to show that for U’ = [V/Z]U"" we have A - ocU’ < oU.
From the assumption A = D(V') ok we get A II— [V/Z}@ W.lLo.g. XNftv([V/Z]Q') = 0.

Hence, A IF o[V/Z]Q'. From (188) and and the assumption A IF 0P we get
A I+ o[V/Z]P7. Thus, with (189) and Corollary

A oV/ZIU" < aV/ZIW']YU"

But with (190) we have o[V/Z][W'/Y]U" = oU.
End case distinction on whether or not m € m/.

End case distinction on the last rule in the derivation of N <, C(W). O

Lemma 11.30. Assume mtypen(m,T) = (X)Ux" — U where P and let o be a substitution with
dom(c) = X. Suppose = A ok and A+ T ok. If A+T' < T, A+ T; < oU,; for all i € [n],
and A - 0P, then a-mtypen (m,T",T) = (X)U'x" — U’ where P such that A+ T; < oU! for all
i€[n] and At oU' <oU.

PrROOF. Case distinction on the form of m.

e Case m = m®: Then T = C(W). We have by Lemma that A B’ T" < C(W). By
Lemma [[T.18 we have

bounda(T') = N
N Q. C(W)

With Lemma we get A = N ok. The claim now follows with Lemma [T1.29}
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e Case m =m': From mtypen(m,T) = (X)Uz" — U where P we get

interface I(Z') [7l where R] where P {... rcsig }

rcsig; = receiver {m : msig}

m = my
msig,, = (X)U"” x — U" where P”
A IF T implements I (W) (191) {eq:entails-mt’::le
T]'» =T
(U,U,P) = [1"/Z,W/z'|(U",U", P") (192) {eq:eqs-up::lemma:m

By Lemma [6.32] there are two possibilities.
Case distinction on the possibilities left by Lemma [6.32

— Case 1st possibility:

0= A0
T! = K; for all i € .M

i € pos” (I) for all i € M (193) {eq:nil-neg::lemma:m
T! =G, for all i € A3 (194) {eq:n2-gtype: :lemma

A |+ T" implements [ (W) for all T” with T) = G, for all i € 45 (195) {eq:impl-for-all::l

Define for all ¢ € [I]:

tribx., (U7, T if i # j
A con r! /A’Zi( 77) _ 1 Z#J (196) {eq:def-set-vi::lem
contriby. (Z; U, T'T) ifi =
nil if 7,7 = nil
Vi? _ Ti/ if 4//1,? #nil and i € A5 (197) {eq:def-vi::lemma:m

Object if %’ # nil and i € .M
We now prove

for all i € [l], either V" = nil
?

or V' #nil and AV, V] <V for some V] € ¥ (198) {eq:aux::lemma:mtyp

Assume 7 € [I].

Case distinction on whether or not %’
* Case ¥’ = nil: Then V;* = nil. Thus, holds for this specific i.
* Case ¥’ # nil: Define

= nil.

T ={T, 1 q € [n],U; = Z;} U (if i = j then {T"} else 0)
Then
”Vi? = MUBA.Z; # nil (199) {eq:vi-mub::lemma:m
by definition of contrib’. With Corollary [11.15{ we get %" # ().
If i € A, then V' = Object, so (198)) holds for this specific .
Now suppose i € A5. Then T} = G; by (194). From the assumptions we get

(Vg € [n]) A+T, <oU,
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Let g € [n] such that U} = Z;. W.Lo.g., X Nftv(T") = (). Hence, with
oU, =0T =T, =G,
Thus, with Lemma [6.16
AR'T,<T!
If i = j then we also have T} = 7] = T', so by the assumption A - T" < T
AFT <T!
Then again with Lemma [6.16)
AR T <T!
Hence,
AR T<T forall T € 7
By and Lemma there exists V/ € %, such that
ARV <T]

But V;* = T} because i € 5.

End case distinction on whether or not %" = nil.
This finishes the proof of ([198|).
Now define

M = {V implements [(V") | (Vi € [I]) if #;" = nil then V;’ = nil (200) {eq:def-set-m::lemm
else define V;’ such that
ARV <V for V€ ¥,
A IF V7 implements I (nil) — V implements I(V")}

We now show that .# # (). Define for all i € [I]

? .
V;©  otherwise

JTH:{Iz if V7 = il (201) {eq:def-t’’’::lemma
With and the definition of V,’:
A IFT" implements I (W) (202) {eq:entails::lemma:
Clearly, Vil # T77 W and V;’ # nil if i € disp(I). Hence, by Lemmam
A IF V7 implements I (nil) — W’ implements I (W)
for W’ such that
T =W/ if Vi’ # nil or i ¢ pos™(I) (203) {eq:ti’’’-eq-wi’::1
With we thus have
W' implements I (W) € .4 (204) {eq:elem-M::lemma:m
S0

MF0D (205) {eq:M-not-empty::1le
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Moreover, for all V implements I (V") € .# the following holds:

AR T, <V;forallice€ll],qé€ [n] with Uy, = Z; (206) {eq:1::lemma:mtype-
ART < V; (207) {eq:2::lemma:mtype-

V=W (208) {eq:3::lemma:mtype-

V; =T/ for all i € [I],i ¢ disp(I) U pos™ (I) (209) {eq:4::lemma:mtype-

x Equations (206]) and (207)) follow from (200) and (196) and with Lemma [11.26
x To prove equations (208]) and (209)), proceed as follows: We have by Lemma m

and that

A |+ V implements [ (V")
With we get

A |+ T" implements I (W)

Suppose i’ € disp(I). Clearly, ¥/ # nil. Thus, using Lemma [11.26] (204)), (203)),
and (200]) there exists V;,, V/ € ¥/ such that

A |_a/ V;// < Vi
AR Vi <T)

Define 7" = T" if i’ = j and T" = T, for some q € [n] with U] = Z;» otherwise.
By (196]), the definition of contrib’, and Lemma [11.13|we have

AR'T <V,
AR T <V

Hence,

A l_a/ T <V
AR T <TY

With Lemma [TT.11] we then get
V=W
Vi =T/ for all i ¢ disp(I) U pos™ (1)

This proves (208). Now assume ¢ ¢ disp(I) U pos~(I). Then ¢ € A5 by (193)). By
(201) and (197) we have T} = T!. This proves (209).

Define
i iU = Z;
p = Z, ' ! (210) {eq:def-p::lemma:mt
nil otherwise
Now assume
pick—constrg/// =V implements I (V") (211) {eq:assum::lemma:mt

for some V implements I (V). (We will prove (211) shortly.)
We then can use rule ALG-MTYPE-IFACE to derive

a-mtypen (m, T', T) = (V]Z, V7] Flmsig,
=V/Z,v"/Z'(X)U"x — U" where P”)
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From criterion WF—IFACE we have Z N ftv(P”’) = (). With (192)) and (208) we thus
get

V/Z,V"]Z'|P" =P

Now suppose i € [n]. Define U} = [V/Z,V"/Z'|U}.
x If ZNftv(U!") = 0 then with (192) and (208)

oU!l =olV/Z,V"]Z'\U! = a[V"]ZU!' = oU;

We now get
A+T; <ol

by the assumption A - T; < oU;.
« If Z N ftv(U]") # 0 then by criterion WF—IFACE U/ = Zy for some ' € [l].
W.lo.g.,, X Nftv(V) = (. Hence,

oU, = o[V/Z,V"]ZNU! = oVi = Vi

With we have
AR'T; <Vy
Hence,
AFT; < O'Uil
Thus, A+ T; < oU] for all i € [n].
Define
U=z, vrjzu" (212) {eq:def-u’::lemma:m

We still need to prove A F oU’ < oU and (211)).
Case distinction on whether or not U” € Z.

x Case U" ¢ Z: Then Z N ftv(U"”) = () by criterion WF—IFACE By (210) we have
p’ = nil. Then (211)) holds trivially by rule PICK-CONSTR-NIL. Moreover, we have

with (192)) and (208)) that

oU =o|V/Z,V"|ZNU" = o[V"]Z'|U" = oU

x Case U" € Z: Then U" = Z; for some i € [I] by criterion WF-IFACE By (210)
we have p° = i. Moreover,

i ¢ pos~(I) (213) {eq:i-not-neg::lemm
In the following, we use the notation impl(R,q) to denote the g-th implementing
type of R; that is, impl(T implements K, q) := T,,.
Case distinction on whether or not V;’ = nil.

- Case V' = nil: By 77 = nil, so we get by and the definition of
contrib’ that Z; ¢ U” and i # j. Thus, it is easy to verify that i ¢ disp(). With
then i ¢ disp(I)Upos™(I). Hence, for all R € .#, impl(R, i) = T/ by (209).
By rule PICK-CONSTR-NON-NIL we get (211). Obviously, V implements I(V") €
M, so V; =T/. With ([192), (212), and the fact U” = Z; then

oU' = o[V/Z,V"]Z|U" = oV; = oT! = oU
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- Case V;* # nil: Because of (213) we have by (193) and (197)

i€ M (214)
v =1
V" % nil (215)
Suppose R € .#. By and
R =... implements [ (W)
With , Lemma and Lemma
AlFR
Ak Viq <impl(R, i) for some Vi x € ¥’ (216)
Next, we show that
impl(R, i) = Gi» (217)

for some G; &. Assume that this is not the case; that is, impl(XR, ) is an interface
type. Because of (213]) we get by Lemmam

0= {1}
R = J(W") implements [ (W) (218)
J(W7) <, I(W) (219)

1 € pos™ (1)

1 € pos™(J)

Hence, i = j = 1. Because 1 € pos*(I) we have Z; ¢ ftv(U”). With (214)) and
(194) T’ = G for some G, so we have with (196]) and the definition of contrib’
that 7;' = {G}. With (216) and (218) then

ARG < JWT)
By Lemma [6.11] we then have G = X for some X. Thus, by Lemma [11.27]
1 € pos™(J)

With (219)) and Lemma then also 1 € pos™(I), which is a contradiction to
(213]). This finishes the proof of (217]).

Our next goal is to prove that there exists some R’ € .# such that

AR impl(R')i) <impl(R, i) (220)

for all R € . Together with (205]), this allows us to use rule PICK-CONSTR-NON-NIL

to derive (211)), yielding
pick—constri/// =V implements I[(V") = R’ (221)

W.lo.g., assume that impl(R,i) # Object for all R € .. (If impl(R,i) =
Object then (220]) holds trivially for this R.) Hence, we have with (217)

impl(R,i) = G; % # Object

With (216)), Lemma and Lemma we then get
¥ 3 Vix = Hi» # Object (222)
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By (196) and the definition of contrib’

¥ =MUBA ({T, | ¢ € [n], U} = Z;} U (if i = j then {T"} else 0))

=7

Hence, because V; ¢ € %", we have with Lemma [11.13
AR'T, <Vig forall g€ [n],U; = Z;
AR'T <Vigifi=j
By (196)), (215]), and the definition of contrib’, we get .7 # 0. By (216)), (222)),
and Lemma [11.16] we get that there exists V; € #;” such that V; = V; » for all
R € . Hence, with (216)),
ARV, <impl(R,4) (223) {eq:one-vi-sub-impl

for all R € .#. Now suppose R1, Ry € .#. We then have A " V; < impl(Ry, i)
and Ak, V; <impl(Rg, i), so with Lemma and (217)

AR impl(Ry,4) < impl(Rg,4) or Ak, impl(Rq, i) < impl(Ry, 1)

But with and Lemma[11.12] we know that the set {impl(R,i) | R € .4} is
finite. Thus, there exists some R’ € .# such that A K, impl(R’,i) < impl(R, ).
This finishes the proof of and thus the proof of (211)).

Finally, we prove A - oU’ < oU. With we have some R” € .4 such that

lmpl(fR”,z) — W'L/ i Til// ‘/i? £ T\Z/
By (@20) then
AR impl(R,i) < T/ (224) {eq:impl-sub-ti’::1

We also have (note U"” = Z;)

v 2 iz vz = [Vz, vz z; = V; B impl(R',4)

UT{

W.lo.g., X Nftv(V) =0 = X N ftv(T’). Thus, with (224), A + oU’ < oU, as
required.
End case distinction on whether or not V;* = nil.

End case distinction on whether or not U” € Z.

— Case 2nd possibility:

[l = {1}
1 € post(I)
T=T =K (225) {eq:t-eq-k::lemma:m
K g, I(W) (226) {eq:k-extends-iw::1

(By abuse of notation, we identify pos(K) with pos(J) for K = J(T').) Because 1 €
pos™ (I) we have

Zy ¢ fv(U") (227) {eq:zil-notin-u’’::1
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Define

¥ = contribly., (Z1 U, T'T) = MUBA{T"} = {T"}
p’ = (if U” = Z; then 1 else nil)
M ={V implements [(V") | V' € ¥}, AR V' <V, (228)
A IRV implements I (nil) — V implements I (V")}
{V implements [{V") | Al T' <V,
AIF 'V implements I (nil) — V implements I(V")}

We now prove that there exists some 7" such that

T" implements [(W) € .4 (229)
AFT' <K (230)

From the assumption AFT' < T and T = K we get AH, T/ < K.
Case distinction on whether or not A R’ T7 < K.

x Case A ' T' < K: From (191) we have A Ik, K implements (W), so with

Lemma we get that K implements I(W) € .#. The claims (229) and (230)
then follow for 7" = K.

x Case not A, T" < K: Hence, by inverting rule sUB-Q-ALG-IMPL,

AR'T <T"
Al T" implements K (231)

By rule sus-mvpL then A =7" < K. This proves (230). With (226, Lemma [6.26}
and Lemma we get A Ik, T" implements I(W). With Lemma and (228))
then

T" implements (W) € .4

This proves .
End case distinction on whether or not AR’ T < K.
This finishes the proof of and .
Let R € .#. By and Lemma [11.3}

Al R (232)
AR T <impl(R,1) (233)

Moreover, we have with Lemma [11.11} (229)), and (228) that
R = Vg implements I (W) (234)

for some V.
Case distinction on the form of p’.

% Case p’ = nil: Then U” # Z,. By criterion WF—IFACE

Moreover, by (229) we know that .# # (), so with (234))

pick—constr’i/// = V implements I (W)
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for some V implements I(W) € .#. We then have by rule ALG-MTYPE-TFACE and
@27

a-mtypen (m, T',T) = [W/Z'|msig,
=1[1"/Z,W/Z"|msig,

"N

= (X)Ux — U where P

as required.
Case p* # nil: Then p” = 1 and U” = Z;. Hence

1 ¢ pos™(I) (235)
We now prove that there exists some R’ € .# such that
AR impl(R',1) <impl(R,1) for all R € .4 (236)

In the following, we assume w.l.o.g. that impl(R,1) # Object for all R € .#. (If
impl(R,1) = Object then holds trivially for this R.)
Case distinction on whether or not there exists R € .# with impl(R’,1) = L for
some L.

- Case there exists R’ € .4 with impl(R’,1) = L for some L: Then we have

A by L implements I (W) by (232). Hence, Lemma and (235]) give us that
L <, I{W), so with (233]) and Lemma |6.5{ we then have

AR'T < I{W)

If T’ = X then, by Lemma(11.27} 1 € pos™(I), which is a contradiction to (235)).
If 7" = N then, by Lemmal|l1.27, 1 € pos~ (), which is a contradiction to
Finally, we consider the case where T = K’. Because impl(R,1) # Object for
all R € .#, we have with and Lemma that for all R € .#:

impl(R,1) = Ly for some Ly

K' <, Ly (237)
With (234), (232), (235), and Lemma [6.32] we get
LR <, [<W>

1 € post (L)
With Lemma [6.2] then
K' <, I{W)
Now assume 1 € pos™ (K’). Then
A Ik K implements [ (W)
by rule ENT-Q-ALG-ENV and Lemma Hence, with and Lemma m
K'implements [(W) € ./

With , we have AR’ K/ < L for all R € 4, so holds.

On the other hand, assume 1 ¢ pos*(K’). Because of (235), we get with
Lemma that 1 ¢ pos™(K’). With (237) and criterion WF-PROGIS] we
then have for all Ry, Ry € A

Ly, 4, Ly, or Lz, 4, Lg,

With (233) and Lemma [11.12] we know that the set {impl(R,1) | R € .#} is
finite. Thus, (236]) holds.
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- Case there does not exist R’ € .# with impl(R’,1) = L for some L: With (233))
and Lemma we have for all Ry, Ry € -

Ly, <, Ly, or Ly, <, Ly,

Thus, (236] holds.

End case distinction on whether or not there exists R’ € .# with impl(R’,1) = L for some L.
This finishes the proof of (236]). We now use rule PICK-CONSTR-NON-NIL to derive
pick-constri 4 = R’

such that A k" impl(R’, 1) < impl(R, 1) for all R € .#. We now have by ALG-MTYPE-IFACE
(note that U” = Z; and, by criterion WF—IFACE Z Nf(P") =0)

a-mtypen (m, T, T) = [impl(R',1)/Z1,W/Z'|((X) U" z — U" where P")
(93).E20 (X)Uz — impl(R’, 1) where P
Define U’ = impl(R’, 1). With 7 , and we have
Ak, impl(R';1) < K
By and we have
U=T/=T=K
Hence,
AFU <U
W.Lo.g., X Nftv(T’,R’') = (). Hence
AFoU <oU

as required.

End case distinction on the form of p’.
End case distinction on the possibilities left by Lemma [6.32

End case distinction on the form of m. O

Lemma 11.31. Assume

interface I{Z)[Y where R] where Q {m : static msig rcsig }
msig = (X)U x — U where P
A |+ T implements I (W)
A v [VIX|[T]Y,W/Z|P
AT,V ok

such that either msig € msig or that there exists receiver {m’ : msig'} € rcsig with msig € msig’.

Then A+ [V/X|[T]Y,W/Z)U ok.
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PROOF. We get with Lemma|l1.24{and the assumptions A |- T implements I (W) and A I T ok

that
A+ T implements I (W) ok
Hence,

AF W ok

AIF[T/Y,W/Z]R,Q

Because the underlying program is well-typed, we have

W.lo.g., X Nftv(R,Q,T,W) = . Hence,

[W?W]Rva = [V/XaT/Yv W/Z]R@

V/X]|T/Y,W/Z]P = [V/X,T/Y ,W/Z]P

V/XI[T/Y, W/ZlU = [V/X,T/Y,W/Z]U

With (240) and (238) we then have
A VX, T]Y,W/ZIR,Q

With (241) and the assumption A I- [V/X][T/Y,W/Z]P we have

AW [V/X,T]Y ,W/Z|P
With Lemma and (239) we then have

AF[V/X, T/Y,W/Z]U ok
so the claim follows with (242)).

(238)

(239)

(240)
(241)
(242)

O

{eq:entails-rq::lem

{eq:u-ok: :lemma:msi

{eq:eql::lemma:msig
{eq:eq2: :lemma:msig

{eq:eq3: :lemma:msig

Lemma 11.32. Suppose A ok and and A & T; ok for all j € disp(I). If A I} T? implements I<W> —

T implements I (V) and T} = nil then A T; ok.

PRrOOF. We first note that

A;B;JH TP 1T -V and Tj = nil imply V; = U;
A; B JE T? 1T — V implies AR,/ V; < U; for all i

Now we show that

If- A ok and A - T; ok for all j € disp(I) and D::A;%; 81K T7 implements I(V7) —

T implements I{V) and T} = nil then A T; ok.

Assume T} = nil. W.Lo.g., i ¢ disp(I).
Case distinction on the last rule of D.

e (Case rule ENT-NIL-ALG-ENV: Then
Re A
G implements (V) € sup(R)
ABIH TG —-T

(243)
(244)

From the assumption - A ok and Lemma [11.23] we get A G implements I(V) ok, so

A G; ok. But with (243]) we have T; = G;.
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e (lase rule ENT-NIL-ALG-TFACE : Impossible because n = 1 and 73 # nil in this rule.
e (Case rule ENT-NIL-ALG-TFACE2: Impossible because n = 1 and T; # nil in this rule.

e (ase rule ENT-NIL-ALG-IMPL: Then

implementation(X) I(V’) [N] where P ...
A B F;IFT [U/X]N—DT (245) {eq:1ift3::lemma:en

A9 U {[U/X}N implements I<[U/X]W>}, false Ik, [U/X]F (246) {eq:entails::lemma:
With (245)) and (244) we get

(Vi) A+ T; < [U/X]N;

Thus, if j € disp(/) then A F T} ok by assumption, so with Lemma [11.22

A+, [U/X]|N; ok

From criterion WF—IMPL we get X C ftv({N; | j € disp({)}). Thus, withLemma

AU ok
With Lemma [9.13] (246]), and rule ENT-Q-ALG-UP, we get
Al [U/X]P

Because the underlying program is well-typed we have
P,X F N implements I (V') ok
Now Lemma [7.3] yields

A+ [U/X](N implements I(V')) ok

Thus,
A+ [U/X]|N ok
But with (243) and (245) we have T; = [U/X]N;,.
End case distinction on the last rule of D. O

Lemma 11.33. Suppose = A ok and A = N,V ok and A I+ [V/X]|P. If a-mtype‘(m,N) =

(X)Ux — U where P then A+ [V/X]U ok.

PROOF. By induction on the derivation D of a-mtype®(m, N) = (X)U z — U where P.
Case distinction on the last rule of D.

e (ase rule ALG-MTYPE-DIRECT: Then

N = C(T)
class C(Y) extends M where Q{... m : msig{e}}

Assume




Because the underlying program is well-typed, we have
Q,Y +my : msig; {e;} okin C(Y)
Hence,

From A F N ok we get A I+ [T/Y]
[T/Y]Q =[V/X,T/Y]Q, so we have

and A F T ok. W.Lo.g., X Nftv(T,Q) = (). Hence,

AI-[V/X,T/Y]Q

Moreover, the assumption A I- [V/X]P can be written as
Al-[V/X,T/YIP
Using Lemma on yields
A+ [V/X,T/Y]U ok
=[V/X]U
as required.

e (lase rule ALG-MTYPE-SUPER: Then

class C(X) extends M ...

a-mtype‘(m, [T/X|M) = (X)U x — U where P
N = C(T)

Then N <, [T/X]|M, so we get with A - N ok and Lemma that A+ [T/ X]M ok. The
claim now follows from the I.H.

End case distinction on the last rule of D. O

Lemma 11.34. Suppose - A ok _and A+ T, T,V ok and A IF [V/X]P. If a-mtype(m,T,T) =
(X)U x — U where P then AF [V/X]U ok.

PROOF. Case distinction on the rule used to derive a-mtypen (m,T,T) = ....

e Case rule ALG-MTYPE-CLASS: Then bounda(T) = N and a-mtype(m,N) = (X)Ux —
U where P. With Lemma@we have A F N ok. The claim now follows with Lemma

e (ase rule ALG-MTYPE-IFACE: Then

interface I(Z’) [7l where R] where P{... rcsig}
resig; = receiver {m : msig}
msig,, = (X)U'x — U’ where Q
(Vi € [I],i # j) contribly,, (U,T) =%
contribly  (Z; U, TT) =¥
p’ = (if U = Z; for some i € [I] then i else nil)

. 7W implements [ (W’) =
pick-constrl} {V” implements I(V'”) | (Vi € [I]) if #;" = nil then V;* = nil
else define V' such that
AR VI <V for VI € ¥,

A I V7 implements I (nil) — V7 implements [ (V"7)}
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and
m = mg
(X)Uz — U where P = [W/Z,W'/Z'msig,

With Lemma [11.22| and the assumption A = T, T ok we easily verify that, if #;° # nil, then
A V/ ok for all V/ € #;°. Hence, we have with Lemma [11.22] for the V; in the argument

to pick—constri7 that
V! # nil implies A F V" ok
Then, by Lemma , we have for the V" in the argument to pick—constri?
V" # nil implies A -V ok
Clearly, #;" # nil for all i € disp(I), so Vi’ # nil for all i € disp(I). Hence, with Lemma
Vi = nil implies A + V" ok
Hence,
A+ W ok
With Lemma [[T.3]
A IF W implements [ (W)

We have [V/X|P = [V/X|[W/Z,W'/Z']|Q, so with the assumption A I [V/X]P and Lemma

A V/X]|[W/Z,W']Z'|U" ok
—_—
=U
as required.

End case distinction on the rule used to derive a-mtypen (m,T,T) = .. .. O
Lemma 11.35. If A+ N ok and fields(N) = U f ', then A+ U; ok for all i € [n).

PROOF. We proceed by induction on the derivation of fields(N) = Ur.

Case distinction on the last rule in the derivation of fields(N) =T f .
e Case rule rFiELDS-0BJECT: Then n = 0 and the claim holds trivially.

e Case rule FiELDS-cLASS: Then N = C(V) and

class C(X) extends M where P{T f...}
fields([V/X|M) = T7 J
Uf =T, V/XITf

Clearly, N <. [V/X]|M, so A + [V/X]|M ok by Lemma Hence, we have by the I.H.
that

AT ok

The underlying program is well-typed, so we hav X T ok. From A+ C(V) ok we get

i m e P
Al [V/X]P and A -V ok. Hence, with Lemmal[7.3]

A& [V/X|T ok
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End case distinction on the last rule in the derivation of fields(N) = U f . O

Lemma 11.36 (Expression typing ensures well-formedness). Suppose - A ok and A+ T ok. If
A;Tkye: T then AFT ok.

PrOOF. We proceed by induction on the derivation of A;T H, e: T.
Case distinction on the last rule used in the derivation of A;T'H, e: T

e Case rule Exp-ALG-VAR: Follows with the assumption A F T ok.
e (Case rule EXP-ALG-FIELD: Then
AThH e T
bounda(T') = N
fields(N) =U f
e=¢.f;
T=U;

We get from the I.H. that A 77 ok. With Lemma|11.25/then A - N ok. Then we get with
Lemma [TT.35] that A - Uj ok.

e (Case rule EXP-ALG-INVOKE-D: Then

e=¢ .m(V)(e)
T=[V/X|U
AT e T
(Vi) AT e 2 T
a-mtypen (m, T',T) = (X)U x — U where P

AlF [V/X]P
AFV ok

Applying the I.H. yields A - T, T ok, so we can apply Lemma|11.34/and get A - [V/X]U ok,
as required.

e (ase rule EXP-ALG-INVOKE-S: Then

e = I{W)[T].m(V)(e)

a-smtypen (m, [(W)[T]) = (X)U z — U where P

Applying Lemma yields A F [V/X]U ok, as required.
e (Case rule EXP-ALG-NEW: Then A F T ok from the premise of this rule.
e Case rule Exp-ALG-cAST: Then A T ok from the premise of this rule.
End case distinction on the last rule used in the derivation of A;T'H, e: T. O

Lemma 11.37. Iffields(N) =T f " and i € [n], then there exists class C(X) ...{Vg ...} such

that N <. C(U) and T; f; = [U/X]|V; g; for some j.
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PROOF. We proceed by induction on the derivation of fields(N) = T f . The derivation cannot

end with rule FiELDS-0BJECT because this would contradict ¢ € [n]. Hence, the last rule must be
FIELDS-CLASS. We get
N = D(W)
class D(X) extends M where P{T’"f'...}
fields([W/X|M) =T" f"
T =T W/X]T'f'

If i > mset C(U) = D(W ) Otherwise, the claim follows with the LH., the fact that D(W) <,
[W/X]M, and Lemma O

= (X)Uz — U where P

Lemma 11.38. Assume - A ok and A+ T, T ok. If a-mtypen(m,T,T -
= (X)Ux — U where P.

then there exists T' such that A+ T < T’ and mtypep (m,T")

PrRoOOF. Case distinction on the form of m.
e Case m = m°: Then

bounda(T) = N
D :: a-mtype®(m, N) = (X) Uz — U where P

A straightforward induction on the derivation D shows that there exists N’ such that
mtype(m, N') = (X) U x — U where P
N 4. N

With bounda(7T) = N and Lemma [11.17] we have A = T < N. Thus, by transitivity of
subtyping,

AFT <N’

We finish this case by setting 7" = N’.
e Case m = m': Then

interface I[(Z’) [7l where R] where P{... rcsig}
resig; = receiver {m : msig}
msig, = (X)U'x — U’ where Q
(Vi € [I],i # j) contribly,, (U, T) = %
contriby , (Z; U, TT) = ¥}
p’ = (if U’ = Z; for some i € [I] then 7 else nil)
W implements [(W') = pick—constr’g.///

A = {V implements I (V") | (Vi € [I]) if #;" = nil then V;’ = nil
else define V' such that
AR V<V for V! € ¥/,
A IF! V7 implements I (nil) — V implements I(V7”)}

and

(X)Ux — U where P = [W/Z,W'/Z'|((X)U"x — U’ where Q)

115



Obviously, ¥ # nil. With Lemma|11.13/and the definition of contrib’ we get
AR'T <V forall V] € ¥

With Lemma [11.26, we know that for all V implements (V") € .# there exists some
V] € ¥} such that

ARV <V,
With rule sus-TraNS we thus have
AT < W,
By Lemma [TT.3] we get
A I W implements I (W)

By rule MTYPE-TFACE we now have

mtypen (m, W;) = [W/Z,W'/Z'|msig;, = (X) Uz — U where P
Define T” = W} to finish this case.

FEnd case distinction on the form of m. O

Theorem 11.39 (Soundness of algorithmic expression typing). Suppose - A ok and A T ok.
IfA;TH e:T then A;TRHe: T.

PROOF. We proceed by induction on the derivation of A;T'H e : T.
Case distinction on the last rule of the derivation of A;T'H, e: T

e (ase rule ExrP-ALG-VAR: Obvious.

e Case rule EXP-ALG-FIELD: Inverting the rule yields

e=c¢f;
AThH T
bounda(T") = N
fields(N) =U f
T =U;

With Lemma [[1.37 there exists a class C such that

class C(X) ...{Vg...}
N <. C(W)

U; f; = W/X]V; g (248) {eq:1::lemma:soundn

By Lemma [11.17 we have A = T" < N, so A = T’ < C(W). We get by the LH. that
A;T R e T, so with rule exp-suBsume, A; T F ¢’ @ C(W). The claim now follows with rule

EXP-FIELD and ([248)).
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e (Case rule EXP-ALG-INVOKE-D: We get from the premises of the rule

e=¢ .m(V)(e)
T=[V/X|U
AT e T
(Vi) AT e 0 T
a-mtypen (m, T, T) = (X)U x — U where P
(Vi) Ak Ty < [V/XU;

Ak [V/X]P
AF, V ok

By the LH.

AT Re T

(Vi) AT Fe; : T

With Lemma [IT.36]

AFT T ok
With Lemma we get the existence of T” such that

AT <T"

mtypen (m,T") = (X) Uz — U where P

We have by rule EXP-SUBSUME

ATHE T
so the claim follows with rule EXP-INVOKE.

e (Case rule EXP-ALG-INVOKE-S: We use the I.LH. and rule Exp-sUBSUME to derive the correct
types for the arguments of the call. With Corollary [I1.2] we get that smtype and a-smtype
are equivalent. The claim then follows with rule EXP-INVOKE-S.

e (Case rule Exp-ALG-NEW: We use the I.H. and rule Exp-suBsuME to derive the correct types
for the arguments of the constructor call. The claim then follows with rule EXp-NEW.

e (ase rule Expr-aLG-cAST: Follows from the I.H.

End case distinction on the last rule of the derivation of A;T'H, e : T. O

Lemma 11.40. If class C(X) ... {Uf ...} and N 4, C(T) then fields(N) = ... U" f ... such

that [T/ XU = U".
PrOOF. Follows by a routine induction on the derivation of N <, C(T). O

Theorem 11.41 (Completeness of algorithmic expression typing). Suppose = A ok and A F T ok.
IfA;TkEe:T then A;T Hye: U such that AFU < T.

PrOOF. We proceed by induction on the derivation of A;T' Fe: T.
Case distinction on the last rule used in the derivation of A;T'Fe: T.

e (ase rule xpr-var: Obvious.
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e Case rule Exp-riELD: By inverting the rule, we get
AT e C(T)
class C(X) extends N where P{U f...}
e=¢c.f;
T = [T/X]U;
We get from the I.H.
AT hH e T
AFT < C(T)
Hence, with Corollary
AR'T < C(T)
By Lemma |11.18
bounda(T') = N
N <. C(T)
By Lemma |11.40
fields(N) =... U' f ...

[T/X ]U =U
The claim now follows with rule EXP-ALG-FIELD.

e Case rule Exp-INVOKE: Inverting the rule yields

e=¢c.m(V)(e)

T = [V
AT T

(Vi) A;T Fe; : [V/XU;
mtypen (m,T") = (X) Uz — U’ where P
Al [V/X]P
AV ok
By the LH.
ATk e T
AFT' <T
(Vi) A;T hy e 0 W

(Vi) A+ W; < [V/X]U;

Now with Lemma [TT.36]
AT ok
By Lemma
a-mtypep (m, T, W) = (X)U'x — U" where P
(Vi) A - W; < [V/X]U;
A+ [VIXU" < [VIX U
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We now get with rule EXP-ALG-INVOKE-D

AT e/.m(V)(e) : [V/X|U"

e Case rule EXpP-INVOKE-S: Inverting the rule yields

Il
kel
g
8
|
<
=
=
)
=
o
<3|

not 1 € pos™(I) or (3i) A I~ T;mono
AFT,V ok
By the L.H.

(VZ) A, T l_a €; Wz

A+ Wi < VXU,

With Corollary we get that smtype and a-smtype are equivalent. We then have by rule
EXP-ALG-INVOKE-S

AT I [T].m(V)(e) : V/ XU’

e (Case rule Exp-NEW: The claim follows from the I.H. and rule EXp-NEW.
e (Case rule Exp-casT: The claim follows from the I.H. and rule EXp-CAST.

e (Case rule EXP-SUBSUME: From the premise of the rule, we get A;T'Fe: U and AU <T.
The LH. yields A;T ke : U and AU < U’. We then have A - U < T by rule SUB-TRANS.

End case distinction on the last rule used in the derivation of A;T'Fe: T. O

12 Termination of Expression Typing

Lemma 12.1. If T} # nil for all i € disp(I), then the set # = {R | A ! T7 implements I(V?) —
R} is finite.

PROOF. We generalize the claim and prove that Z = {R | A;¥;3 ) T7 implements I(V?) —
R} is finite. Assume Z = {Rq,Ro, ...} is infinite. W.l.o.g., assume for all i € N

D;:: A;9; 31K T7 implements [ (V?) — R;

such that all D; end with the same rule.
Case distinction on the last rule in all D;.

e Case rule ENT-NIL-ALG-ENV: Impossible because A is finite and, obviously, sup(8) is finite for
all 3.

e Case rule ENT-NIL-ALG-IFACE;: Impossible because the set {I(V) | A;3;1 b, Ty T I{(V)} is
finite by Lemma [11.12
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e Case rule ENT-NIL-ALG-IFACE: Impossible because the set {J(V) | J/(W) <, J(V)} is finite
by Lemma [T1.12]

e (Case rule ENT-NIL-ALG-IMPL: W.l.0.g., assume that the same implementation definition
implementation(X) I(V) [N] where P ...

appears in the premise of the last rule of every D;. (There are only finitely many im-
plementation definitions in a program, so infinitely many derivations must share the same
implementation definition.) We then have

R; = T implements I([U;/X]V)
A B ITH T [U;/X|IN - T

Clearly, for j € disp(I), we have
AT < [U/X]N;

With criterion WF—IMPL we have X C ftv({N; | i € disp(I)}, so with Lemma [11.12| we
know that the set {U; | ¢ € N} is finite. Hence, the set

{lU:/XIN | i € N} U{[U:/X]V | i € N}

is finite. But if 7] = nil then T} = [U;/X]N;. Hence, the set % cannot be infinite, which
contradicts our assumption.

FEnd case distinction on the last rule in all D;. O
Lemma 12.2. Let

M = {V implements [(V") | (Vi € [I]) if ¥;' = nil then V,* = nil
else define V;' such that
AR V<V for VI e,
AR V? implements I (nil) — V implements I (V")}

If 7 # il for all i € disp(I) and all ¥’ are finite, then A is finite.

ProoOF. With Lemma|l1.12)we know that only finitely many choices for the Vi?s in the definition
of 4 exist. Moreover, V" # nil for all ¢ € disp(I). The claim now follows with Lemma O

Theorem 12.3. The problem of finding some type T such that A;T F e : T is derivable for given
A, T, and e is decidable.

PRrROOF. By Theorem|[11.39and Theorem[11.41] it suffices to define a total function type(A, T, ¢)
that returns type 7T if, and only if, A;T" k, e : T is derivable. The definition of type is straight-
forward, so we only need to verify that type is a total function; that is, that type terminates for
all inputs. Clearly, the third argument of a recursive call of type is always a subexpression of the
original expression argument; hence, there are only finitely many recursive calls of type. Similarly,
the function checking the relations A F, 7" ok and A k, P ok calls itself only on strictly smaller
arguments. Moreover, the functions entails and sub for checking entailment and subtyping,
respectively, terminate by Theorem

The only possible sources of non-termination left are the auxiliaries a-mtype, a-smtype, bound,
and fields. Thereof, a-smtype and fields obviously terminate. A call bounda(N) or bounda(N)
clearly terminates. For bounda (X), we get by Lemmathat the set {A " X < N} is finite.
Thus, a call bounda (X) also terminates.

We now consider a call a-mtype(m,T,T). If m = mS, then the call obviously terminates.
Otherwise, we check that all premises of rule ALG-MTYPE-IFACE terminate. With Lemma [I1.12]
we easily verify that all #;° in the premise are finite and that %" # nil for all i € disp(I). By
Lemma we then have that the argument of pick-constr is finite, so the premise involving
pick-constr terminates. The remaining premises terminate trivially. U
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unify,_l(A,Y, {Gll |_|? G12, ey Gnlnl_l? Gng}) {
for ( ((ila.jl)w-w(inajn))eHi:l (1a2)a(271)} ) {

U = (AaXa{Glil S? G1j17~~';Gnin S? an,,,});
if (unify_(U) == 0K(0))
return 0K(o);

}

return FAIL;

Figure 21: Algorithm for unification modulo greatest lower bounds

13 Checking the Well-formedness Criteria

It is not obvious how to check well-formedness criteria Wr-ProOG{2] WF-ProG3] WF-PrOG{4]
WEF-TENV43] and WF-TENV7|[2). In Sec.[13.1] we now show how to check all of these criteria
except criterion WF-TENV{3] Sec.[I3.2] then deals with criterion Wr-TENV-3]

13.1 Unification and Subtyping

Directly checking well-formedness criteria. WF-PrRoG2] WF-ProG3] Wr-ProG{d] and WFr-
TENVH7([2]) is not possible because these criteria involve universal quantification over one or two
substitutions subject to subtype or greatest lower bounds conditions.

Definition 13.1 (Unification modulo greatest lower bounds). A unification problem modulo
greatest lower bounds is a triple

U= (AX,{G, <"H,...G, <" H,})

A solution of U is a substitution o with dom(o) C X such that A+ oG; M oH; for alli € [n]. We
write sol(U) for the set of all solutions of U. A most general solution of U is a solution o such
that for any other solution o' it holds that o < o’. We say that U is well-formed iff ftv(A)NX = ()
and G; =Y (or H; =Y ) implies Y ¢ X for any i € [n].

Fig.[21] defines an algorithm for solving unification problems modulo greatest lower bounds.
By looking at Deﬁnition we see that a solution of (A, X, {G11 M Gia,...,Gn1 17 Gpa}) must
also solve the unification problem modulo subtyping (A, X, {G1:, <* Gijy,. -, Gni, < Gpj, }) for
a set of pairs {(i1,71), ..., (in, jn)} where (ix, jx) € {(1,2), (2,1)} for all k € [n]. The pseudo-code
in Fig.[21] essentially tries all possible set of pairs.

Lemma 13.2. Suppose
U= (A,X,{G11 1" Giay...,Gn1 " Gp2})

n

((ilajl)a RS (znajn)) € H{(lv 2)3 (2’ 1)}

i1
U = (A, X, {Gui, <" Gujys-- oy Gni, <" Gnj})

and assume that U is well-formed. Then either sol(U") = 0 or sol(U) = sol(U’).

ProoF. If sol(U’) = 0, then nothing is to prove. Thus, assume sol(U’) # ().
e “sol(U) C sol(U")”. Assume o € sol(U). Then, by Definition

n

((@1,5), - (ins ) € [[H(1,2), (2, 1))

=1
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such that for all k € [n]

AF oGy < oGy (249)
From sol(U’) # () we get the existence of a substitution 7 such that for all k € [n]

AF 7G,, < 0Gjy,
It is easy to see that, because U is well-formed, U’ is well-formed. Hence,

dom(o)
dom(7)

(250)

cX
cX (251)

We now show A oGy, < 0Gyj, for all k € [n]. This implies o € sol(U’).

= (172) or (ikajk) = (2a 1)7 and (Z;G’j],g) = (172) or
(ih,9r) = (2,1). If (ig,jk) = (i}, J;,) then with A F oG, < 0Gyj,,. Thus, assume
(ik, Jr) # (i), Jr.). W.lo.g., (i, jr) = (1,2) and (i}, j;.) = (2,1). Hence, A F 0Gr2 < 0Gj
and A F 7G1 < 7Ge. With , , and the well-formedness of U, we know that
0Gra, 0Gk1, TG2, and TGy are all G-types. Thus, with Theorem [6.34] and Lemma [6.16}

Assume k € [n]. We have (i, jx)

A |—q/ 0Gro <0G
A |—q/ T7Gr1 < 7Gho

Case distinction on the form of Gpo.

— Case Gja = Y for some Y: U is well-formed, so Y ¢ X. Hence, with (250) and
(251), 0Gra = Y = 7Gp2. With Lemma then 7Gp1 = Y, so Gi1 = Y. Thus,
At oG, < 0Gjy -

— Case Gz = C(T) for some C(T): With Lemmal6.11|{then 0Gj; = o D(U). By inverting
rule sUB-Q-ALG-CLASS, we get

oC(T) <, oD{U)
D(U) <, 7C(T)
The class graph is acyclic (criterion WF—PROG, SO
C=D
ol =oU
Thus, AF 0Gr1 <0G, 50 AF 0Gy;,, < 0Gj, -

End case distinction on the form of Gpo.

e “sol(U’) Csol(U)”. If o € sol(U’) then obviously also o € sol(U). O

Theorem 13.3 (Soundness, completeness, and termination of unify-(U)). Let U be a well-formed
unification problem modulo greatest lower bounds. If U has a solution then unify-(U) returns
OK (o), where o is an idempotent, most general solution of U. If U does not have a solution,
unify(U) returns FAIL.

PROOF. Termination of unify(U) follows from Theorem [10.5]

Next, assume U does not have a solution. Thus, none of the unification problems constructed

in line [3] of Fig.21] has a solution. The claim now follows from Theorem [10.8

Finally, assume that U has a solution. Thus, some of the unification problems constructed in

line [3| have solutions. Assume that U’ is the first of these problems. According to Lemma [13.2]
we then have sol(U) = sol(U’). The claim now follows with Theorem [10.9} O
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Lemma 13.4. If a well-formed unification problem modulo subtyping (or modulo greatest lower
bounds) has a solution, than it also has a most general solution.

Proor. Follows from Theorems [10.5] [10.8] [I0.9] and [T3.3] O

Now we are in the position to present alternative formulations of well-formedness criteria WF-
Proc{2] Wr-Proc3] Wr-ProG{4] and WF-TENV{7|[2).

Wr-PROGI2 For each pair of disjoint implementation definitions
implementation(X) I(T) [M ] where P ... implementation(Y) I(U) [ N ] where Q ...
with XNY = @ and where o is a most general solution to the unification problem 0, XY, {M; "’
N; | i €disp(I)}), it holds that 07 = oU and that o M; = oN; for all j ¢ disp(I)
WrF-PROG{3 For each pair of disjoint implementation definitions
implementation(X) I(T) [N"] where P ...

implementation(X’) I(T") [N""] where P’ ...

X’ = () and where o is a most general solution to the unification problem
N; 1? N/ |i € [n]}), there exists an implementation definition

implementation(Y) I(U) [ M| where Q ...

and a substitution [W/Y] such that ) - o N Mo N’ = [W/Y]M.

Wr-ProGH! For each pair of disjoint implementation definitions

implementation(X) I(T) [ M| where P ... implementation(Y) I(U) [ N | where Q ...
P (X) I(T) [ M] P (Y) I{U) [N] Q

with X N X’ = () and where o is a most general solution to the unification problem
0, XY,{M; <* N; | i € [n]}), it holds that for all P € oP either {Q € oQ} IF P or
Pe JQUsup( Q) U {T extendsU | Textends U’ € 0Q,{Q € cQ} H,/ U’ < U}.

WEr-TENVIT

1. Unchanged from criterion Wr-TENV{7]
2. For each constraint and each implementation definition

G implements I (T) € sup(A)

implementation(X) I(W) [N ] where P ...

with X N ftv(sup(A)) = 0 and where ¢ is a most general solution to the unification
problem (A, X, {G; M’ N; | i € disp(I)}), it holds that T = ¢W and G; = oN; for all
J ¢ disp(1) Upos™ (1),

Given the algorithms in Fig.[15] and Fig.2I] we can effectively check the criteria just defined.

Lemma 13.5. Criterion WF—PROG and criterion WF—PROG are equivalent.

PROOF. The proof is easy, using Lemma for the implication “<”. O
Lemma 13.6. Criterion Wr-PROG3| and criterion Wr-PROGI3| are equivalent.

PROOF. The proof is easy, using Lemma for the implication “<". O

Lemma 13.7. Criterion Wr-PROGH] implies criterion Wr-PrROGH4]
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PRrROOF. Assume

implementation(X) I(T) [ M ] where P ... implementation(Y) I(U) [N ] where Q ...
[V/XIM <. [W/Y]N and 0 I- [W/Y]Q. o
W.lo.g., XNY = () and the two implementation definitions given are disjoint. From [V/X]M <.
[W/Y]N and Lemma we get the existence of a substitution o such that oM <. oN and

[V/X] = 0’0 and [W/Y] = 0’0 for some substitution o”.
Now assume P € [V/X]|P. That is, there exists some i such that P = [V/X]|P;. From
criterion WF—PROG we then get that either {Q € cQ} I o P; or o P; € sup(cQ)U{T extends U |

TextendsU' € 0Q,0Q ' U' < U}
e Case {Q € 0Q} IF 0. We have 0 IF 0'{Q € 0Q}, so § I [V/X|P; by Lemmal 7.1}

e Case oP; € sup(cQ) U {T extends U | T'extends U’ € 0Q,0Q +,/ U’ < U}.

If oP; € sup(cQ), then [V/X]P; € sup([W/Y]Q) by Lemma 6.15l We then get with ) IF
[W/Y|Q, Theorem [6.34] Lemma and Theorem 6.361 that 0 I+ [V/X]P,.

Suppose oP; € {TextendsU | TextendsU’ € 0Q,0Q +,' U’ < U} and assume oP; =

T extends U with T extends U’ € ¢Q and 0Q k' U’ < U. With 0 IF [W/Y]Q then

D-o'T <d'U
and with rule SUB-Q-ALG-KERNEL, Theorem [6.36], and Lemma
0 o'U <d'U
By transitivity of subtyping and rule ENT-EXTENDS then () I- [V/X]P;.
This proves 0 I- [V/X]P. O
Lemma 13.8. Criterion WF—TENV and criterion WF—TENV are equivalent.

PRroor. The proof is easy, using Lemma for the implication “<”. O

13.2 Finitary Closure of Types

Criterion WF—TENV requires clsa (77) to be finite for every finite set of types 7. We now present
an equivalent, syntactic characterization of this property, which was originally developed by [3].
Most definitions, lemmas, and proofs in this section are heavily based on work by [2].

Definition 13.9 (Type parameter dependency graph). The type parameter dependency graph
P is a labeled graph 2 = (V,&).
The set of vertices ¥V consists of all the formal type parameters to classes in the program:

¥ = {C#i | class C(X") extends N ...,i € [n]}

At some points, we use the name of the formal type parameter X; instead of C#i, assuming the
names of all formal type parameters are (a-converted to be) distinct.

The set of labeled edges & = &y U &1, where the labels are drawn from the set {0,1}, represent
uses of formal type parameters. Edges labeled with O are called non-expansive edges:

& = {C+Hi S D#j | class C(X") extends N ..., D(T) subterm of N, X; = Tj}
Edges labeled with 1 are called expansive edges:

& = {CHi L D#j | class C(X") extends N ..., D(T) subterm of N,
X; proper subterm of T;}

The type parameter dependency graph is said to be expansive iff it contains a cycle with at least
one expansive edge. Otherwise, the type parameter dependency graph is said to be non-expansive.
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Definition 13.10 (Levels in the type parameter dependency graph). Let 9 = (¥, &) be a type
parameter dependency graph. The level of a vertex X € ¥, written level(X), is a natural number
such that for X, Y € ¥ the following property holds:

if X =Y and Y —T X then level(X) = level(Y)
if X =Y and not Y —T X then level(X) > level(Y)
Definition 13.11 (Paths). A path is a sequence of formal type parameters, where e denotes the
empty path and X.p is the path consisting of formal type parameter X prepended to path p. By
interpreting a path p as a partial function from terms to subterms, we may use p to identify a
particular subterm in a type:
p(T;) =U
(C#i.p)(C(T)) =U

eT)=T

We say that p is a path in T if p(T) is defined.

Definition 13.12. Let L, € N. The predicate ¢, 5(p) holds for a path p iff p can be divided into a
sequence of (possibly empty) sequences of type parameters whose levels are bounded by 0,..., L —1
and whose lengths are bounded by §. That is, ¢1, s(p) means that p has the form Xo X1 ... X1 _1,
such that, for alll € {0,...,L — 1}, level(X) < for all X € X; and |X;| < 4.

We extend ¢r. 5 to types by defining that ¢ s(T) holds for a type T iff ¢ 5(p) holds for every
path p in T.

Lemma 13.13. If ¢, s(T) then height(T) < JL.

ProoOF. Easy. U

Let 2 = (¥, &) be the type parameter dependency graph of the underlying program. We define
L € N as the number of levels in 2 (that is, 0 < level(X) < L for any formal type parameter X).
Moreover, we define § € N as a bound on the height of the superclasses of the underlying program.
That is, class C(X) extends N ... implies height(N) < §. In the following, we write ¢ instead
of ¢rs.

Lemma 13.14. If height(T) < 6 then ¢(T).
Proor. Easy. O
Lemma 13.15. If N <. M and ¢(N) then ¢(M).

PROOF. We proceed by induction on the derivation of N <, M. If the last rule in this derivation
iS EXT-C-REFL, then the claim holds trivially. Otherwise, we have

class C(X) extends N’ ...

[T7XIN' 9. M
N = C(T)

We now show ¢([T/X]N'), the claim then follows by the I.H. Note that height(N”) < § by definition
of 6.

Consider a path p in [T/iX]N ’. There are two possibilities. First, p could be simply a path in
N’ that maps to a non-variable type. In this case, we know |p| < ¢, so we have ¢(p) immediately.

Otherwise p = p’.q for paths p’ and ¢ such that p’ is non-empty, p'(N’) = X; and ¢ is a path
in T;. Hence, C#i.q is a path in C(T'), and so from ¢(C(T)), we can deduce ¢p(C#i.q), or written
another way, ¢(X;.q). Now if level(X;) = k then q = Y, Vi1 ... Y71, with level(Y};) <1 for all i
and k <1 < L and with |Y;| < § and |Y;| < § for k <1 < L. Suppose p' = Z.Z. By definition of
the type parameter dependency graph, we know that X; 5 Z; for each j and that X; 2 Z. The
type parameter dependency graph is non-expansive, so there is no j such that Z; —* X,. Hence,
level(Z;) < level(X;) = k for each j. Finally, because |Z] < § and level(Z) < k and |Yy| < 6, we
see that p = Z (Z.Y},) Yeg1 ... Y1_1 satisfies ¢, as required. O
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Lemma 13.16. Assume that d is not only a bound on the height of the superclasses of the under-
lying program, but also a bound on the height of the types in A. If A Fq/ U < N and ¢(U), then

P(N).
ProOF. We proceed by induction on the derivation of A Fq/ U<N.
Case distinction on the last rule in the derivation of A I—q’ U<N.
e (uase rule suB-Q-aALG-0BJ: Trivial.

e (Case rule SUB-Q-ALG-VAR-REFL: Impossible.

e Case rule suB-q-ALG-VAR: Then X = U, X extendsU’ € A, and A ;" U’ < N. Hence,
height(U’) < 6, so ¢(U’) by Lemma [13.14l The claim now follows from the I.H.

e Case rule suB-Q-ALG-CLAss: Follows by Lemma
e (Clase rule suB-Q-ALG-TFACE: Impossible.

End case distinction on the last rule in the derivation of A Fq/ U<N. O

Lemma 13.17. Suppose A is finite and assume that the type parameter dependency graph is
non-expansive. Then clsa(T) is finite for every finite 7.

PRrROOF. Let 7 be a finite set of types. We can safely assume that § is not only a bound on
height of the superclasses of the underlying program, but also a bound on the height of the types
in  and A. We now prove that the height of types in clsa(.7) is bounded by JL; then, because
the set of types of a certain height is finite, it follows that clsa (7)) is finite.

By Lemmal[13.13] it suffices to show that ¢ holds for all types in clsa (7). Assume T' € clsa (7).
We proceed by induction on the derivation of T' € clsa (7).
Case distinction on the last rule of the derivation of T' € clsa(9).

e Case rule cLs-ip: Then T in .7, so height(T) < 6. Then ¢(T') with Lemma [13.14

e Case rule cLs-ur: Then we have U € clsp(7) and AR, U < N and T = N. From the L.H.
we get ¢(U). Moreover, with Theorem [10.10[ we have A " U < N. The claim now follows
with Lemma [[3.16]

e Case rule cLs-pDECOMP: Then B(U) € clsa(7) and T = U;. From the L.H. we know ¢(B(U)),
so ¢(U;) also holds.

End case distinction on the last rule of the derivation of T' € clsa (). O
Lemma 13.18. Suppose C(T) € clsa (7).

(i) If C#i % D#j then D(U) € clsa(T) for some U with U; = T;.

(i) If C#i L D#j then D(U) € clsa(7) for some U such that T; is a proper subterm of U;.

Proor.
(i) From the definition of the type parameter dependency graph, we get

class C(X) extends N ...

D(V) subterm of N
Vi=Xi

Obviously, A k" C(T) < [T/X]N, so we have with rule cLs-up that

[T/X]|N € clsa(.7)

Possibly repeated applications of rule cLs-pEcomp then yield [T/ X]D(V) € clsa(7), from
which the claim follows immediately.
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(ii) Similar. O

Lemma 13.19. Assume clsa(.7) is finite for every finite 7. Then the type parameter dependency
graph is non-expansive.

Proor. We prove the contraposition; that is, we assume that the type parameter dependency
graph is expansive and show that there exists a finite set .7 such that clsa(.7) infinite.
Suppose the type parameter dependency graph is expansive; that is, there is a cycle such that

at least one of the edges of the cycle (say the first) is expansive. Thus, either C'#i R C#i or
C#i — D#j —+ C#i. Now consider € = clsa ({C(Object)}).

e By possibly repeated applications of Lemma [13.18 we see that also C(U;) € € such that
Object is a proper subterm of Uy;.

e By possibly repeated applications of Lemma |13.18 we see that also C(Us) € € such that
U,; is a proper subterm of Us;.

e By possibly repeated applications of Lemma [13.18 we see that also C(Usz) € € such that
Us; is a proper subterm of Us;.

Hence, there is a chain of types C(O0bject) = C(Uy), C(U;), C(Us), ... such that C(U;) € € and

C(U;41) is strictly larger than C(U;) for all ¢ € N. Thus, € is infinite. O
We are now ready to give an equivalent formulation of criterion Wr-TENV-3]
Wr-TENVS] The type parameter dependency graph of the underlying program is non-expansive.
Lemma 13.20. Criterion WF—TENV and criterion WF—TENV are equivalent.

ProOF. Follows from Lemma [13.17] Lemma [13.19] and criterion WF—TENV O
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